JPS6045730B2 - How to transport and install packaged power generation equipment - Google Patents

How to transport and install packaged power generation equipment

Info

Publication number
JPS6045730B2
JPS6045730B2 JP54123229A JP12322979A JPS6045730B2 JP S6045730 B2 JPS6045730 B2 JP S6045730B2 JP 54123229 A JP54123229 A JP 54123229A JP 12322979 A JP12322979 A JP 12322979A JP S6045730 B2 JPS6045730 B2 JP S6045730B2
Authority
JP
Japan
Prior art keywords
power generation
water
package
ballast tank
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123229A
Other languages
Japanese (ja)
Other versions
JPS5648475A (en
Inventor
朝広 井上
良雄 小林
三男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54123229A priority Critical patent/JPS6045730B2/en
Publication of JPS5648475A publication Critical patent/JPS5648475A/en
Publication of JPS6045730B2 publication Critical patent/JPS6045730B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【発明の詳細な説明】 本発明は浮上輸送可能なパッケージ形発電設備の輸送
、据付方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for transporting and installing packaged power generation equipment that can be transported by floating.

従来、火力発電所の建設にあたつては、発電所建設地
点の土木工事から始まり、タービン発電機の基礎台の建
設、タービン建屋の建設、ボイラー鉄骨の建設、ボイラ
ーのドラム上げ、各機器の据付等主要構成機器を土木、
タービン建屋の工事の進行に合せて据付けていた。
Traditionally, the construction of a thermal power plant starts with civil engineering work at the power plant construction site, then constructs the foundation for the turbine generator, constructs the turbine building, constructs the boiler steel frame, raises the boiler drum, and installs each piece of equipment. Civil engineering for installation and other major components,
It was installed as construction progressed on the turbine building.

現地据付条件の悪い 現場においてはこれら据付工事に
長期間を要し、かつ発電所建設価格におきな影響を与え
ている。 また発電所の構成機器を各要素毎に据付時期
に合せ輸送、搬入することが肝要であり、これに伴い輸
送費もかさむことになる。特に、低開発地域に建設する
発電所にあつては、熟練技術者の確保も問題となつてい
る。これに対し、最近ボイラ、タービン、発電機、変圧
器およびそれらの付属設備等の発電所構成機器およびタ
ービン建屋を浮上可能な船台上据付け、一つの巨大なパ
ッケージに工場内で製作、組立し、このパッケージを潜
水可能式バージにより発電所建設現場近くまで海上、河
川等の水路を利用して一体輸送し、あらかじめ用意され
基礎土木工事の完了した設置場所に曳航、し、上記船台
に設けたバラストタンクに注水する ことにより着床さ
せ、周囲を埋め戻しの上、パッケージ外の電気、水、燃
料設備等と接続することにより現地据付工事期間を水巾
に短縮させ、工場内で充分に品質管理の行き届いた発電
設備を製作)ならしめるパッケージ形発電プラント方式
が考え られている。 以下図面を用いてパッケージ形
発電設備を説明する。
At sites where local installation conditions are poor, these installation works require a long period of time and have a significant impact on the power plant construction price. Furthermore, it is important to transport and bring in each element of the power plant's component equipment in accordance with the installation period, which increases transportation costs. Particularly for power plants built in underdeveloped areas, securing skilled engineers is also an issue. In contrast, recently, power plant components such as boilers, turbines, generators, transformers, and their auxiliary equipment, as well as turbine buildings, have been installed on floating platforms, manufactured and assembled in one huge package in a factory. This package is transported by a submersible barge to near the power plant construction site using waterways such as sea and rivers, and towed to the installation site where the basic civil engineering work has been completed. By injecting water into the tank, it is placed in the ground, the surrounding area is backfilled, and then connected to electricity, water, fuel equipment, etc. outside the package, which greatly shortens the on-site installation period and allows for thorough quality control within the factory. A packaged power generation plant system is being considered, which allows for the production of sophisticated power generation equipment. The package type power generation equipment will be explained below using the drawings.

