JPS6045495A - Mooring gear for tension leg type marine structure - Google Patents

Mooring gear for tension leg type marine structure

Info

Publication number
JPS6045495A
JPS6045495A JP2998884A JP2998884A JPS6045495A JP S6045495 A JPS6045495 A JP S6045495A JP 2998884 A JP2998884 A JP 2998884A JP 2998884 A JP2998884 A JP 2998884A JP S6045495 A JPS6045495 A JP S6045495A
Authority
JP
Japan
Prior art keywords
mooring
counterweight
damping device
lever member
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2998884A
Other languages
Japanese (ja)
Inventor
Masatoshi Katayama
正敏 片山
Kenichi Unoki
賢一 宇ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2998884A priority Critical patent/JPS6045495A/en
Publication of JPS6045495A publication Critical patent/JPS6045495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flexible Shafts (AREA)

Abstract

PURPOSE:To check a variation in tensile force for a mooring cable, by pivoting a lever member, provided with a counterweight for its one end and a delivery device of the other end, on an upper deck, while installing a damping device interposingly between the lever member at the opposite side to the counterweight and the upper deck. CONSTITUTION:A lever member is pivoted on an upper deck of a tension leg type marine structure with a pin fulcrum 17. A counterweight 16 is attached to one end of the lever member while a delivery device 12 to the other end, respectively, and a damping device 11 is installed interposingly between a lower part of the lever member at the opposite side to the counterweight 16 and the upper deck 1. Weight of the counterweight and a locking device is properly selected whereby such force that constantly acts on the damping device 11 can be brought to zero. Therefore, a variation in the tensile force produced in a mooring cable due to wind force, wave force and so on can be held down to the smallest possible extent.

Description

【発明の詳細な説明】 本発明は引張押型海洋構造物の係留装置にする。[Detailed description of the invention] The present invention provides a mooring device for a tension-pushed offshore structure.

従来、浮遊式海洋構造物であって、特に波浪中の動揺特
性を向上させる目的をもった型式の一つとして、いわゆ
る引張押型(又は緊張係留型)海洋構造物(テンション
・レグ・ブ7ットフォーム)が提案されている。
Conventionally, a so-called tension leg (or tension mooring) marine structure has been used as a type of floating marine structure with the purpose of improving its oscillation characteristics in waves. ) has been proposed.

引張押型海洋構造物は、第1図に示すように、基本的に
は、海面6上の作業甲板11それ夕支えろ複数の支柱2
(多くの場合、浮力体を兼ねる)、水平部材3、緊張し
た係留索4及び海底に着底したシンカー5から構成され
ており、構造物の重量Wに比較して浮力Bを犬に設定し
く″fなわち、予備浮力を持たせ)、係留索4の初期張
力FをB−Wに等しくして均衡を保ち、これによって構
造物の波浪中における動揺(特に、上下揺、縦揺、横揺
)を低減させることかできるものである。
As shown in Fig. 1, a tensile and push-type offshore structure basically consists of a working deck 11 above the sea surface 6 and a plurality of supporting columns 2.
(In many cases, it also serves as a buoyant body), consists of a horizontal member 3, a tensioned mooring line 4, and a sinker 5 that has landed on the seabed. The initial tension F of the mooring line 4 is made equal to B-W to maintain balance, and this prevents the structure from shaking in waves (in particular, vertical, pitching, and side-to-side buoyancy). It is possible to reduce the amount of vibration caused by

しかしながら、このような手段により動揺を低減させる
海洋構造物は動揺に対する固有周波数が通常3秒〜lO
秒程度となり、海洋で発生する波浪の周期3秒〜30秒
と一致する場合が多いために、このような海洋構造物は
同調時の係留索に発生する張力が過大になるという欠点
がある。
However, the natural frequency of marine structures whose vibrations are reduced by such means is usually 3 seconds to lO
This is on the order of seconds, which often coincides with the period of 3 to 30 seconds of waves occurring in the ocean, so such marine structures have the disadvantage that excessive tension is generated in the mooring lines during synchronization.

