JPS6045814A - Optical control switch device for traveling object - Google Patents

Optical control switch device for traveling object

Info

Publication number
JPS6045814A
JPS6045814A JP58153088A JP15308883A JPS6045814A JP S6045814 A JPS6045814 A JP S6045814A JP 58153088 A JP58153088 A JP 58153088A JP 15308883 A JP15308883 A JP 15308883A JP S6045814 A JPS6045814 A JP S6045814A
Authority
JP
Japan
Prior art keywords
receiving element
light receiving
voltage
terminal
main light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58153088A
Other languages
Japanese (ja)
Other versions
JPH0422229B2 (en
Inventor
Shintaro Oshima
大島 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58153088A priority Critical patent/JPS6045814A/en
Publication of JPS6045814A publication Critical patent/JPS6045814A/en
Publication of JPH0422229B2 publication Critical patent/JPH0422229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft

Abstract

PURPOSE:To obtain an assured optical control output despite the fluctuation of the indoor light or the natural light by using an amplifier which produces the clear output voltage of high and low levels and has both ON and OFF switch states. CONSTITUTION:If a main photodetecting element D1 gets into a shadow between time points t1 and t2, the terminal voltage VD is negative. At the same time, the input voltage V1 also becomes negative and set at a level lower than the reference voltage VS from a level higher than the VS. Therefore the output voltage V0 is chged to a high level from a low level. Then the area between output terminals S and S' is kept off for a period between 0-t1 and then kept on for a period between t1-t2 respectively if a switching transistor TS is connected to the output terminal. In other words, the capacity is obtained to flow a current to the terminal S' from the terminal S. While the voltage VD is kept positive for a period between t3 and t4 when a compensating photodetecting element D2 is kept within a shadow. At the same time, the voltage V0 is set at a low level and the area between terminals S and S' are kept off. Therefore the area between S and S' is kept on only in the period between t1-t2.

Description

【発明の詳細な説明】 本発明は、レール上又にガイド物体に沿って走行する走
行体が室内光又は自然光による影ろ光検出用主受光素子
に落すことによって生ずるその受光素子の電圧又はイン
ピーダンス変化を第用する走行体用光制御スイッチ装置
に関するものてある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the voltage or impedance of a light receiving element that is generated when a traveling object running on a rail or along a guide object falls on the main light receiving element for detecting shadow light due to indoor light or natural light. This invention relates to an optical control switch device for a traveling object that uses change.

この種の走行体用光制御スイッチ装置として。As an optical control switch device for this type of traveling body.

本願発明者は特願昭58−86341号「レール上走行
体用光制御スイッチ装置」を提案した。この先願の装置
は特別に投光器等の如き機器を側方に配置することなし
に、周囲の光にもそれ程妨害されろことなしに制御用力
をとり出すことができる効果はあるが、室内光又は自然
光の変動がある環境下においてまだ使用される受光素子
の特性のばらつき等の要因により、時に誤動作を起す場
合があてことが認められた。
The inventor of the present application proposed Japanese Patent Application No. 58-86341 entitled "Optical Control Switch Device for Rail-Traveling Vehicles." The device of this earlier application has the effect of being able to take out control power without having to place any equipment such as a floodlight on the side and without being interfered with by ambient light. It has been recognized that malfunctions may sometimes occur due to factors such as variations in the characteristics of light-receiving elements that are still used in environments with fluctuations in natural light.

本発明な、先願気筒のこのような欠点を解消して室内光
又は自然光が変動する環境においても確実な制御出力を
とり串すことのできる走行体用光制御スイッチ装置を提
供するものである。
It is an object of the present invention to provide an optical control switch device for a traveling body that can eliminate these drawbacks of the prior cylinder and provide a reliable control output even in an environment where indoor light or natural light fluctuates. .

この目的達成のために、本発明は、主受光素子とほぼ同
一特性を有する補償用受光素子を使用し、両名の端子電
圧を互いに補償し合うような回路を用いろと共に、増幅
度が大きく急峻な立上りを持つカギ型特性又はヒステレ
ンヌ特性を持つ増幅器を用いスイッチ動作に一層確実に
し、更に受光素子の特性のしらつさによる電圧差及び雑
音電圧が増幅器のカギ型特性又はヒステレシス特性の閾
値にかからないようにバイアス電圧を与えて特性のばら
つぎ及び雑音電圧による誤動作を防ぐように構成されて
いる。
In order to achieve this objective, the present invention uses a compensating photodetector having almost the same characteristics as the main photodetector, uses a circuit that compensates for the terminal voltages of both, and has a large amplification factor. By using an amplifier with a key type characteristic or hysteresis characteristic with a steep rise, the switch operation can be made more reliable, and furthermore, the voltage difference and noise voltage due to the harshness of the characteristics of the light receiving element can be reduced to the threshold of the key type characteristic or hysteresis characteristic of the amplifier. The structure is such that a bias voltage is applied to prevent this from occurring, thereby preventing variations in characteristics and malfunctions due to noise voltage.

すなわち、本発明では、感度がよくはっきりしだ高レベ
ル(H)又は低レベル(L)の出力電圧V0を生じ、O
N又はOFFの2つのスイッチの状態をとらせる増幅器
を使用するが、以下の説明を簡単にするために入力電圧
が基準電圧Vsより高レベル(h)にあるか低レベル(
l)によるかにより出方電圧V0が夫々高レベル(H)
にあるが低レベル(L)にあるコンバータ型増幅器(C
ON)と、その逆の特性即ち基準電圧Vsより入力電圧
が高レベル(h)にあるか低レベル(l)にあるかによ
り出力電圧V0が夫々高レベル(L)にあるが高レベル
(H)にあるインバータ型増幅器(INV)が用いられ
、更に人出力のレベル関係は同じであるがヒステレンス
特性を持ったコンバータ型及びインバータ型の増幅器が
用いられる。
That is, the present invention produces an output voltage V0 with good sensitivity and a clear high level (H) or low level (L), and
An amplifier is used that has two switch states, N or OFF, but to simplify the following explanation, the input voltage is either at a higher level (h) or a lower level (h) than the reference voltage Vs.
Depending on l), the output voltage V0 will be at a high level (H).
The converter type amplifier (C
ON) and its opposite characteristics, i.e., depending on whether the input voltage is at a higher level (h) or lower level (l) than the reference voltage Vs, the output voltage V0 is at a higher level (L), but it is at a higher level (H). ) is used, and furthermore, converter type and inverter type amplifiers are used, which have the same human output level relationship but have hysteresis characteristics.

以下図面により本発明を詳細に分明ずろ。The present invention will be explained in detail with reference to the drawings below.