第1図はその一部切截平面図、第2図は第 1図の直線
■−■に沿う断面図(側面図)、第3図は第1図の直線
■一■に沿う断面図(正面図)である。図に於て1は船
台で、バラストタンク1″を有し通常の船舶と同様に工
場内のドツク内で製作され、この船台1の上に発電所の
構成機器であるボイラー2、タービン3、発電機4、変
圧器類5,6,7等の主要機器をはじめ、これらの附属
機器である押込通風機8、煙突9、復水器10、循環水
ポンプ11、デイアレーター12、コンプレッサー設備
13、給水ポンプ設備14、さらに水素ガス発生装置1
5、蓄電池設備16、制御室17、クレーン及びホイス
ト設備18、非常用発電設備19等の発電所構成機器の
大部分を搭載し1つの巨大なパッケージPとして構成す
る。尚図中の20は、これら機器保護の為のタービン発
電機建屋である。発電パッケージを構成するこれらの各
機器は、工場において厳密な管理のもとに短期間の間に
製作し、船台1上に組立搭載される。第4図は、発電パ
ッケージPの水上輸送状態を示す図であり、図において
Pは発電パッケージであり、Bはこの発電パッケージP
を搭載する為の潜水可能式バージである。またTは、こ
の潜水可能式バージBを曳航する為の曳航船、Sは水路
例えば海である。このように曵航船Tにより発電所建設
現場近くまで発電パッケージは曵航される。この様にパ
ッケージ形発電プラントは発電プ,ラント設備およびそ
れを収納する建屋を製造者の任意の場所で一括製作、組
立し、また水上輸送可能の所であれば世界の如何なる所
でも設置することができる。従来の輸送、着床、据付方
法について第5図乃:至第10図を用いて説明する。
Figure 1 is a partially cutaway plan view, Figure 2 is a cross-sectional view (side view) taken along the line ■-■ in Figure 1, and Figure 3 is a cross-sectional view (side view) taken along the line ■--■ in Figure 1. (front view). In the figure, reference numeral 1 denotes a ship's platform, which has a ballast tank 1'' and is manufactured in a dock in a factory like a normal ship. Main equipment such as a generator 4, transformers 5, 6, 7, etc., and their auxiliary equipment such as a forced draft fan 8, a chimney 9, a condenser 10, a circulating water pump 11, a dealerator 12, and a compressor equipment 13 , water supply pump equipment 14, and hydrogen gas generator 1
5. Most of the power plant components such as storage battery equipment 16, control room 17, crane and hoist equipment 18, emergency power generation equipment 19, etc. are mounted and configured as one huge package P. Reference numeral 20 in the figure is a turbine generator building for protecting these devices. Each of these devices constituting the power generation package is manufactured in a factory in a short period of time under strict control, and then assembled and mounted on the ship's platform 1. FIG. 4 is a diagram showing the state of water transportation of the power generation package P. In the figure, P is the power generation package, and B is the power generation package P.
It is a submersible barge for carrying. Further, T is a towing boat for towing this submersible barge B, and S is a waterway, such as the sea. In this way, the power generation package is towed close to the power plant construction site by the towing vessel T. In this way, packaged power generation plants can be manufactured and assembled together at the manufacturer's desired location, including the power generation plant, plant equipment, and the building that houses them, and can be installed anywhere in the world that can be transported by water. Can be done. Conventional transportation, landing, and installation methods will be explained using FIGS. 5 to 10.