そこで、この欠点夕除去するために、水平部材の断面形
状を楕円として抵抗及び慣性力を減するもの、水平部材
の排水量と総排水量の比’> o、 a〜0.6として
索張力を減するもの、初期張力と構造物の排水量の比’
&0.05〜0.3.シンカーの排水量とシンカーの重
量の比を0.1〜0.45.シンカーの重量と構造物の
排水量の比”aj O,1〜0.6.シンカーの排水量
と構造物の排水量の比を1.05〜1.30とする等各
種のパラメータの範囲を限定するも等々が提案されてい
る。
Therefore, in order to eliminate this drawback, the cross-sectional shape of the horizontal member was made elliptical to reduce the resistance and inertial force, and the ratio of the displacement amount of the horizontal member to the total displacement was set to '> o, a ~ 0.6 to reduce the cable tension. What is the ratio between the initial tension and the displacement of the structure'
&0.05~0.3. The ratio of sinker displacement to sinker weight is 0.1 to 0.45. The ratio of the weight of the sinker to the displacement of the structure "aj O, 1 to 0.6. The range of various parameters may be limited, such as by setting the ratio of the displacement of the sinker to the displacement of the structure to 1.05 to 1.30. etc. have been proposed.

しかしながら、没水部の形状1寸法とは別に、波浪中で
の係留索に発生する張力変動及び構造物の動揺を減少さ
せるために適当な減衰機構を組み込んだ海洋構造物の係
留装置の例は末だ見ないところである。
However, apart from the shape and dimensions of the submerged part, there are examples of mooring devices for marine structures that incorporate appropriate damping mechanisms to reduce tension fluctuations that occur in mooring lines in waves and sway of the structure. There is no end in sight.

本発明はこのような事情に鑑み提案されたもので、波浪
に基因して係留索に発生する張力を減少する引張固型海
洋構造物の係留装置を提供することを目的とする。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide a mooring device for a tensile solid marine structure that reduces tension generated in a mooring line due to waves.

そのために本発明は、作業甲板と、該作業甲板を支える
と\もに浮力体を構成する複数の支柱と、上記複数の支
柱の構造強度部材を構成すると又もに浮力体を構成する
水平部材とからなる構造物を水中に張設された複数の係
留索によって係留−するいわゆる引張固型海洋構造物に
おいて、それぞれ央部が作業甲板上に枢支され一端にカ
ウンタウェイトが付設され他端に係留索の巻込み繰出し
装置が付設された複数のレバ一部材と、上記作業甲板と
上記各レバ一部材の他端との間に設けられバネ定数およ
び減衰定数を有する減衰装置とを具えたことを一住醤幸
発徘っ特徴とする。
To this end, the present invention provides a working deck, a plurality of struts that support the working deck and which together constitute a buoyant body, and a horizontal member which constitutes a buoyant body when it constitutes a structural strength member of the plurality of struts. In a so-called tensile rigid marine structure, in which a structure consisting of A plurality of lever members each having a mooring rope winding-in and letting-out device are provided, and a damping device having a spring constant and a damping constant, which is provided between the working deck and the other end of each of the lever members. It is characterized by a wandering from Issumi Soyoko.

まず、本発明引張固型海洋構造物の係留装置の原理を説
明すると、第1図はその概念図、第2図は第1図を一質
点係モデルに置換した説明図、第3図は第2図の力学的
等価モデルである。
First, to explain the principle of the mooring device for a tensile solid marine structure of the present invention, Figure 1 is a conceptual diagram thereof, Figure 2 is an explanatory diagram replacing Figure 1 with a one-mass model, and Figure 3 is a diagram of the mooring system. This is a mechanically equivalent model of Figure 2.

第1図において、lは作業甲板、2は作業甲板lを支え
ると〜もに浮力体を兼ねろ4本の支柱、3は各支柱4の
下端をそれぞれ連結する水平部材、4は上端が各支柱3
に沿って延び作業甲板l上のウィンチ12に巻回される
と〜もに下端が海底7に碇着するシンカー5に連結され
た4本の係留索、6は海面、11は作業甲板l上に固定
され係留索4の張力の変動を減衰さすための減衰装置で
ある。
In Fig. 1, l is a working deck, 2 is four pillars that support the working deck l and also serves as a buoyant body, 3 is a horizontal member connecting the lower ends of each pillar 4, and 4 is a horizontal member whose upper end is connected to each other. Pillar 3
Four mooring lines are connected to the sinker 5, which extends along the line and is wound around the winch 12 on the working deck l, and both have their lower ends anchored on the seabed 7, 6 is on the sea surface, and 11 is on the working deck l. This is a damping device for damping fluctuations in the tension of the mooring line 4 fixed to the mooring line 4.

