JPS6045402A - Pneumatic tyre for agricultural vehicle - Google Patents

Pneumatic tyre for agricultural vehicle

Info

Publication number
JPS6045402A
JPS6045402A JP58153603A JP15360383A JPS6045402A JP S6045402 A JPS6045402 A JP S6045402A JP 58153603 A JP58153603 A JP 58153603A JP 15360383 A JP15360383 A JP 15360383A JP S6045402 A JPS6045402 A JP S6045402A
Authority
JP
Japan
Prior art keywords
lug
small
vane
blade
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58153603A
Other languages
Japanese (ja)
Other versions
JPH0124084B2 (en
Inventor
Kageyuki Arimura
景行 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohtsu Tire and Rubber Co Ltd
Original Assignee
Ohtsu Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtsu Tire and Rubber Co Ltd filed Critical Ohtsu Tire and Rubber Co Ltd
Priority to JP58153603A priority Critical patent/JPS6045402A/en
Publication of JPS6045402A publication Critical patent/JPS6045402A/en
Publication of JPH0124084B2 publication Critical patent/JPH0124084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:In a pneumatic tyre having an outer peripheral portion constituted by a number of vane lug parts and small lug parts arranged between the vane lug parts, to reduce vibration of the tyre by specifying lug pitches between the vane lug parts and spacings between the small lug parts. CONSTITUTION:In a pneumatic tyre 3 for agriculture to be mounted on a wheel 2, an outer peripheral portion 19 constituted by a tread surface 17 and outer side surfaces 18 of right and left side wall portions 15 is provided with a number of lugs 20 arranged at pitches R in the peripheral direction and integral with a tyre body 10. The lugs 20 comprise vane lug parts 21 disposed at vane pitches L in the peripheral direction and small lug parts 22 arranged at lug spacings S between the vane lug parts 21, where at least one of lug pitches R between the vane lug parts 21 is established at a value different from another so that the ratio of the maximum pitch/the minimum pitch ranges from 1.2-1.8. Further, the spacing S4 between each vane lug part 21 and the small lug part 22 arranged on the rear row side thereof is set up more widely than another spacing S.

Description

【発明の詳細な説明】 用される農用空気入りタイヤに関する。[Detailed description of the invention] This invention relates to agricultural pneumatic tires used for agricultural purposes.

湿田用車輪は、湿田中を走行するために、車輪外周部に
牽引力及び浮力を得るための複数個の羽fl2 根うグ部全持ち、また、その羽根ラグ部間に.牽引力の
補助及び走行時の振動を緩和するために種々の形状の小
ラグ部が多数形成されている。
In order to travel through wet fields, wheels for wet fields are equipped with a plurality of blades on the outer periphery of the wheel to provide traction and buoyancy, and between the blade lugs. A large number of small lugs of various shapes are formed to assist in traction and to alleviate vibrations during running.

従来車輪には環状パイプ製リムにゴムを焼付けたパイプ
焼付車輪があり、この車輪はリム上の羽根ラグ部及び小
ラグ部の各肉厚が略同等であるため、負荷時のゴムの焼
みは全周に亘って略等しくなり、走行時の振動は、ラグ
ピッチ間隔が同一で且つ走行面がコンクリート等の平滑
面では問題を生じないが、地道、圃場等では非常に大き
く、乗心地を悪くしている。
Conventional wheels include pipe-coated wheels in which rubber is baked on the annular pipe rim.This wheel has approximately the same wall thickness on the vane lug and small lug on the rim, so the rubber does not burn under load. is approximately the same all around the circumference, and vibration during running does not cause problems when the lug pitch interval is the same and the running surface is smooth such as concrete, but it is very large on steady roads or in fields, making the ride uncomfortable. are doing.

そこで、地道、圃場等の凹凸の激しい場所で走行するた
めの車輪として空気入りタイヤ車輪が考えられている。
Therefore, pneumatic tire wheels have been considered as wheels for driving on rough terrain such as on steady roads and in fields.

このタイヤ車輪は小ラグ部の連続で羽根ラグ部がない。This tire wheel has a series of small lugs and no vane lugs.