第1図(a)、(b)に夫々コンパーク型格幅器(CO
N)及びインバータ型増幅器(INV)の入出力特性及
び基準電圧Vsを示す。又(c)、(d)に夫々ヒステ
レシス特性を持ったコンバータ型増幅器及びインノータ
型増幅器の入出力特性及び基準電圧を示す。更に、第1
表に2つの型の増幅器の表示とVSに対する人力重圧V
1との関係及びV1、V0のレベル関係を示ず、 又インバータ型僧幅器(INV)を偶数個縦続接続する
ことによりコンバータ型増幅器(CON)を得ることか
出来るので、説明はインバータ型につき角いコンバータ
型の実施例は図面だけに止める。
Figures 1(a) and (b) show the Compaq type widening device (CO).
The input/output characteristics and reference voltage Vs of the inverter type amplifier (INV) and the inverter type amplifier (INV) are shown. In addition, (c) and (d) respectively show the input/output characteristics and reference voltage of a converter type amplifier and an innoter type amplifier having hysteresis characteristics. Furthermore, the first
The table shows the two types of amplifiers and the manual pressure V for VS.
1 and the level relationship between V1 and V0, and since a converter type amplifier (CON) can be obtained by cascading an even number of inverter type amplifiers (INV), the explanation will be based on the inverter type. The square converter type embodiment is shown only in the drawings.

次に具体重な実施例につぎ説明する。先ず、太陽重油の
ように光による誘起電圧が充分大きくとの電圧を使用ず
ろ場合の実施例につき説明する。
Next, detailed examples will be explained. First, an example will be described in which a voltage such as solar heavy oil, in which the voltage induced by light is sufficiently large, is not used.

第2図(a)の如く主受光素子D1と補償用受光素子D
2をその誘起電圧VD1.VD2が相殺するような栖性
で直列に接続すねげ、その端子重圧VDは殆んど零とな
り、特性のばらつぎ等により僅かな±ΔVDの該差電圧
及び雑音電圧vnが残る。土受滉素刊D1に走行体の影
が落ちてない普通の状態では、端子電圧VDは前に述べ
たように殆んど零であるので、増幅器としても基準電圧
Vsが零の増幅器ろ選んだ方が便利である。従って、 VD=±ΔVD+vn Vs=0 次に、特性のばらつきによる誤差電圧±ΔVと雑音電圧
vnによって閾値である基準電圧Vsをこえて増幅器が
誤動作しないように主受光素子D1に走行体の影が落ち
た時に端子電圧VDが正又は狛になるとすれば、それと
反対の電圧をバイアス電圧VBとして与え、その値を|
ΔVD|+|vn|より太ぎくして誤差電圧ΔVDと雑
音電圧vnによる誤動作な防ぐ手段を用いる。即ち、 VB>|ΔVn|+|vo| 従って、第2図(a)の場合は、主受光素子D1が走行
体の影に入ると、端子電圧VDが負になるので、電源電
圧VCCを抵抗RとRBで分割してその反対の正の上式
て示されろ値のバイアス電圧VBを、RBの端子に生ぜ
しめて使用する、第2図(c)に入出力電圧の特性を示
し、t1とt2の間に主受光素子D1が影に入ったとす
ると、その間端子電圧VDは負となり入力電圧VIば VI=VD+VB<0となり、 VSより高レベル(h)であった状態からVSよりも体
レベル(l)になり、従ってイノハータてあるので、出
力電圧V0は低レベル(L)より高レベル(H)に変化
する。この出力端子にスイッチングトランジスタTsを
図の様に接続しておけは、その出力端子SS′間は0〜
t1まではOFFであり、主受光素子D1が影に入って
いるt1〜t2間しONとなる。即ち、SよりS′に電
流を流す能力を持つことになる。又、補賞用受光素子D
2が影に入っているt3〜t4間は端子電圧VDは正と
なり、出力電圧V0は低レベルとなり、端子SS′間は
OFFとなるので、主受光素子D1が影に入っている間
t1〜t2間のみ端子SS′聞けONとなる。
As shown in Fig. 2(a), the main light receiving element D1 and the compensation light receiving element D
2 as its induced voltage VD1. If the terminals are connected in series so that VD2 cancels out each other, the terminal pressure VD becomes almost zero, and due to variations in characteristics, a slight difference voltage of ±ΔVD and noise voltage vn remain. In normal conditions, when there is no shadow of a running object on D1, the terminal voltage VD is almost zero, as mentioned earlier, so as an amplifier, an amplifier with a reference voltage Vs of zero should be selected. It is more convenient. Therefore, VD=±ΔVD+vn Vs=0 Next, in order to prevent the amplifier from malfunctioning due to error voltage ±ΔV due to characteristic variations and noise voltage vn exceeding the reference voltage Vs, which is the threshold value, the shadow of the traveling object is placed on the main photodetector D1. If the terminal voltage VD becomes positive or negative when the voltage drops, give the opposite voltage as the bias voltage VB and set its value |
It is made thicker than ΔVD|+|vn|, and a means is used to prevent malfunctions caused by the error voltage ΔVD and the noise voltage vn. That is, VB>|ΔVn|+|vo| Therefore, in the case of FIG. 2(a), when the main light receiving element D1 enters the shadow of the traveling object, the terminal voltage VD becomes negative, so the power supply voltage VCC is connected to the resistor. Figure 2(c) shows the characteristics of the input/output voltage when a bias voltage VB with a value shown in the above equation is divided between R and RB and its opposite positive value is generated at the terminal of RB. If the main light receiving element D1 enters the shadow between The output voltage V0 changes from the low level (L) to the high level (H) because the output voltage is at the level (L) and therefore the innoharter is present. If the switching transistor Ts is connected to this output terminal as shown in the figure, the voltage between the output terminal SS' is 0 to
It is OFF until t1, and turns ON from t1 to t2 when the main light receiving element D1 is in the shadow. That is, it has the ability to flow more current into S' than S. In addition, supplementary light receiving element D
During the period from t3 to t4 when the main light receiving element D1 is in the shadow, the terminal voltage VD is positive, the output voltage V0 is at a low level, and the terminal SS' is OFF. Terminal SS' is ON only during t2.

以上の説明の如く、感度が高く確実な走行体用光制御ス
イッチ装置を得ることが出来る。第2図(b)及び(d
)は夫々コンバータ(CON)を使用した場合の実施例
と入出力特性であるがインバータ(INV)の場合と同
様であるので説明は省略する。
As described above, it is possible to obtain a highly sensitive and reliable optical control switch device for a traveling object. Figure 2 (b) and (d)
) are examples and input/output characteristics in the case where a converter (CON) is used, but since they are the same as in the case of an inverter (INV), the explanation will be omitted.

第2図の場合は、主受光素子D1と補償用受光素子D2
を直列に接続するのに正(+)の端子同志を接続し、主
受光素子D1が影に入ると端子電圧VDが負になる仙に
した回路を用いたが、第3図の様に主受光素子D1、補
償用受光素子D2の負(−)の端子を接続したものを用
いてもよい。この場合も主受光素子D1が影に入ると端
子電圧VDは負となるのでバイアス雷圧VBは正になる
ように加える。第3図(a)(b)の実施例及び入出力
特性を第3図(c)(d)に示す。この場合も第2図の
場合と同様であるので詳細な説明は省略する。
In the case of Fig. 2, the main light receiving element D1 and the compensation light receiving element D2
To connect the positive (+) terminals in series, a circuit was used in which the positive (+) terminals were connected together, and the terminal voltage VD became negative when the main light receiving element D1 entered the shadow. An arrangement in which the negative (-) terminals of the light receiving element D1 and the compensation light receiving element D2 are connected may be used. In this case as well, when the main light receiving element D1 enters the shadow, the terminal voltage VD becomes negative, so the bias lightning voltage VB is applied so as to become positive. The embodiment of FIGS. 3(a) and 3(b) and the input/output characteristics are shown in FIGS. 3(c) and 3(d). This case is also the same as the case of FIG. 2, so detailed explanation will be omitted.