波浪に基因して引張固型海洋構造物の係留索に生起てる
張力は、一般的に、拘束の大な(4−) る上下揺、縦揺及び横揺によって決定され、これらの動
揺は、第3図に示す等価モデルに対する運動方程式fi
lによって表わされ、また固有周期Thは(4)で表わ
される。
Tensions generated in the mooring lines of tensile rigid marine structures due to waves are generally determined by highly restrained (4-) heave, pitch, and roll motions; Equation of motion fi for the equivalent model shown in Figure 3
The natural period Th is expressed by (4).

−F W・・・・・・・・・・・・・・・ (1,)こ
瓦で、 W:構造物の重量 W′:付加重量 g:重力の加速度 γ:海水の比重 AW:支柱2の水線面積 d:吃水 に:係留索4のバネ定数 (辛) C:減衰装置11の減衰定数 Ke二等価バネ定数 Ce:等価減衰定数 ω:波浪の円周波数(=2π/T) T:波浪の周期 z 、 z 、 Z:構造物の縦方向加速度、速度。
-F W・・・・・・・・・・・・・・・ (1,) With a small roof tile, W: Weight of the structure W′: Additional weight g: Acceleration of gravity γ: Specific gravity of seawater AW: Strut 2 water line area d: For swamping: Spring constant of mooring line 4 (hard) C: Damping constant Ke of damping device 11 Equivalent spring constant Ce: Equivalent damping constant ω: Circular frequency of waves (=2π/T) T : Wave period z, z, Z: Longitudinal acceleration and velocity of the structure.

変位 Fw:波力 F:係留索の初期張力 である。displacement Fw: Wave power F: Initial tension of mooring line It is.

次に、下記パラメータを設定する。Next, set the following parameters.

α;に/(γ・Aw) ・・・・・・・・・・・・・・
・ (5)δ=F/W ・・・・・・・・・・・・・・
・ (7)ε−W/W ・・・・・・・・・・・・・・
・ (8)た父し、 α;・バネ定数/毎センナ排水量の比 β:減衰比 δ:初期張力/重量比 ε:付加質量係数 である。
α;に/(γ・Aw)・・・・・・・・・・・・・・・
・ (5) δ=F/W ・・・・・・・・・・・・・・・
・ (7) ε-W/W ・・・・・・・・・・・・・・・
・(8) Then, α;・Spring constant/ratio of displacement per senna β: Damping ratio δ: Initial tension/weight ratio ε: Added mass coefficient.

運動方程式(1)の解Zdは(9)で与えられろ。The solution Zd of the equation of motion (1) is given by (9).

たyし、 η==Th/T。However, η==Th/T.

一方減衰装置を具えない従来の構造物における運動方程
式の解Zd’は(9)においてCe−0゜K e = 
K と置くことにより(lO)となる。
On the other hand, the solution Zd' of the equation of motion for a conventional structure without a damping device is Ce-0°K e =
By setting it as K, it becomes (lO).

そこで、減衰装置を具えた場合と具えない場合の係留索
の張力zFd、Fd’とすると、その比F’d/Fd’
(動的応答倍率DAF’F)は(11)で与えられ、ま
た動的変位と静的変位の比り、AFXは(12)で与え
られる。
Therefore, if the tension of the mooring rope with and without a damping device is zFd, Fd', the ratio F'd/Fd'
(Dynamic response magnification DAF'F) is given by (11), and the ratio of dynamic displacement to static displacement, AFX, is given by (12).

・・・・・・・・・・・・・・・ (12)たg踵 通常の引張固型海洋構造物では(7) 、 (8)等に
示したパラメータは下記範囲に設定される。
(12) For normal tensile solid marine structures, the parameters shown in (7), (8), etc. are set within the following ranges.

0.1〈δ〈1.O d = 20 m w 3 Q m T=3秒〜30秒 (14)で示した範囲において、動的応答倍率DAF’
Fカ0.8 、0.6 、0.4以下になると又もに動
的変位と静的変位の比DAFXが(&) 1.3以下になるためにパラメータα、βの満足すべき
条件をめて図示すると第4図の線図でハツチングを施し
た範囲になる。
0.1〈δ〈1. In the range shown in O d = 20 m w 3 Q m T = 3 seconds to 30 seconds (14), the dynamic response magnification DAF'
When F becomes 0.8, 0.6, 0.4 or less, the conditions that parameters α and β must satisfy in order for the ratio of dynamic displacement to static displacement DAFX to become (&) 1.3 or less. When shown together, it is the hatched area in the diagram of FIG.