このため、負荷時のタイヤの撓み量はいずれの部分4略
同一であり、パイプ焼付車輪と比べて振動は減少する.
しかし、圃場においては、小ラグ部のみのタイヤのため
、牽引力が弱く、スリップ率が多いという欠点があった
Therefore, the amount of tire deflection under load is approximately the same in all parts 4, and vibration is reduced compared to a wheel with a pipe seizure.
However, in the field, tires with only small lugs had the disadvantage of weak traction and a high slip rate.

本考案は圃場での性能を良くするため羽根ラグA3 部を設け、しかも振動を減少させようとしたものである
。羽根ラグ部がタイヤのサイドウオール部まで形成され
ていて、小ラグ部に比べて剛性が大であるため1等ラグ
ピッチの羽根ラグ部と小ラグ部とは一定荷重下の撓み量
に大差を生じ、振動を効果的に減少させることが困難で
あり、今だ乗心地の良好なものは得られていない。
The present invention is designed to provide a blade lug A3 in order to improve performance in the field, and also to reduce vibration. The vane lug part extends to the sidewall part of the tire and has greater rigidity than the small lug part, so there is a large difference in the amount of deflection under a constant load between the vane lug part with a 1st lug pitch and the small lug part. However, it is difficult to effectively reduce vibrations, and good riding comfort has not yet been achieved.

このようなタイヤ車輪の振動は、羽根ラグ部の存在だけ
でなく種々の要因も加わって起るものであり、第7図(
1)に示すように、回転中に一定周期の大衝撃を発生す
る。
Such tire wheel vibrations are caused not only by the presence of the blade lugs but also by various factors, as shown in Figure 7 (
As shown in 1), a large shock is generated at a constant period during rotation.

ところで、この機械的振動を考えるに先だって、音の振
動について考えてみると、音は単一の周波数を持つ純音
であるとき、集合されて明快に聴える不快なノイズとな
ることがあるが、これを周波数変調することにより、低
いレベVの数多くの周波数に分散され、その一部が周囲
の音と混合したりすることもあって、感覚的にノイズが
減少することが知られている。
By the way, before considering this mechanical vibration, if we consider the vibration of sound, when sound is a pure tone with a single frequency, it can be aggregated into unpleasant noise that can be clearly heard. It is known that by frequency modulating this, the noise is dispersed into many frequencies at a low level V, some of which are mixed with surrounding sounds, and the noise is perceptually reduced.

このようなノイズの周波数変調理論(FM理調)は、特
公昭58−22364号公報に示される如く、自動車用
タイヤのトレッドパターンに適用され、その実証をあげ
ている。
Such frequency modulation theory of noise (FM Richo) has been applied to the tread pattern of automobile tires and has been demonstrated in Japanese Patent Publication No. 58-22364.

この周波数変調理論は音の振動に限らず、機械的振動に
適用し得るものであるが、ラグ高さが一定で且つ高速回
転する自動車用タイヤの技術的思想を、羽根ラグ部を有
し且つ超低速回転する湿田用タイヤにそのまま適用する
ことは困難である。
This frequency modulation theory can be applied not only to sound vibrations but also to mechanical vibrations. However, the technical idea of an automobile tire with a constant lug height and rotating at high speed is applied to a tire with vane lugs and It is difficult to apply it directly to tires for wet fields that rotate at extremely low speeds.

そこで本発明は、このような周波数変調理論に基いて、
用途の特殊性に鑑みながら実験を重ねた結果、開発に成
功したものであり、その目的とするところは、ラグピッ
チに所要のピッチ差を設けることにより、最大衝撃を著
しく低減できるようにした農用空気入りタイヤを提供す
るにあジ、その特徴とするところは、外周部に周方向間
隔をおいて多数のラグが形成され、このラグが多数個の
羽根ラグ部と、各羽根ラグ部間に所定個ずつ配置された
小ラグ部とで形成されている農用空気入りタイヤにおい
て、前記各羽根ラグ部間のラグピッチの内の1つ以上は
他と異なり最大ピッチは最小5 ピッチの約1.2〜1.8倍に設定され、且つ、各羽根
ラグ部とその後行側の小ラグ部との間隙はその他のラグ
間隙より広く設定されている点にある。
Therefore, the present invention is based on such frequency modulation theory,
As a result of repeated experiments taking into consideration the specificity of the application, the product was successfully developed.The aim is to create an agricultural air system that can significantly reduce the maximum impact by creating a required pitch difference in the lug pitch. The main feature of this tire is that a large number of lugs are formed on the outer periphery at intervals in the circumferential direction, and these lugs are connected to a large number of vane lug parts and a predetermined space between each vane lug part. In an agricultural pneumatic tire formed of individually arranged small lug parts, one or more of the lug pitches between the blade lug parts is different from the others, and the maximum pitch is about 1.2 to 5 pitches. 1.8 times, and the gap between each blade lug and the small lug on the trailing side is set wider than the other lug gaps.