図に於てSBは海岸線、Hは海中から海岸線SBを越え
更に予定設置場所PYに連らなる如く設けられ、水深が
予定設置場所より深い堀割りで、予定設置場所PYには
基礎工事が施こされている。尚予定設置場所JPYは一
例として発電パッケージ4セット分を示している。海上
に浮上された発電パッケージPは第5図に示す如く曳航
船Tl,T2及びT3により堀割りHの入口近くまで曳
航され、更に第6図、第7図に示す如く陸上に設けられ
たウインチW1〜4W4により堀割りH内に引入れられ
る。第8図乃至第10図は夫々第7図の折線X−Xに沿
う断面を示し、堀割りH内に引入れられたパツケーPを
予定設置場所PY内の第一ユニット設置場所に着床据付
ける方法を説明した図である。図においてHWL及びL
WLは夫々満潮時、及び干潮時に於ける高水位及び低水
位である。パッケージPは潮の干満には無関係に第7図
に示す位置まで水深の深い堀割りに引入れられ、この時
が干潮時であれば満潮を待つて図示しないウインチによ
り更にパッケージPは第7図に示す予定設備場所PYの
一点鎖線の位置Qまで引入れられ、更に満潮を利用して
パッケージPは破線で示す第1ユニット設置場フ所Rま
で引入れられる。第8図は干潮時にパッケージPを堀割
りHに引入れた状態を示し、第9図は満潮を利用してパ
ッケージPを目的の設置位置まで引入れた状態を示す。
斯くして目的の位置まで引入れられたパッケージPはそ
の船台に設けた閂バラストタンクに導水することにより
沈下し、第10図に示す如く予め施工された基礎上に着
床される。同様にして図示しない第2〜第4ユニットを
着床させると曳航の為に設けた堀割りH及び予定設置場
所PYの周囲は埋めもどされ、パッケージの据付は完了
する。 しかしながら、これらの輸送、着床、据付とい
う一連の複雑な操作及び手法は高等技術を必要とし、一
歩誤まると目的が達成できない可能性がある。
In the figure, SB is the coastline, and H is the area extending from the sea beyond the coastline SB to the planned installation site PY.The water depth is deeper than the planned installation site PY, and foundation work is being carried out at the planned installation site PY. It is strained. Note that the planned installation location JPY indicates four sets of power generation packages as an example. The power generation package P floating on the sea is towed by towing vessels Tl, T2, and T3 to near the entrance of the trench H as shown in Fig. 5, and is then towed by a winch installed on land as shown in Figs. 6 and 7. It is drawn into the trench H by W1-4W4. Figures 8 to 10 each show a cross section taken along the broken line It is a figure explaining the method of attaching. In the figure, HWL and L
WL is the high water level and low water level at high tide and low tide, respectively. Regardless of the tide, the package P is pulled into the deep ditch to the position shown in Figure 7, and if it is low tide, the package P is pulled further into the ditch by a winch (not shown) after waiting for high tide. The package P is pulled in to the position Q indicated by the dot-dashed line at the planned facility location PY shown in FIG. FIG. 8 shows the package P pulled into the trench H during low tide, and FIG. 9 shows the package P pulled into the intended installation position using high tide.
The package P, which has been pulled in to the target position in this manner, sinks by introducing water into a bar ballast tank provided on the ship's platform, and lands on a pre-constructed foundation as shown in FIG. 10. Similarly, when the second to fourth units (not shown) are placed on the floor, the area around the trench H provided for towing and the planned installation location PY is filled back, and the installation of the package is completed. However, a series of complex operations and techniques such as transportation, landing, and installation require advanced technology, and one mistake may lead to failure to achieve the objective.

特に着床させる場合のバラストタンクへの導水等は、バ
ランス良く行なわないと横転したり又はアンバランス着
床による破損等につながる可能性があり、さらに導水の
みという手法では単位時間にバラストタンクに入れられ
る水量にも関係するが一般には沈下スピードが早い為に
着床誤差が大きくなる惧がある。従つてこれら輸送据付
に伴う技術的諸問題の解決はパッケージ形発電設備の成
否を左右する1つの要因として解決を強く要求されてい
た。 本発明は上記の如き不具合に鑑みて輸送、着床、
据付における一連の手法及び複雑な操作に対し、1つの
解決方法を与えるものである。
In particular, when conveying water to the ballast tank during landing, if it is not carried out in a well-balanced manner, it may lead to overturning or damage due to unbalanced landing. Although it is related to the amount of water being poured, generally the sinking speed is fast, so there is a risk that the landing error will be large. Therefore, solving these technical problems associated with transportation and installation is one of the factors that determines the success or failure of packaged power generation equipment, and there has been a strong demand for solutions. In view of the above-mentioned problems, the present invention has been developed to
It provides a solution to a series of techniques and complex operations in installation.