このことは、逆に、適宜減衰定数Cを選定することによ
り第4図のハツチングを施した範囲のパラメータα、β
を選定するならば、係留索の動的応答倍率DAFFは0
.8以下になると〜もにDAFXは1.3以下になり、
係留索の張力変動用いては構造物の動揺が大巾に減少で
きることを意味するものである。
Conversely, by selecting the attenuation constant C appropriately, the parameters α and β in the hatched range in FIG.
If you select , the dynamic response magnification DAFF of the mooring line is 0.
.. When it goes below 8, DAFX goes below 1.3,
This means that the fluctuation of the mooring line tension can be used to greatly reduce the movement of the structure.

因みに具体的数値例を挙げろと、第5図に示す構造物の
諸元は下記の通りであり、重量W=25,500 を 水線面積Aw=530.9m” 初期張力F=45oot 係留索のバネ定数に=668t/m 減衰定数C=400− 吃水d = 30 m ξ=0.534(水槽試験結果) このとき、(5) 、 (6)よりα、βを計算すると
(ID) α=668/(1,025X530.9)=1.28=
0.182 となり、第4図よりD A FF (Q、 4であるこ
とが判る。
By the way, to give a concrete numerical example, the specifications of the structure shown in Figure 5 are as follows: weight W = 25,500, water line area Aw = 530.9 m'', initial tension F = 45oot, mooring line Spring constant = 668 t/m Damping constant C = 400 - Stuttering d = 30 m ξ = 0.534 (water tank test result) At this time, calculating α and β from (5) and (6) (ID) α = 668/(1,025X530.9)=1.28=
0.182, and from Figure 4 it can be seen that D A FF (Q, 4).

また、第5図の構造物を水槽試験等により解析精度を確
認した波浪中応答計算プログラムによる計算結果は第6
図(5)、 (B) 、◎、倶に示すように、シンカー
5と係留索ウィンチ12との間に減衰装置11を介挿す
ることにより、実線で示すように、波浪に基因する係留
索の張力変動は、破線で示す減衰装置ケ見えない場合に
比べて、大巾に減少することが判った。
In addition, the calculation results of the structure shown in Figure 5 using a wave response calculation program whose analysis accuracy was confirmed through water tank tests, etc. are shown in Figure 6.
By inserting the damping device 11 between the sinker 5 and the mooring line winch 12 as shown in FIGS. (5), (B), ◎, and It was found that the tension fluctuation was significantly reduced compared to the case where the damping device shown by the broken line was not visible.

本発明の実施例を図面について説明すると、第7図、第
8図、第9図囚、(B)、第10図、第11図(5)、
 03) 、 (Qはそれぞれ第11第2、第3、第4
、第5実施例を示す側面図、第12図(5)、同はそれ
ぞれ減衰装置を示す縦断面図である。
Embodiments of the present invention will be explained with reference to the drawings. FIGS. 7, 8, 9 (B), 10, 11 (5),
03), (Q is the 11th, 2nd, 3rd, and 4th
, FIG. 12(5) is a side view showing the fifth embodiment, and FIG. 12(5) is a longitudinal sectional view showing the damping device.

まず第7図に示す第1実施例は、作業甲板l端部下面に
係留索4を挾んで2個の減衰装置11.11を並列に懸
吊し、減衰装置11゜11の下端に、係留索4を解放可
能に固縛する固縛装置14を具えたもので、係留索ウィ
ンチ12による係留索の巻込み繰出しに、l:って係留
索に所定の初期張力FY与えた後、固縛装置14によっ
て係留索4を固縛する。しかる後、係留索ウィンチ12
の繰出しにより、係留索ウィンチ12と固縛機構14の
間の係留索4を若干緩めろ。このようにすれば、減衰装
置11には初期張力Fが定常的に作用し、波力、風力に
基因して構造物が動揺しても係留索に生ずる張力の変動
は大巾に減少し、構造物自身の動揺もこれにより極少に
抑制することができろ。
First, in the first embodiment shown in FIG. It is equipped with a lashing device 14 that releasably lashes the cable 4, and when the mooring cable is rolled in and let out by the mooring cable winch 12, the mooring cable is secured after applying a predetermined initial tension FY to the mooring cable. The mooring line 4 is secured by the device 14. After that, the mooring line winch 12
Slightly loosen the mooring line 4 between the mooring line winch 12 and the lashing mechanism 14 by letting out the mooring line. In this way, the initial tension F acts steadily on the damping device 11, and even if the structure sways due to wave force or wind force, fluctuations in the tension occurring in the mooring cables are greatly reduced. The movement of the structure itself can also be suppressed to a minimum with this.