又バイアス電圧VBの与え方については以下述べるよう
な手段を使用する事が出来る。即ち、補償用受光素子D
2の誘起電圧を主受光素子D1の誘起電圧に対して小さ
くする事により、主受光素子D1と補償用受光素子D2
の誘起電圧の差がバイアス雷圧VBとして使用できる。
Further, as for how to apply the bias voltage VB, the following means can be used. That is, the compensation light receiving element D
By making the induced voltage of 2 smaller than the induced voltage of the main light receiving element D1, the main light receiving element D1 and the compensation light receiving element D2 are
The difference between the induced voltages can be used as the bias lightning voltage VB.

誘起側圧をおさえるのは、補償用受光素子D2こ光を制
限するフィルタをかぶせるか並列に抵抗を入れろか船の
構成により達成できる。その具体例を第4図(a)及び
(b)に示す。(a)に於てハッチングの部分は光の透
過な制限するフィルタを示す。
Suppression of the induced lateral pressure can be achieved by covering the compensating light-receiving element D2 with a filter that limits the light, or by inserting a resistor in parallel, or by changing the structure of the ship. A specific example is shown in FIGS. 4(a) and 4(b). In (a), hatched portions indicate filters that restrict transmission of light.

次に受光素子の抵抗の変化を利用した実施例につき説明
する。フォトダイオード、フォトトランジスタ傅は光に
よる誘起電圧が低いので、電圧は利用てきないか、pn
接合のnよりpに電流を流した場合光によって抵抗が変
化しその端子電圧は、光か強いと低く、光が弱いと高く
なる方向へ変化する.父、太陽電池も(−)端子から(
+)端子の方向へ電流か流した場合、光の強弱により同
様の変化をする。これらの受光素子は電流の方向性を持
ち、逆方向に知流を流した場合には光の強弱によりその
端子電圧の変化は極めて少い。一方、CDS等は、流す
電流の方向にかかわらず光によって抵抗か変化すろ素子
である。以下の実施例については、フォトダイオードを
例にとり、記号は第5図に示す実施例のようにダイオー
ドのpn接合のpを+で、nを−で示す。従って、光に
よって抵抗が変化する電流の方向は(−)側の端子から
(+)個の端子へ電流を流した場合であり、逆方向の霜
流に対しでは光によっては抵抗の変化は殆んどない。
Next, an embodiment that utilizes a change in resistance of a light receiving element will be described. Photodiodes and phototransistors have low induced voltage due to light, so voltage cannot be used or pn
When a current is passed from the n to the p of the junction, the resistance changes due to light, and the terminal voltage changes from low when the light is strong to high when the light is weak. Father, the solar cell also connects from the (-) terminal to (
+) When a current is passed in the direction of the terminal, a similar change occurs depending on the intensity of light. These light-receiving elements have current directionality, and when a current is passed in the opposite direction, the terminal voltage changes extremely little depending on the intensity of light. On the other hand, CDS and the like are elements whose resistance changes depending on light, regardless of the direction of the current flowing. In the following embodiments, a photodiode is taken as an example, and the symbols p and n of the pn junction of the diode are indicated by + and -, respectively, as in the embodiment shown in FIG. Therefore, the direction of current in which the resistance changes due to light is when the current flows from the (-) terminal to the (+) terminals, and for frost flow in the opposite direction, there is almost no change in resistance depending on the light. It's not easy.

第5図の実施例に示すように光により抵抗の変化する主
受光素子D1及び補償用受光素子D2を目方向に直列に
接続してその両端子を電源につなき矢印の方向へ電流I
を流せば主受光素子D1と補償用受光素子D2が一様に
光を受けていわば、その端子電圧は殆んど相等しく、従
って両受光素子の接続点の電圧は電源電圧VCCのほぼ
1/2になろ。しかし主受光素子D1のみが影に入ると
抵抗が高くなり、従って、第5図ではその接続点の電圧
は電源電圧VCCの1/2より低くなる。普通の状態て
は接続点の電圧が電源電圧VCCの1/2にほぼ笠しい
ので、基準電圧VSが電源電圧VCCの1/2に設計し
たイノバータ又はコンバータを使用する。
As shown in the embodiment of FIG. 5, the main light receiving element D1 whose resistance changes with light and the compensation light receiving element D2 are connected in series in the direction of the eye, and both terminals are connected to a power source, so that a current I flows in the direction of the arrow.
When the main light receiving element D1 and the compensation light receiving element D2 receive light uniformly, their terminal voltages are almost equal, so the voltage at the connection point of both light receiving elements is approximately 1/1/1 of the power supply voltage VCC. Become 2. However, when only the main light-receiving element D1 is in the shadow, the resistance increases, and therefore, in FIG. 5, the voltage at the connection point becomes lower than 1/2 of the power supply voltage VCC. Under normal conditions, the voltage at the connection point is approximately 1/2 of the power supply voltage VCC, so an inverter or converter designed to have a reference voltage VS 1/2 of the power supply voltage VCC is used.

第5図(a)は増幅器として基準電圧Vsが電源電圧V
CCの1/2のものを使用した実施例であり、VSはV
S=1/2VCC て表わされろ。主受光素子D1と補償用受光素子D2の
端仔電圧VD1.VD2は殆んど相等しいが特性のばら
つきかあるのて、そのばらつきによる電圧差をΔVDと
すれけΔVDは ±ΔV=VD1−VD2 で表わされる。第5図では串受光素子D1が走徐体の影
に入るとその主受光素子D1の電圧が高くなり、増幅器
人力電圧V1は基準電圧VSより低イレヘル(l)にな
る。、主受光素子D1と補償用受光素子D2に一様に光
が当っている時、±ΔVD及び雑音電圧Vnで誤動作を
しない様に|ΔVD|及び|vn|の和より充分大きい
正のパイアズを主受光素子D1.補償用受光素仔D2と
直列につないだバイアス用抵抗RBの端子電圧として与
えて誤動作を防ぐようにする。従ってバイアス乱用VB
は次式て示される。
FIG. 5(a) shows that the reference voltage Vs is the power supply voltage V as an amplifier.
This is an example using 1/2 of CC, and VS is V
Express it as S=1/2VCC. Terminal voltage VD1. of main light receiving element D1 and compensation light receiving element D2. Although VD2 is almost equal in phase, there are variations in characteristics, so the voltage difference due to the variation is set as ΔVD, and ΔVD is expressed as ±ΔV=VD1−VD2. In FIG. 5, when the skewer light receiving element D1 enters the shadow of the running body, the voltage of the main light receiving element D1 increases, and the amplifier manual voltage V1 becomes lower (l) than the reference voltage VS. , when the main light receiving element D1 and the compensation light receiving element D2 are uniformly illuminated, a positive piaz that is sufficiently larger than the sum of |ΔVD| and |vn| is set so as not to malfunction due to ±ΔVD and noise voltage Vn. Main light receiving element D1. It is applied as the terminal voltage of the bias resistor RB connected in series with the compensation light receiving element D2 to prevent malfunction. Therefore bias abuse VB
is expressed by the following formula.