その為、輸送、着床方法としてバラストタンクへの導水
と満潮から干潮にうつる段階において生ずる自然現象す
なわち引き潮の組合せを利用して安全にl かつ正確な
輸送、着床を行なわせるものである。 以下、本発明を
詳細に説明する。発電パッケージPを目的の堀割りHま
で引き入れる方法は、先このべた方法と同様である。し
かしながら予定設d場所への移動のために引き入れられ
た発電パンケージPの船台1は、その上に搭載される機
器は充分バランスするよう配置されるが、完全なバラン
スは困難であり、多小の傾斜はまぬがれず、その傾斜し
た姿勢を水平に必要がある。そこで堀割りH内定位置て
発電パッケージPの姿勢を正す為にその傾斜に応じて適
宜のバラストタンクに導水をする。ただし、この導水量
は発電パッケージPを沈下させる程多量ではなく、発電
パッケージPを水平にするためである。さらに姿勢を正
すために導水を終え水平となつた発電パッケージPの、
堀割りH内の定位置よりユニット設置PYまでの引き入
れは、高潮すなわち満潮を利用して引き入れる。さらに
予定設置位置PYまで引き入れられた発電パッケージP
は沈下のためにバラストタンクに導水を行う。この場合
、アンバランス導水による横転事故、破損等を皆無にす
るため、この導水は慎重かつ安全に行う。バラストタン
クへの導水が開始されると、発電パッケージPは自然に
沈下を始めるが、この導水により発電パッケージPの着
床は行なわず、適宜の深さまで沈下させ、更に着床は満
潮から干潮にうつる自然現象すなわち引き潮を利用して
、予め施工された設置位置まで自然にゆつくりと、かつ
正確に安全に沈下着床させる。上記の如く着床のために
必要とする発電パッケージPの沈下量の大部分例えば5
0〜80%をバラストタンクへの導水で沈下させ、最終
的な着床を潮の干満差を利用して徐々に沈下着床させる
ため、バラストタンクへの導水のみによる着床に比し、
複雑な操作も必要とせず、且沈下スピードが早いために
正確で安全な着床が不可能であつた点も解決される。
Therefore, as a transportation and landing method, the combination of water introduction to the ballast tank and the natural phenomenon that occurs during the transition from high tide to low tide, that is, the ebb tide, is used to ensure safe and accurate transportation and landing. The present invention will be explained in detail below. The method of pulling the power generation package P to the target ditch H is the same as the method described above. However, although the equipment mounted on the platform 1 of the power generation pancase P that has been brought in for movement to the planned location d is arranged so that it is sufficiently balanced, it is difficult to achieve perfect balance, and there may be some The slope is unavoidable, and the slope must be leveled. Therefore, in order to correct the attitude of the power generation package P at the predetermined position of the trench H, water is introduced to an appropriate ballast tank according to the inclination. However, this amount of water is not so large as to cause the power generation package P to sink, but rather to make the power generation package P horizontal. Furthermore, in order to correct its posture, the power generation package P, which has finished conveying water and is now horizontal,
The pulling from the fixed position in the moat H to the unit installation PY is carried out using high tide, that is, high tide. Furthermore, the power generation package P has been pulled in to the planned installation location PY.
conducts water to the ballast tank for settling purposes. In this case, this water conveyance will be carried out carefully and safely in order to completely eliminate rollover accidents, damage, etc. due to unbalanced water conveyance. When the water is introduced into the ballast tank, the power generation package P starts to sink naturally, but the power generation package P does not sink to the ground due to this water flow, but sinks to an appropriate depth, and the landing occurs between high tide and low tide. To make use of a changing natural phenomenon, that is, the ebb tide, to naturally, slowly, accurately and safely submerge the floor to a pre-constructed installation position. As mentioned above, the majority of the amount of sinking of the power generation package P required for implantation is, for example, 5
0 to 80% is submerged by conveying water to the ballast tank, and the final landing is made to settle gradually using the tidal difference, compared to landing by only conveying water to the ballast tank.
It does not require complicated operations, and also solves the problem that accurate and safe landing was impossible due to the fast sinking speed.