第8図に示す第2実施例は、滑車15を突設した減衰装
置11を作業甲板lの端縁上に斜設し、係留索4の上端
を滑車15を掛は廻した後、係留索ウィンチ12に巻回
したもので、減衰装置11には初期張力Fの約77倍の
定常的な力が作用する。
In the second embodiment shown in FIG. 8, a damping device 11 having a protruding pulley 15 is installed obliquely on the edge of the working deck l, and after the upper end of the mooring rope 4 is hooked around the pulley 15, the mooring rope Wound around the winch 12, a steady force of about 77 times the initial tension F acts on the damping device 11.

第9図(5)、 (B)に示す第3実施例は、作業甲板
l上に支点17がピンで枢着され、一端上に係留索ウィ
ンチ12を固定するとNもに他端上にカウンタウェイト
16Y固定してなるレバーを設け、作業甲板l上に固定
された減衰装置11の上面にレバーの左端(同図(5)
参照)又はレバーの右端(同図0参照)を当接させたも
のである。
In the third embodiment shown in FIGS. 9(5) and 9(B), a fulcrum 17 is pivotally mounted on the working deck l with a pin, and when the mooring line winch 12 is fixed on one end, the counter on the other end is fixed. A lever fixed to the weight 16Y is provided, and the left end of the lever ((5) in the same figure) is attached to the upper surface of the damping device 11 fixed on the work deck l.
(see 0) or the right end of the lever (see 0 in the same figure).

何れも、カウンタウェイ)160重量及びその固定位置
を適宜選定することにより、減衰。
In both cases, damping is achieved by appropriately selecting the weight (Counterway) 160 and its fixing position.

装置11に定常的に作用する力を殆んど零にすることが
できろ。
The force that constantly acts on the device 11 can be reduced to almost zero.

第1O図に示す第4実施例は、第9図(5)に示したも
のをビン17を中心として対称的に2個一体内に構成し
てなるもので、初期張力p 、 、F’によるモーメン
トの釣合によりカウンタウェイトは不要となり、減衰装
置11 、l l’C中40 に定常的に作用する力はほとんど零とすることができる
The fourth embodiment shown in Fig. 1O is constructed by constructing two parts shown in Fig. 9 (5) symmetrically around the bottle 17, and the initial tensions p, , F' are The balance of the moments eliminates the need for a counterweight, and the force constantly acting on the damping device 11, l l'C 40 can be reduced to almost zero.

第11図(5)、 (B) 、 (Qに示す第5実施例
は減衰装置11”%係留索4の途中(同図(A)参照)
、シンカー5の上部(同図(均参照)、シンカーの内部
(同図(q参照)において係留索4に介挿したものであ
る。
Figure 11 (5), (B), (The fifth embodiment shown in Q is a damping device 11"% midway along the mooring line 4 (see figure (A))
, the upper part of the sinker 5 (see figure 1), and the inside of the sinker (see figure q) inserted into the mooring line 4.

第12図は減衰装置11の構造を示すもので、同図へは
シリンダ中に摺動自在に内挿されたピストンPの両側に
それぞれゴム筒rを嵌挿してなるゴムダンパ、同図(B
)は油圧シリンダの両圧力室の油o’%6弁v)4介し
て連通すると又もに、復元バネSを内挿してなる油圧式
ダンパである。
FIG. 12 shows the structure of the damping device 11, and the same figure shows a rubber damper consisting of a piston P slidably inserted into a cylinder and a rubber cylinder r fitted on each side, and a rubber damper (B) shown in FIG.
) is a hydraulic damper in which both pressure chambers of a hydraulic cylinder are connected through an oil o'%6 valve v)4, and a restoring spring S is inserted therein.

以上の実施例は実質的に第7図に示した第1実施例と同
一の減衰効果を奏することができろ。
The above embodiment can produce substantially the same damping effect as the first embodiment shown in FIG.

更に、係留索としては、鋼製ワイヤ、チェーンのほか、
化繊ローブ、管状部材(パイン)及びこれらとバネとの
組合せ等を用いろこと/4 (#) ができろ。
Furthermore, mooring cables include steel wire, chains, and
You can use synthetic fiber lobes, tubular members (pine), and combinations of these with springs.