VB>|ΔVD|+|vn| 第5図(c)は第5図(a)の入力出力特性で、入力電
圧V1は次式で示される。
VB>|ΔVD|+|vn| FIG. 5(c) shows the input/output characteristics of FIG. 5(a), and the input voltage V1 is expressed by the following equation.

V1=VD1+VD2+VB t1までの時間は光が主受光素子D1と補償用受光素子
D2に一様に出っており、t1〜t2の間は主受光素子
D1のみに影が落ち、更にt3〜t4の間は補償用受光
素子D2のみに影が落ちると0〜t1の間とt2以後は
高レベル(h)て特にt3〜t4の間は高レベルとなる
。一方、t1〜t2間は但レベル(l)となる。従って
、出力電圧V0はt1〜t2間のみ高レベル(H)とな
す、スイッチングトランジスタTSの出力端子SS′間
は、t1〜t2間のみONとなり、それ以外はOFFと
なる。以上の様に、受光素子に市原を流しておき光によ
る受光素子の抵抗の変化による端子市川の変化を利用し
て、走行体の影が主受光素子に落ちることにより、スイ
ッチが動作する回路な得ろことができろ。第5図(b)
及び(d)は夫々増幅器に黄準電圧VS−1/2VCC
のコンバータ(CON)を用いた実施例及びその人出力
特性を示すが、動作は第5図(a)の実施例と同様であ
るので詳細な説明は省略する。又、バイアス用抵抗RB
をVCC端子とd端子に接続し、負のバイアスを与えろ
実施例も考えられるが、図示を省略する。
V1=VD1+VD2+VB During the time up to t1, light is uniformly emitted to the main light receiving element D1 and the compensation light receiving element D2, and between t1 and t2, a shadow falls only on the main light receiving element D1, and further between t3 and t4. If a shadow falls only on the compensation light-receiving element D2, the level is high (h) between 0 and t1 and after t2, and particularly high between t3 and t4. On the other hand, the level (l) is maintained between t1 and t2. Therefore, the output voltage V0 is at a high level (H) only between t1 and t2, and the connection between the output terminals SS' of the switching transistor TS is ON only between t1 and t2, and OFF otherwise. As described above, a circuit is created in which a switch is activated by passing the Ichihara over the light receiving element and using the change in the terminal Ichikawa due to the change in resistance of the light receiving element due to light, when the shadow of the traveling object falls on the main light receiving element. Get it, be able to do it. Figure 5(b)
and (d) are the yellow voltage VS-1/2VCC at the amplifier, respectively.
An example using the converter (CON) and its human output characteristics will be shown, but since the operation is similar to the example shown in FIG. 5(a), detailed explanation will be omitted. Also, bias resistor RB
Although an embodiment may be considered in which the terminal is connected to the VCC terminal and the d terminal to apply a negative bias, illustration thereof is omitted.

次に増幅器として差動増幅器を用いた実施例を説明する
。第6図(a)の如き差動増幅器の中でカキ型特性を持
つものけ、2つの人カ端子+及び−の端子電圧を夫々V
+及びV−とすれば、その入出力関係及びスイノチング
トランジスタTsの状態は第2表のようになる。との特
性は+端子と−端子との関係は互いに他の電圧を基準電
圧VSとし、+端子及び−端子と出力端子との関係は夫
々コンバータ(CON)とインハータ(INV)の関係
にある。第6図(b)づ出力より−端子こ帰還抵抗RH
′、RHを通して装置すれば正帰還となりヒステレシス
特性を持つ差動増幅嵜を構成することが出来るので、こ
Reから述べるカギ型特性の差動増幅器を用いた実施例
の増幅器の代りにヒステレシス特性を持つ増幅器を用い
てもよい。
Next, an embodiment using a differential amplifier as the amplifier will be described. In a differential amplifier like the one shown in Fig. 6(a), there is a case where the terminal voltages of the two terminals + and - are set to V, respectively.
+ and V-, the input/output relationship and the state of the switching transistor Ts are as shown in Table 2. The relationship between the + terminal and the - terminal is such that the other voltage is used as the reference voltage VS, and the relationship between the + terminal and the - terminal and the output terminal is that of a converter (CON) and an inharter (INV), respectively. Fig. 6(b) From the output to the - terminal this feedback resistor RH
', RH can be used to create a differential amplifier with positive feedback and a hysteresis characteristic. You may also use an amplifier with

第7図(a)に示す実施例は、第3図(b)に示す実施
例と同じ動作をするものであるか、バイアス電圧例を他
の端子−に加えることかてき、入力端子とバイアス端子
を別々に使用できろ便利さがあろ。
The embodiment shown in FIG. 7(a) operates in the same way as the embodiment shown in FIG. It's convenient to be able to use the terminals separately.

第2図、第3図の実施例けすべて差動増叫器を用いて実
現できるが、詳細な説明は省略する。
Although the embodiments shown in FIGS. 2 and 3 can all be realized using differential loudspeakers, detailed explanations will be omitted.

第7図(b)(c)は、受光素子に市竜を流して使用に
、光による抵抗の変化て端子電圧の変化を利用するもの
で、フォトダイオード、フォトトランジスタ。
Figures 7(b) and 7(c) show a photodiode, a phototransistor, and a photodiode, a phototransistor.

太陽電池及びCDS等が利用できろ。Solar cells, CDS, etc. can be used.

第7図(b)及び(c)は、主受光素子D1.補償用受
光素子D2と抵抗RB、RB’とをブリッジ型接続し、
ブリッジの一対の端子に電源側より電流な流に、他の一
対の端子をカキ型特性の+及び−端子に接続する他の実
施例て、RBとRB′の差で必要なバイアス電圧を得る
ように棺成されたもので、フォトトラノジスタを用いた
場合を代表として示す。仙の回路も動作は同様であるの
で詳細な説明は省略する、この場合も、バイアス用抵抗
RB、RB’てバイアス電圧VBを与える代りに第4図
の如きフィルタ及び並列抵抗を用いてバイアス電圧を与
えることが出来ろ。
7(b) and (c) show the main light receiving element D1. The compensation light receiving element D2 and the resistors RB and RB' are connected in a bridge type,
In another embodiment, one pair of terminals of the bridge is connected to a current flowing from the power supply side, and the other pair of terminals are connected to the + and - terminals of the oyster-shaped characteristic, and the necessary bias voltage is obtained by the difference between RB and RB'. The coffin was constructed in this way, and the case using a phototransistor is shown as a representative example. Since the operation of Sen's circuit is similar, a detailed explanation will be omitted.In this case as well, instead of applying the bias voltage VB using the bias resistors RB and RB', a filter and parallel resistance as shown in Fig. 4 are used to apply the bias voltage. Be able to give.