以下、本発明の実施例を詳述する。Examples of the present invention will be described in detail below.

まず、第1〜6図に基いて本発明空気入シタイヤ(3)
の構造を説明する。
First, based on Figures 1 to 6, the pneumatic tire (3) of the present invention
Explain the structure of

空気入りタイヤ(3)はチューブレスタイプで、ホイー
ル(2)に装着されて農用車輪(1)を構成し、第1図
矢印方向に前進回転する。
The pneumatic tire (3) is a tubeless type, and is attached to the wheel (2) to constitute an agricultural wheel (1), and rotates forward in the direction of the arrow in FIG.

ホイール(2)はディスク(4)とその外周部両側にボ
ルト・ナツト(5)により着脱自在に取付けられる1対
のサポート材(6)とを有し、各サポート材(6)はデ
ィスク(4)の外周から径外方向に且つ軸外方向にリム
(7)がテーバ状に突出形成されている。
The wheel (2) has a disk (4) and a pair of support members (6) that are removably attached to both sides of the outer circumference with bolts and nuts (5), and each support member (6) has a disk (4). ) A rim (7) is formed to protrude in a tapered shape in the radially outward direction and in the off-axis direction from the outer periphery of the rim (7).

空気入〕タイヤ(3)はタイヤ本体QOのビード部(1
1)が前記左右リム(7)に受承され、ビードコアOa
によって固定されている。
Pneumatic tire (3) is attached to the bead part (1) of the tire body QO.
1) is received by the left and right rims (7), and the bead core Oa
Fixed by

タイヤ本体0(lはクラウン部03から左右ショルダ部
0Φを介して左右サイドウオール部αF9が径内方向に
延設され、左右サイドウオール部0υの径内側がム 6 ビード部αυとなっている。クラウン部α3の外周面と
なっているトレッド表面αηから左右サイドウオール部
aF9の外側面(至)までタイヤ本体αQの外周部O9
が形成され、この外周部O9には周方向にラグピッチ(
n)をおいて多数のラグ翰が突設されておシ、このラグ
(イ)はタイヤ本体QOと共にゴム等の弾性材料で一体
成形されている。
In the tire body 0 (l), left and right sidewall portions αF9 extend radially inward from the crown portion 03 via the left and right shoulder portions 0Φ, and the radially inner side of the left and right sidewall portions 0υ is a bead portion αυ. From the tread surface αη, which is the outer peripheral surface of the crown part α3, to the outer surface (to) of the left and right sidewall parts aF9, the outer peripheral part O9 of the tire body αQ
is formed, and a lug pitch (
A large number of lug ridges are provided protruding from n), and these lugs (a) are integrally molded with the tire body QO from an elastic material such as rubber.

前記ラグ翰は周方向に羽根ピッチ(L)をおいて配置さ
れた羽根ラグ部6!つと、この羽根ラグ部(ロ)間にラ
グ間隙(8)をおいて配置された小ラグ部(イ)とを有
している。
The blade lug portions 6 are arranged at a blade pitch (L) in the circumferential direction! and a small lug portion (a) arranged with a lug gap (8) between the blade lug portions (b).

前記羽根ラグ部(ハ)は浮力と牽引力とを得るためのも
のであって、トレッド表面αηからサイドウオール部α
θの外側面(至)の略中途まで形成され、高さは小うグ
部翰と同一で、例えば、高さはタイヤ本体OQの幅の半
分、幅はタイヤ本体αQの幅の2.5倍、タイヤ半径方
向中心線に対する傾斜角度(θ)が50゜に夫々設定さ
れている。
The blade lug section (c) is for obtaining buoyancy and traction force, and extends from the tread surface αη to the sidewall section α.
It is formed to approximately the middle of the outer surface (to) of θ, and the height is the same as that of the small arm.For example, the height is half the width of the tire body OQ, and the width is 2.5 times the width of the tire body αQ. The angle of inclination (θ) with respect to the tire radial center line is set to 50°.