本発明は、半潜水型、船渠、ポンツーン型等の形状如何
を問わず、海底石油試掘、生産、貯蔵設備、海上プラン
ト、海上空港、海上都市等海上作業及び居住空間を構成
する引張脚型海洋構造物全般に広く適用することができ
ろ。
The present invention is directed to a tow-legged marine vessel, regardless of its shape, such as semi-submersible, dock, or pontoon type, which is used for offshore oil exploration, production, and storage facilities, offshore plants, offshore airports, maritime cities, and other offshore working and living spaces. It can be widely applied to structures in general.

要するに、本発明によれば、作業甲板と、該作業甲板を
支えろと又もに浮力体を構成する複数の支柱と、上記複
数の支柱の構造強度部材を構成すると匁もに浮力体を構
成する水平部材とからなる構造物を水中に張設された複
数の係留索によって係留するいわゆる引張脚型海洋構造
物において、それぞれ央部が作業甲板上に枢支され一端
にカウンタウェイトが付設され他端に係留索の巻込み繰
出し装置が付設された複数のレバ一部材と、上記作業甲
板と上記各レバ一部材の他端との間に設けられバネ定数
および減衰定数を有する減衰装置とを具えたこと −に
よ り、風力、波力等に基因して係留素瓦生起する張力の変
動を極少に抑えろと又もに構造物の動揺な極少に抑制す
る引張脚型海洋構造物の係留装置を得るから本発明は産
業上極めて有益なものである。
In short, according to the present invention, a working deck, a plurality of struts that support the working deck and also constitute a buoyant body, and a structural strength member of the plurality of struts constitute a buoyant body. In so-called tension leg type marine structures, in which a structure consisting of a horizontal member and a horizontal member is moored by a plurality of mooring ropes stretched underwater, the center part of each structure is pivoted on the working deck, and a counterweight is attached to one end. A plurality of lever members each having a mooring rope winding-up device attached to an end thereof, and a damping device having a spring constant and a damping constant provided between the work deck and the other end of each of the lever members. Accordingly, there is provided a mooring device for a tension leg type marine structure that minimizes fluctuations in tension caused by mooring elements due to wind power, wave force, etc., and also minimizes oscillation of the structure. Therefore, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明1−ろための概念図、第2
図は第1図を一質点系モチルに置換した説明図、第3図
は第2図の力学的等価モデル、第4図は動的応答倍率r
)A 、+I゛、rrが0.8以下になるとNもに動的
変位と静的変位の比DAF’Xが1.3以下になるだめ
のパーラメータα、βの範囲ン示す線図、第5図は具体
的数値例を示す海洋構造物の斜視図、第6図代、 (B
) 、 (Q 、 (1))はそれぞれ第5図の構造物
において、減衰装置を具えた場合(実線)と減衰装置を
具えない場合(破線)の振動特性を示す線図、第7図、
第8図、第9図(5)、(醜第1O図、第11図へ、 
(l() 、 IC)はそれぞれ本発明の第11第2、
第3、第4、第5実施例を示す部分側面図、第12図四
、 (i3)はそれぞれ減衰装置を示す縦断面図である
。 1・・・作業甲板、2・・・支柱、3・・・水平部材、
4・・・係留索、5・・・シンカー、6・・・海面、7
・・・海底、11・・・減衰装置、12・・・係留索、
つ復代理人 弁理士 塚 本 正 文 (ほか1名) (悴) 鷺(−ゴ( 1 口
Figure 1 is a detailed explanation of the present invention.
The figure is an explanatory diagram in which figure 1 is replaced with a one-mass point system motil, figure 3 is the mechanical equivalent model of figure 2, figure 4 is the dynamic response magnification r
)A, +I゛, rr is 0.8 or less, N is also a dynamic displacement to static displacement ratio DAF'X of 1.3 or less, a diagram showing the range of parameters α, β. Figure 5 is a perspective view of a marine structure showing a specific numerical example;
), (Q, (1)) are diagrams showing the vibration characteristics of the structure shown in Fig. 5 with a damping device (solid line) and without a damping device (broken line), respectively, and Fig. 7,
Figure 8, Figure 9 (5), (Ugly Figure 1O, Figure 11,
(l(), IC) are the eleventh and second of the present invention, respectively.
FIG. 12 is a partial side view showing the third, fourth, and fifth embodiments, and FIG. 12 (i3) is a longitudinal sectional view showing the damping device, respectively. 1... Working deck, 2... Support, 3... Horizontal member,
4... Mooring line, 5... Sinker, 6... Sea surface, 7
... seabed, 11... damping device, 12... mooring line,
Sub-representative Patent attorney Masafumi Tsukamoto (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 作業甲板と、該作業甲板を支えろと〜もに浮力体乞構成
する複数の支柱と、上記複数の支柱の構造強度部材を構
成するとNもに浮力体を構成する水平部材とからなる構
造物を水中に張設された複数の係留索によって係留する
いわゆる引張押型海洋構造物において、それぞれ央部が
作業甲板上に枢支され一端にカウンタウェイトが付設さ
れ他端に係留索の巻込み繰出し装置が付設された複数の
レバ一部材と、上記作業甲板と上記各レバ一部材の他端
との間に設けられバネΦ定数および減衰定数を有する減
衰装置とを具えたことを特徴とてろ引張押型海洋構造物
の係留装置。
A structure consisting of a working deck, a plurality of struts that support the working deck and constitute a buoyant body, and a horizontal member that constitutes a buoyant body when the structural strength members of the plurality of struts are constituted. In so-called tension-and-push marine structures, in which moorings are moored by multiple mooring lines stretched underwater, each center part is pivoted on the working deck, a counterweight is attached to one end, and a mooring cable winding and feeding device is attached to the other end. a plurality of lever members attached thereto, and a damping device provided between the work deck and the other end of each of the lever members and having a spring Φ constant and a damping constant. Mooring equipment for marine structures.
JP2998884A 1984-02-20 1984-02-20 Mooring gear for tension leg type marine structure Pending JPS6045495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2998884A JPS6045495A (en) 1984-02-20 1984-02-20 Mooring gear for tension leg type marine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2998884A JPS6045495A (en) 1984-02-20 1984-02-20 Mooring gear for tension leg type marine structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15424679A Division JPS5677415A (en) 1979-11-30 1979-11-30 Method and apparatus for mooring tension foot type marine structure