次に、これらの火施例の受光素子をレール又はガイトレ
ールの近くに装着した場合をレールを例にとり第8図に
示す。第8図(a)は第2図及び第3図に示した太陽電
池を使用した実施例の場合で、(b)は第5図に示した
受光素子に電流を流す場合の実施例の場合、更に(c)
も受光素子に電流を流す場合であろが、受光素子として
第5図のフォトダイオードの代りにCDS等を用いた場
合の図である。
Next, FIG. 8 shows a case where the light-receiving elements of these embodiments are mounted near a rail or a guide rail, taking the rail as an example. Figure 8 (a) shows an example using the solar cells shown in Figures 2 and 3, and (b) shows an example in which current is passed through the light-receiving element shown in Figure 5. , further (c)
This is a diagram in which a CDS or the like is used instead of the photodiode shown in FIG. 5 as the light receiving element, even though current is passed through the light receiving element.

父点紳の矩形で示したTRは走行体であり、走行TRが
図の位値に来て主受光素子D1のみに影を落しこ時にT
sのスイッチが動作することを不ず説明図で.走行体T
Rが矢印で示す左右いずれの方向から進行してきても主
受光素子D1のみに影な落とす図の位置でスイッチが動
作する。
TR shown by the rectangle at the father point is a traveling object, and when the traveling TR reaches the position value in the figure and casts a shadow only on the main light receiving element D1, T
The operation of the s switch is explained with an explanatory diagram. Running body T
The switch operates at the position shown in the figure where R advances only from the left or right direction indicated by the arrow, casting a shadow only on the main light receiving element D1.

以上が本発明の実施例の基本的なものである。The above are the basics of the embodiments of the present invention.

本発明の光電スイッチを使用する場合に、なるべくレー
ル又はガイドレール側に装置した受光素子から出る線を
少くしだ方が使用上非常に便利である。その理由は比較
曲簡単なレイアウトの場合でもレール側と制御回路側と
の涙り紳が1.00本近くなる場合が多いので渡り線は
核力少くした方が便利である。第8図の例ては(a)が
2本の線を必沙とし、(b)(c)は3木の絆を必要と
するので(a)の方が便利である。次にレール側に接続
すべき線の数をへらした他の実施例につき説明する。
When using the photoelectric switch of the present invention, it is very convenient to use as few lines as possible from the light receiving element installed on the rail or guide rail side. The reason for this is that even in the case of a simple layout, the distance between the rail side and the control circuit side is often close to 1.00 lines, so it is more convenient to reduce the force on the crossover wires. For example, in Figure 8, (a) requires two lines, and (b) and (c) require three tree ties, so (a) is more convenient. Next, another embodiment in which the number of wires to be connected to the rail side is reduced will be described.

第9図はレール側と渡り線を第8図に比し1本だけ減少
した実施例でル、る。フォトダイオードを受光素子とし
て用いた実施例を第9図(a)に示す。
FIG. 9 shows an embodiment in which the number of rails and crossover wires is reduced by one compared to FIG. 8. An embodiment using a photodiode as a light receiving element is shown in FIG. 9(a).

図に於てPPけ走行体を動かすためにレールに重圧を共
給する電圧供給装置であり、レールに与える電圧の極性
を切替え、走行体TRの進行方向を変えるスイッチSW
を持っており、スイッチSWを左方向又は右方向の実線
又は点線の矢印の方向に倒すと走行体が実線又は点線の
矢印に進むようになっている。可変抵抗Rsは走行体T
Rの速度を変える可変抵抗である。従って、走行体TR
が左又は右に動いている時は夫々端子RL1が正、端子
RL2か負又は嬬仔RL1が狗、端子RL2が正の電圧
か与えられている。一方、主受光素子D1.補償用受光
素子D2け直列回路の補償用受光素子D2側の端子d′
は2つのダイオードを通してレールに接続しタンオード
の方向はレール側で順方向になるようにする。又光素子
の中間接続点m及び主受光素子D1側の端子dは光生業
スイッチ回路PS1につなかれ、端子Mはイアバータ(
INV)の入力端子へ又、端子Dは電源の正の端子に接
続されている。又インハータの入力端子には、電源側の
正の端子より抵抗Rを通して正のバイアス電圧VBを与
える電流を与えている。この実施例に於ては端子RL1
又は端子RL2のいずわが負になっても補償用受光素子
D2か電源の負端子にダイオードを通じて接続されるよ
うになるので、この櫂合の動作は第5図(a)の動作と
同様で、主受光素子D1に走行体の影が落ちるど端子S
S’曲はONとなる。第9図(b)及び(c)は人々フ
ォトダイオードの代りに太陽電池又はCDSを川用した
他の実施例であり、レールに取り付けた受光素子とダイ
オードのみを示しているが、d及びmを電圧供給袋置P
Sの端子D及び端子Mに接続すわば、第9図(a)と同
様の侃作をする。この場合は第8図(b)(c)に比し
渡り紳を1本少ぐずろ矩が出来る。第9図(d)は主受
光素子D1.袖佑用受尤素子D2に太陽電池と光制御ス
イッチ回路PS2を用いた例であり、受光素子に電流を
流さない第2図(a)の実施例に相当し、同様の動作を
する。この場合は第8図(a)の場合の浬り紳2本が1
本に減少し、渡り線を1木とすることが出来る、第10
図はレール側からの渡り線が1木てすむ実施例であす、
電圧供給装置PPは第9図と同様である。第10図(a
)は、受光素子にフォトダイオードを使用した実施例で
主受光素子D1と補償用受光素子D2を図の様にダイオ
ードD0、DO’を中にはさんて直列に接続し、又両端
d、d’を夫々端子RL1及び端子RL2に接続した構
成でする。この実施例で於ては、レール間の電圧を主受
光素子D1にがばているために、インバ−タ(INV)
にもほぼ等しい電圧をかける必要があるのて、スイッチ
SWの前の電圧即ち端子RL1と端子RL2との間の電
圧と絶対値は等しいが正負で変量しない常圧をインバー
タの前秒に市唾としてVDDに加える。従って、標準電
圧VSは1/2VDDとなる。
In the figure, the switch SW is a voltage supply device that supplies heavy pressure to the rail in order to move the PP running body TR, and switches the polarity of the voltage applied to the rail to change the traveling direction of the running body TR.
When the switch SW is pushed to the left or right in the direction of the solid line or dotted line arrow, the traveling body moves in the direction of the solid line or dotted line arrow. The variable resistance Rs is the running body T
It is a variable resistance that changes the speed of R. Therefore, the traveling body TR
When the terminal RL1 is moving to the left or right, a positive voltage is applied to the terminal RL1, a negative voltage is applied to the terminal RL2, or a positive voltage is applied to the terminal RL1, and a positive voltage is applied to the terminal RL2. On the other hand, main light receiving element D1. Terminal d' on the compensation light receiving element D2 side of the series circuit of the compensation light receiving elements D2
is connected to the rail through two diodes so that the direction of the diode is forward on the rail side. In addition, the intermediate connection point m of the optical element and the terminal d on the side of the main light receiving element D1 are connected to the optical switching circuit PS1, and the terminal M is connected to an inverter (
Terminal D is also connected to the positive terminal of the power supply. Further, to the input terminal of the inharter, a current is applied from a positive terminal on the power supply side through a resistor R to provide a positive bias voltage VB. In this embodiment, terminal RL1
Alternatively, even if one side of the terminal RL2 becomes negative, the compensating light receiving element D2 is connected to the negative terminal of the power supply through the diode, so the operation of this combination is the same as that shown in FIG. 5(a). , when the shadow of the traveling object falls on the main light-receiving element D1, the terminal S
S' song is turned on. Figures 9(b) and 9(c) are other embodiments in which solar cells or CDS are used instead of photodiodes, and only the light receiving elements and diodes attached to the rail are shown, but d and m The voltage supply bag P
If it is connected to the terminal D and the terminal M of S, a special effect similar to that shown in FIG. 9(a) will be produced. In this case, compared to Figures 8(b) and 8(c), a rectangle that is slightly longer than the length is created. FIG. 9(d) shows the main light receiving element D1. This is an example in which a solar cell and a light control switch circuit PS2 are used as the light-receiving element D2, and corresponds to the embodiment of FIG. 2(a) in which no current is passed through the light-receiving element, and operates in the same way. In this case, the 2 strands in Figure 8 (a) are 1
No. 10, which can be reduced to a book and the crossover wire can be made into one tree.
The figure shows an example in which only one tree is needed for the crossover from the rail side.
The voltage supply device PP is the same as that shown in FIG. Figure 10 (a
) is an embodiment in which a photodiode is used as the light receiving element, and the main light receiving element D1 and the compensation light receiving element D2 are connected in series with diodes D0 and DO' sandwiched between them as shown in the figure, and both ends d and d are connected in series. ' are connected to terminal RL1 and terminal RL2, respectively. In this embodiment, in order to spread the voltage between the rails to the main light receiving element D1, an inverter (INV) is used.
Since it is necessary to apply approximately the same voltage to the inverter, the voltage in front of the switch SW, that is, the voltage between terminals RL1 and RL2, is equal in absolute value, but the normal pressure, which does not change in positive or negative, is applied to the inverter. Add to VDD as. Therefore, the standard voltage VS becomes 1/2VDD.