又潮の干満差利用のみによる着床に比し、沈下着床に時
間がか)り過ぎそのために生ずる種々の問題点例えば着
床位置に長時間発電パッケージPを固定浮上させなけれ
ばならない欠点が解決される。着床後は次の干潮から満
潮による再浮上防止のために、更にバラストタンクに導
水を行う。固定は発電パッケージPの周囲をうめもどし
ながら、このバラストタンクの水を排水し、土、砂、コ
ンクリート、又はモルタル等の固形物をバラストタンク
に注入して最終固定とする。上記実施例に於ては、発電
パッケージPを堀割りH内に引き入れた後、その姿勢を
正す場合について述べたが、この操作は発電パッケージ
Pの傾斜の程度に応じて行なうものであり、予定設置場
所PYへの発電パッケージPの引き入れに支障がない程
度であればその必要はない。尚、上記においては、潮の
干満差とバラストタンクへの導水を利用しての沈下着床
を説明したが、たとえば、河や湖でも水の高低差があり
、発電パッケージにバラストタンクを有していれば、こ
の方法が採用できることは云うまでもない。
In addition, compared to landing using only the tidal difference, it takes too much time for the sink to sink, which causes various problems, such as the disadvantage that the power generation package P must be fixed and floated at the landing position for a long time. resolved. After landing, water will be introduced into the ballast tank to prevent it from resurfacing during the next low tide or high tide. For fixing, water is drained from the ballast tank while filling the area around the power generation package P, and solid matter such as soil, sand, concrete, or mortar is poured into the ballast tank for final fixing. In the above embodiment, a case has been described in which the power generation package P is corrected after being drawn into the trench H, but this operation is performed depending on the degree of inclination of the power generation package P, and is not scheduled. This is not necessary as long as there is no problem in bringing the power generation package P into the installation location PY. In addition, above, we explained the submerged floor using the tidal difference and the water conveyance to the ballast tank, but for example, there are differences in the height of water in rivers and lakes, and it is not possible to have a ballast tank in the power generation package. Needless to say, this method can be adopted if

以上、説明したように、本発明によればパッケージ形発
電設備という超大形重量物の輸送、据付においても安全
かつ正確は輸送、単床、据付を行ない得る効果がある。
As described above, according to the present invention, even in the transportation and installation of extremely large and heavy objects such as packaged power generation equipment, the transportation, single-bed, and installation can be carried out safely and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は船台上に組立製作した発電パッケージ・の一部
欠截断面図、第2図は第1図の直線■−■に沿う断面(
側面)図、第3図は第1図の直線■一■に沿う断面(正
面)図、第4図は発電パッケージの輸送の一例を説明す
るための図、第5図乃至第10図は発電パッケージの輸
送、着床、据付フ方法を説明するための図である。 1・・・・・・船台、1″・・・・・・バラストタンク
、2・・・ボイラー、3・・・・・・タービン、4・・
・・・・発電機、P・・・・・・パッケージ形発電設備
、B・・・・・・バージ、PY・・・・・予定設置場所
、H・・・・・・堀割り。
Figure 1 is a partially cutaway sectional view of the power generation package assembled and manufactured on the ship's platform, and Figure 2 is a cross section along the straight line ■-■ in Figure 1 (
Figure 3 is a cross-sectional (front) view taken along line 1 in Figure 1, Figure 4 is a diagram for explaining an example of transporting a power generation package, Figures 5 to 10 are power generation FIG. 3 is a diagram for explaining a method of transporting, landing, and installing a package. 1...Ship, 1''...Ballast tank, 2...Boiler, 3...Turbine, 4...
... Generator, P ... Packaged power generation equipment, B ... Barge, PY ... Planned installation location, H ... Moat division.