Publications (1)

Publication Number Publication Date
JPS6045495A true JPS6045495A (en) 1985-03-11

Family

ID=12291332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2998884A Pending JPS6045495A (en) 1984-02-20 1984-02-20 Mooring gear for tension leg type marine structure

Country Status (1)

Country Link
JP (1) JPS6045495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785761A (en) * 2012-08-02 2012-11-21 江苏科技大学 Self-regulation type single point mooring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146093A (en) * 1974-04-15 1975-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146093A (en) * 1974-04-15 1975-11-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785761A (en) * 2012-08-02 2012-11-21 江苏科技大学 Self-regulation type single point mooring system

Similar Documents

Publication Publication Date Title
US4155673A (en) Floating structure
AU690867B2 (en) Floating caisson for offshore production and drilling
US3982492A (en) Floating structure
US5359962A (en) Center-Spar fish pen
US4813815A (en) Buoyant, elastically tethered articulated marine platform
US5558467A (en) Deep water offshore apparatus
DE3872747T2 (en) VERTICALLY ANCHORED PLATFORM WITH A SINGLE ANCHOR CABLE.
US8764346B1 (en) Tension-based tension leg platform
US8579547B2 (en) Vessel comprising transverse skirts
EP2957497A1 (en) Mooring apparatus using submerged floating bridge
EP3709797B1 (en) Fish farming structure
US5054415A (en) Mooring/support system for marine structures
US6783302B2 (en) Buoyant leg structure with added tubular members for supporting a deep water platform
Thresher et al. Anchor-last deployment simulation by lumped masses
GB2066191A (en) Mooring system
GB1595045A (en) Mooring systems
CN210827339U (en) Mooring device providing omnidirectional restoring force
Hennessey et al. Experimental snap loading of synthetic ropes
JPS6045495A (en) Mooring gear for tension leg type marine structure
JPS6045494A (en) Mooring gear for tention leg type marine structure
CN112854122A (en) Novel floating frame breakwater
KR102537987B1 (en) Buoyant Structure Pended Buoyantly
JPH0234498A (en) Multi-point mooring method for floating type ocean structure
US20150016892A1 (en) TLP Pontoon
JP2006123848A (en) Swing reducing device for anchored floating structure