VS=1/2VDD 後段の増幅器にはVDDより大きな電源電圧なVCCに
与えスイッチジグトランジスタTsを充分駆動でさるよ
うにする。又抵抗Rにより端子Mに電流が供給され、正
のバイアス電圧VBが与えられる。ダイオートD0、D
0′は支受光素子D1,補償用受光素子D2に逆方向の
市粒か流れろことを防ぎ、主受光素子D1.補償用受光
素子D2を保護するためである。
VS=1/2VDD A power supply voltage VCC, which is larger than VDD, is applied to the subsequent amplifier to sufficiently drive the switch jig transistor Ts. Further, a current is supplied to the terminal M by the resistor R, and a positive bias voltage VB is applied. Diauto D0, D
0' prevents grains from flowing in the opposite direction to the supporting light-receiving element D1 and the compensation light-receiving element D2, and prevents particles from flowing in the opposite direction to the main light-receiving element D1. This is to protect the compensation light receiving element D2.

しかに、そのため端子RL1が正で端子RL2が負の箱
圧が与えらね、走行体TRが実線の矢印の方向に進んで
きこ時はその影が主受光素子D1に落ちると端子SS’
間かONとなり、スイッチが動作するる主受光素子D1
、ダイオードD0、D0’、補償用受光素子D2の左か
ら飄叙の方向に走行体が進んできた場合は、端子RL2
か正で端子RL1が負であるのて主受光素子D1、ノイ
オートD0、D0’、補償用受光素子D2に電流が流れ
ず、従ってスイッチは動作しすい。このため、この実施
例は一方向から進んてきた走行体によってのみ動作ずろ
方向性を持ったスイッチ特性を有し、非常に有用な用途
かあろ。
However, for this reason, a positive box pressure is not applied to the terminal RL1 and a negative box pressure is applied to the terminal RL2, and when the traveling body TR moves in the direction of the solid arrow, when its shadow falls on the main light receiving element D1, the terminal SS'
The main light-receiving element D1 becomes ON for a while and the switch operates.
, diodes D0, D0', and the compensation light-receiving element D2.
Since the terminal RL1 is positive and the terminal RL1 is negative, no current flows through the main light receiving element D1, Neuauto D0, D0', and the compensation light receiving element D2, and therefore the switch is easy to operate. For this reason, this embodiment has a switch characteristic that has a directionality of operation shift only when a traveling object is moving from one direction, and this is a very useful application.

第10図(b)(c)は太陽電池及びCDSを利用した
実施例のレールに取り付けた受光素子の部分を示す。
FIGS. 10(b) and 10(c) show a portion of a light receiving element attached to a rail in an example using a solar cell and a CDS.

この2つの実施例の場合もmを光制御スイッチ回路PS
3の端子Mに接続すわば、第10図(a)と同様の動作
をする。その動作の説明は省略する。
In these two embodiments, m is also an optically controlled switch circuit PS.
If it is connected to the terminal M of No. 3, the operation is similar to that shown in FIG. 10(a). A description of its operation will be omitted.

第10図(d)(e)はフォトダイオード、フォトトラ
ンジスタ又は太陽電池等を主受光素子D1、柚佑用受光
素子D2に用いた場合、ダイオードを4個用いて両波整
流型にすろことによす、レール間の電圧の極性が変化し
ても常に直方向に電流が流ねるようにした他の実施例で
あり、第10図(f)はCDSを串受光素子D1.補併
用受光素子D2に用いた他の実施側である。CDSは火
線と点線て示すようにとちらの方向から電流を流しても
よいので、主僧光素子D1、補償用受光素子D2を直列
接続しだ両端ろ重接レールに接続すて。これらの実施例
はいずれもmを光制御スイッチ回路PS3の罐子Mに接
続すれば、いずれも方向性を持たないスイッチとして使
用できろ。しかも第10図のいずれの実施例も渡り腺が
1木となり最少数の渡り線で光制御スイッチ回路を火現
できる。これらの増幅器は、カキ型特性のものてついて
説明したがいずれもヒステレシス特性を持った増幅器を
使用してもよい。
Figures 10(d) and (e) show that when photodiodes, phototransistors, solar cells, etc. are used as the main light receiving element D1 and Yuzu's light receiving element D2, four diodes are used to create a double-wave rectification type. This is another embodiment in which the current always flows in the right direction even if the polarity of the voltage between the rails changes, and FIG. This is another implementation side used for the supplementary light receiving element D2. Since the CDS allows current to flow from either direction as shown by the caustic line and the dotted line, the main optical element D1 and the compensation light receiving element D2 are connected in series and both ends are connected to the superimposed rail. In any of these embodiments, if m is connected to the box M of the optically controlled switch circuit PS3, any of them can be used as a switch without directionality. Moreover, in any of the embodiments shown in FIG. 10, there is only one connecting wire, and the optically controlled switch circuit can be realized with a minimum number of connecting wires. Although these amplifiers have been described as having oyster-type characteristics, amplifiers having hysteresis characteristics may also be used.