Claims (1)

【特許請求の範囲】[Claims] 1 バラストタンクを有し浮上可能な船台に火力発電所
構成機器として少なくともボイラ、タービンおよび発電
機を設置した発電パッケージを水上に浮上させ、潜水可
能なバージを潜水させてこれに搭載浮上させ、発電所建
設現場近傍まで水上輸送し、前記バージを潜水させて発
電パッケージを再び水上に浮上させ、予め用意された予
定設置場所に通ずる堀割り内に導入し、バラストタンク
に導水してその姿勢を水平に正し、高潮を利用して予定
設置場所に導入し、バラストタンクに導水して沈下させ
、最終的な着床は引き潮を利用して沈下着床させ、バラ
ストタンク内の排水完了後このバラストタンク内に固形
物を注入させることを特徴とするパッケージ形発電設備
の輸送据付方法。
1. A power generation package with at least a boiler, a turbine, and a generator installed as components of a thermal power plant is floated on the surface of the water on a ballast tank and a buoyant platform, and a submersible barge is submerged and floated onto it to generate electricity. The power generation package is then transported by water to near the construction site, the barge is submerged, the power generation package is brought to the surface again, it is introduced into the trench leading to the planned installation site prepared in advance, and the water is guided to the ballast tank and its position is leveled. The ballast is introduced into the planned installation location using high tides, and then guided into the ballast tank and allowed to sink.The final landing is carried out using the ebb tide, and after the ballast tank is drained, the ballast is removed. A method for transporting and installing packaged power generation equipment characterized by injecting solid matter into a tank.
JP54123229A 1979-09-27 1979-09-27 How to transport and install packaged power generation equipment Expired JPS6045730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54123229A JPS6045730B2 (en) 1979-09-27 1979-09-27 How to transport and install packaged power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54123229A JPS6045730B2 (en) 1979-09-27 1979-09-27 How to transport and install packaged power generation equipment

Publications (2)

Publication Number Publication Date
JPS5648475A JPS5648475A (en) 1981-05-01
JPS6045730B2 true JPS6045730B2 (en) 1985-10-11

Family

ID=14855386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54123229A Expired JPS6045730B2 (en) 1979-09-27 1979-09-27 How to transport and install packaged power generation equipment

Country Status (1)

Country Link
JP (1) JPS6045730B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592208B2 (en) * 1993-03-31 1997-03-19 三菱重工業株式会社 Thrust bearing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045730A (en) * 1983-08-24 1985-03-12 Suzuki Motor Co Ltd Turbo-operation indicator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045730A (en) * 1983-08-24 1985-03-12 Suzuki Motor Co Ltd Turbo-operation indicator

Also Published As

Publication number Publication date
JPS5648475A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
CN105926628B (en) One kind is floated, fixed convertible pile foundation in water construction platform device
CN103228909A (en) Process for installing an offshore tower
EP3276086B1 (en) Gravity foundation for the installation of offshore wind turbines
CN101837929B (en) Operation method for lifting fan for barge in shoal area
JPS629722B2 (en)
JP5738643B2 (en) Installation method of offshore wind power generation equipment
JPS589206B2 (en) Land-based plant construction method
WO2019183575A1 (en) Systems and methods for rapid establishment of offshore nuclear power platforms
RU2310721C1 (en) Protection device to protect self-elevating floating drilling installation for exploratory well drilling in ice conditions and method for protection device construction
JPS6045730B2 (en) How to transport and install packaged power generation equipment
CN109572950A (en) A kind of protective device of the automatic adaptation water level for water surface photovoltaic power station
US20220170220A1 (en) Method for the Installation of an Offshore Wind Turbine Tower
JP2000290936A (en) Method and caisson for constructing bridge pier footing
Olsen et al. Vindeby off-shore wind farm-construction and operation
JPS624509B2 (en)
JPH08240684A (en) Construction method of nuclear power generation plant
KR102487487B1 (en) Construction of tidal and wave power generating station under water
JPS594724A (en) Package type power generation facility
JPS5934318A (en) Construction work of atomic power station building
EP2918729B1 (en) Foundation base
JPH1046597A (en) Execution work method of steel shell caisson
JPS637996B2 (en)
JPS5953296A (en) Fixing method of plant platform vessel
EP2189576A1 (en) Foundation system for marine structures in deep water
Basford et al. A case study in cellular cofferdam life extension design