次にヒステレメス市性を持つ増幅器を積極的に利用した
実施例につき説明する。今までの実施例の増幅器をヒス
テレメス特性を持つ増幅器に置ぎ換えこ助に一実流側の
入出力を第11図(b)に示す波形図に於てバイアス串
圧VBを加え、ヒステレシス特性の幅VBの中点に動作
点がくるようにする。第11図(a)は走行体TRが右
より受光素子に近づいてきに時の時刻と走行体TRと受
光素子との関係を小す。この実施例てけ走行体TRの影
が主受光素子D1にかかつてから補償用受光素子D2の
みにががるまてスイッチがONになるような回路を得る
ことがてごる。即ち走行体TRが主受光素子D1が置か
れた荀置を通過すろ間ONどすることができるので、踏
み切りの遮断器をその開時したり交叉しだレールに仙方
向かちの走行体TRな費たぜるため、そのレールへの給
電をとめるこめ等にも使用できる。従って、第11図で
示す実於例は極めて有用である。さらに詳細に説明する
と、第11図(a)に於て走行体TRかt1の時刻に主
受光素子D1は影ど落し、t2で主受光素子D1及び補
償用受光素子D2の両方に影を落としt3の時刻に補償
用受光素丁D2のみに影をおとしt4の時刻て主受光素
子D1、補償用受光素子D2共に影が癌らないどすれげ
、第11図(b)の入出力特性のV1のように入力部圧
は変化し、従って出力電圧V0けt1でHにジャンプし
、t2でV1が中上値をとってもHレベルに留まり、L
3でLレベルに下り、主受光素子D1.補償用受光素子
D2を通過する間スイッチをONとするととがてぎ、こ
のスイノチの応用範囲は極めて広い。この実施例に一番
適したものは第10図(f)に示したもので左右いずれ
の方向から走行体TRが近づいてもV1は負のパルス電
圧から始まり正のパルス常圧て終る。電流の方向性を有
する主受光素子D1を使用したものでは第10図の(a
)、(b)、(c)の実施例の増幅器をヒステレメスな
有する増幅器におきかえて使用てきるか、この場合は一
方向から進行してきた走行体TRてのみ動作し、逆方向
からの走行体TRに対しては動作りない。第10図の(
a)(b)(c)の実施例は右から進んできん走行体T
Rに対してのみ第10図(f)と同位の動作をする。
Next, an embodiment in which an amplifier having hysteresis properties is actively utilized will be described. The amplifier in the previous embodiments was replaced with an amplifier with hysteresis characteristics.In order to do this, bias pressure VB was added to the input and output on the actual flow side in the waveform diagram shown in Fig. 11(b), and the hysteresis characteristics The operating point should be at the midpoint of the width VB. In FIG. 11(a), when the traveling object TR approaches the light receiving element from the right, the relationship between the time and the traveling object TR and the light receiving element is reduced. In this embodiment, it is possible to obtain a circuit in which the switch is turned on only when the shadow of the traveling body TR is cast on the main light receiving element D1 and only on the compensation light receiving element D2. That is, since the traveling body TR can be turned on while it passes the space where the main light receiving element D1 is placed, the circuit breaker at a railroad crossing can be opened, and the traveling body TR can be turned on while the traveling body TR is passing in the horizontal direction of the crossing rail. It can also be used to stop the power supply to the rail in order to save energy. Therefore, the example shown in FIG. 11 is extremely useful. To explain in more detail, in FIG. 11(a), the main light receiving element D1 casts a shadow at the time t1 of the traveling body TR, and at t2 both the main light receiving element D1 and the compensation light receiving element D2 cast a shadow. At time t3, only the compensation light-receiving element D2 is shaded, and at time t4, both the main light-receiving element D1 and the compensation light-receiving element D2 are shaded. The input voltage changes like V1, so the output voltage V0 jumps to H level at t1, and stays at H level even if V1 reaches a medium-high value at t2, and becomes L.
3, the main light receiving element D1. When the switch is turned ON while the light passes through the compensating light receiving element D2, it becomes sharp, and the application range of this suinochi is extremely wide. The most suitable one for this embodiment is the one shown in FIG. 10(f), in which V1 starts with a negative pulse voltage and ends with a positive pulse normal voltage no matter which direction the traveling body TR approaches. In the case of using the main light receiving element D1 having current directionality, (a
), (b), and (c) can be used by replacing the amplifier with an amplifier having hysteresis, or in this case, only the traveling object TR moving from one direction operates, and the traveling object TR moving from the opposite direction operates. It does not work for TR. In Figure 10 (
The examples of a), (b), and (c) proceed from the right and move to the running body T.
Only for R, the same operation as in FIG. 10(f) is performed.

伸び実施例についてし走行体が右から近づく場合と左か
ら近つく場合で、Vlの初めのパルス電圧が人々正又は
負て異ろのて特別な回路を用いないと山のような助百は
てきない。
Regarding the elongation example, if the traveling object approaches from the right or the left, the initial pulse voltage of Vl is different depending on whether it is positive or negative. I can't come.

以上説明したように、本発明によれば受光素子を使用し
た走行体用光制御スイッチ装置は感度よく確実に動作す
ると共に非常に多くの種類の走行体の制御こ応用てきる
きわめてすぐれたスイッチである。考えらする各種の制
御だけでも数十種類に及ふのてここでは個々の列挙を省
略する。
As explained above, according to the present invention, the optical control switch device for a moving object using a light receiving element operates reliably with high sensitivity, and is an extremely excellent switch that can be applied to control many types of moving objects. be. There are dozens of types of control that can be considered, so we will omit listing each one here.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)(c)(d)は本発明に用いるコノ
バータ型増幅器とインパーク型増幅器の特性傍訓、第2
図(a)(b)は本発明の実施例を示す回路図、第2図
(c)(d)は第2図(a)(b)の実施例の動作説明
のこめの波形図、第3図(a)(b)は本発明の仙の実
施例を示す回路図、第3図(c)(d)は第3図(a)
(b)の実曾例の動作説明のだめの波形図、第4図(a
)(h)は本発明に用いる受光勢子の接続傍訓、第5図
(a)(b)は本発明り仙の実施例を示す回路図、第5
図(c)(d)は第5図(a)(b)の実施例の動作説
明のだめの波形図、第6図(a)(b)文ひ第7図(a
)(b)(c)は本発明の他の実施例を示す回路図、第
8図(a)(b)(c)、第9図(h)(c)及び第1
0図(b)(c)(d)(e)(f)は本発明を適用す
る走行体のレールの措造例を示す平面図、第9図(a)
(d)及び第10図(a)は本発明を適用する走行体の
レールの横進及び制彷用山佇回路例を示す接続図、第1
1図(a)(b)はヒステレシス特性を有する増幅器を
用いた娑合の本発明装置の動作態様を示す平面図及び動
作説明用波形図である。 D1・・・主受光素子、D2・・・補償用受光素子、I
NV・・・インパーク型増幅器、CON・・・コンバー
タ型増幅器、VI・・・入力富圧、Vn・・・出力電圧
、VS・・・基準箱圧、VD・・・D1、D2の直列回
路の端子電圧、VB・・・バイアス小玉、VCC・・・
電源電圧、TS・・・スイッチングトランジスタ、RB
・・・バイアス用抵抗、TR・・・走行体、PP・・・
重圧供給装置、SW・・・スイッチ、RS・・・可変抵
抗、PS1、PS2、PS3・・光制御スイッチ回路、
D0・・・ダイオード。 重訂出願人 大島信太部 代十人 犬塚学  外1名
Figures 1 (a), (b), (c), and (d) show the characteristics of the conoverter type amplifier and the impark type amplifier used in the present invention, and the second
Figures (a) and (b) are circuit diagrams showing an embodiment of the present invention, Figures 2 (c) and (d) are waveform diagrams explaining the operation of the embodiment of Figure 2 (a) and (b), and 3(a) and 3(b) are circuit diagrams showing the embodiment of the present invention, and FIG. 3(c) and (d) are the circuit diagrams of FIG. 3(a).
(b) is a waveform diagram for explaining the operation of the actual example, and Fig. 4 (a)
)(h) are connection diagrams of the light receiving element used in the present invention, FIGS. 5(a) and 5(b) are circuit diagrams showing an embodiment of the present invention, and FIG.
Figures (c) and (d) are waveform diagrams for explaining the operation of the embodiment shown in Figures 5 (a) and (b), Figures 6 (a) and (b), and Figure 7 (a).
)(b)(c) are circuit diagrams showing other embodiments of the present invention, FIGS. 8(a)(b)(c), FIGS. 9(h)(c) and 1.
Figures 0 (b), (c), (d), (e) and (f) are plan views showing examples of rail construction for a traveling body to which the present invention is applied, and Figure 9 (a).
10(d) and 10(a) are connection diagrams showing an example of a Yamazaki circuit for traversing and restricting rails of a traveling body to which the present invention is applied;
FIGS. 1(a) and 1(b) are a plan view and a waveform chart for explaining the operation, respectively, showing the operating mode of the present invention apparatus using an amplifier having hysteresis characteristics. D1... Main light receiving element, D2... Compensation light receiving element, I
NV...Impark type amplifier, CON...Converter type amplifier, VI...Input rich voltage, Vn...Output voltage, VS...Reference box pressure, VD...Series circuit of D1 and D2 terminal voltage, VB...bias small ball, VCC...
Power supply voltage, TS... switching transistor, RB
...Bias resistance, TR...running body, PP...
Heavy pressure supply device, SW...switch, RS...variable resistor, PS1, PS2, PS3...light control switch circuit,
D0...diode. Revision applicants Shinta Oshima 10 people, Manabu Inuzuka and 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)レール又はガイドレールに沿って走る走行体の影
が主受光素子に落ちることによりその主受光素子の誘起
電圧又はインピーダンスの変化を利用してスイッチ動作
を行わせる場合、室内光又は自然光の変動による該主受
光素子の誘起電圧又はインピーダンスの変化を該受光素
子とはぼ特例の等しい補償用受光素子を用いて相殺せし
めて誤動作を防ぐ手段と、前記走行体の影が前記主受光
素子と前記補償用受光素子のいずれか一方に落ち該素子
の誘起電圧又はインピーダンスの変化による前記主受光
素子と前記補償用受光素子の各端子電圧の差を増幅する
だめの急峻な立上りを持つカギ型又はヒステレンス特性
を持つ増幅器と、前記主受光素子と前記補償用受光素子
の特性のばらつき及び何音電圧が制飴を越えて誤動作を
しないように前記増幅器の入力側にバイアス電圧を加え
ろ手段を備えたことを特徴とする走行体用光制御スイッ
チ装置。
(1) When performing a switch operation using changes in the induced voltage or impedance of the main light receiving element caused by the shadow of a traveling object running along the rail or guide rail falling on the main light receiving element, indoor light or natural light means for preventing malfunctions by canceling out changes in induced voltage or impedance of the main light receiving element due to fluctuations using a compensating light receiving element having the same special characteristics as the light receiving element; A key type having a steep rise to amplify the difference between the terminal voltages of the main light receiving element and the compensation light receiving element due to a change in the induced voltage or impedance of the element falling on one of the compensation light receiving elements, or An amplifier having hysteresis characteristics, and means for applying a bias voltage to the input side of the amplifier to prevent variations in characteristics of the main light receiving element and the compensating light receiving element and to prevent malfunction due to voltage exceeding the control limit. An optical control switch device for a traveling body, characterized by:
(2)前記主受光素子と前記補償用受光素子の各一端は
、直接またはダイオードを介して前記レール又はガイド
レールにとり付けられていることを特徴とすろ特許請求
の範囲第1項記載の走行体用光制御スイッチ装置。
(2) The traveling body according to claim 1, wherein one end of each of the main light-receiving element and the compensation light-receiving element is attached to the rail or guide rail directly or via a diode. Optical control switch device for use.
JP58153088A 1983-08-24 1983-08-24 Optical control switch device for traveling object Granted JPS6045814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153088A JPS6045814A (en) 1983-08-24 1983-08-24 Optical control switch device for traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153088A JPS6045814A (en) 1983-08-24 1983-08-24 Optical control switch device for traveling object

Publications (2)

Publication Number Publication Date
JPS6045814A true JPS6045814A (en) 1985-03-12
JPH0422229B2 JPH0422229B2 (en) 1992-04-16

Family

ID=15554709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153088A Granted JPS6045814A (en) 1983-08-24 1983-08-24 Optical control switch device for traveling object

Country Status (1)

Country Link
JP (1) JPS6045814A (en)

Also Published As

Publication number Publication date
JPH0422229B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
KR850001590A (en) Ambient light and electronic noise reduction circuit
GB2233525A (en) Optical receivers
JPS6045814A (en) Optical control switch device for traveling object
US4388527A (en) Photoelectric switch
KR20050032369A (en) Current to voltage conversion circuit for PDIC employing the gain switching circuit
US5821528A (en) Two light intensities difference convert into frequency modulator for parallel photodiodes
JP3673705B2 (en) Current-voltage converter and printer using the same
JPS59193322A (en) Photo-electric conversion element
JPS6276329A (en) Optical reception circuit
KR960006632B1 (en) Photo-electronic circuit
ES2056734B1 (en) POWER CONVERSION SYSTEM.
JPS63308410A (en) Optical sensor for two-terminal network
RU1805077C (en) Device for receiving signals of automatic locomotive signalling system
EP0325147A3 (en) Circuit arrangement for a voltage-controlled constant voltage source with an input side rc network
SU1108366A1 (en) Active current pickup for generator protection device
JPH04225611A (en) Wide dynamic range light receiving circuit
SU1450090A2 (en) Sawtooth current generator
JP3818608B2 (en) Isolation amplifier
JPH11127038A (en) Preamplifier circuit
ATE164692T1 (en) ELECTRICAL MIRROR
JPS62261179A (en) Light detecting element
SU1229573A1 (en) Device for comparison of photodetector signals
JPS58196734A (en) Photoelectric converting circuit
JPH04282424A (en) Photoelectric conversion circuit
JPS63260318A (en) Photoelectric switch