前記小ラグ部に)は牽引力を得るためのものであって、
主にトレッド表面a′i)に形成され、略六角錐ム 7 台形のブロック状に形成されている。この小ラグ部(イ
)が略六角錐台形状であるが故に、トレッド表面aηと
小ラグ部(イ)及び羽根ラグ部Qηとで形成される空間
(α)は、トレッド表面αηから径外方に且つトレッド
センタから左右軸外方向に広角(末広がり状)となって
いる。
(on the small lug portion) is for obtaining traction force,
It is mainly formed on the tread surface a'i), and is formed in the shape of a substantially hexagonal pyramidal trapezoidal block. Since this small lug portion (A) has a substantially hexagonal truncated pyramid shape, the space (α) formed by the tread surface aη, the small lug portion (A), and the blade lug portion Qη is radially outward from the tread surface αη. It has a wide angle (flaring toward the end) in both directions and outward from the left and right axis from the tread center.

小ラグ部翰の回転方向の先行側の幅方向略中央は尖端部
(ハ)が形成されていて、小ラグ部(イ)が泥中から抜
出るときに、泥を切りさく役目をする。小ラグ部(イ)
の先行側は尖端部(ハ)を形成することによって、平坦
面であるよりも泥の抱込みが少なくな如、牽引力が若干
低下するが、泥の持上げ及び付着が少なC〕、また泥が
付着しても次の回転時に泥が押付けられると、尖端部(
ハ)から左右に分離し、空間(α)t−埋めるような付
着土の増大は阻止される。
A pointed end (C) is formed approximately in the widthwise center of the leading side of the small lug part in the rotational direction, and serves to cut through the mud when the small lug part (A) is pulled out of the mud. Small lug part (a)
By forming a pointed end (C) on the leading side of the surface, the traction force is slightly reduced as it holds less mud than if it were a flat surface, but it also lifts less mud and sticks to it (C). Even if it sticks, when the mud is pressed during the next rotation, the tip (
c) Separation to the left and right from the space (α)t- filling the space (α)t- is prevented from increasing.

前記尖端部(ハ)の頂角ψ)は80〜170° の範囲
が好ましく、実験により得られた最適角度は110〜1
50゜であり、頂角ψ)が170°より大であると付着
泥の離脱が困難となシ80° よ如小になると牽引力に
ロスが出るようになる。
The apex angle ψ) of the pointed end (c) is preferably in the range of 80 to 170°, and the optimum angle obtained by experiment is 110 to 1
If the apex angle ψ) is larger than 170°, it will be difficult to remove the adhered mud, and if it is as small as 80°, a loss in traction force will occur.

前記タイヤ本体OQのクラウン部α1にはトレッドセン
タに径外方向に尖端状となった隆起部(ハ)が形成され
ていて前記尖端部−と連続している。この隆起部(ハ)
は断面山形状で、小うグ部翰聞及び小ラグ部(イ)と羽
根ラグ部なりとの間の総てに形成され、それらより低く
なっている。
In the crown portion α1 of the tire body OQ, a raised portion (C) that is pointed in the radially outward direction is formed in the tread center and is continuous with the pointed portion. This ridge (c)
has a mountain-shaped cross section, and is formed in the area between the small arm part (a) and the small lug part (a) and the blade lug part, and is lower than them.

即ち、隆起部(ハ)は高さ0′I)がラグ高さく口)の
10〜8ON(最適値約15〜50%)%頂部角度(γ
)が10〜100゜(最適値約20〜50°)であり、
その頂部は分水嶺的役目をするので、トレッド表面αη
に泥が付着しても、回転毎に泥及び湿田基盤に押え付け
られるので、付着土は隆起部(ハ)から左右に分かれて
離脱し、積って増大するということはなく、従って空間
(α)が泥で埋められるのを阻止することができる。
That is, the height of the raised part (c) is 10~8ON (optimal value about 15~50%)% of the top angle (γ
) is 10 to 100° (optimal value about 20 to 50°),
The top part acts as a watershed, so the tread surface αη
Even if mud adheres to the area, it is pressed down by the mud and the wetland base each time it rotates, so the adhered soil separates from the raised area (c) to the left and right and does not pile up and increase in size. α) can be prevented from being filled with mud.

この隆起部(ホ)は高さくh)が高く且つ角度(r)が
大であると、ラグ翰の牽引力及び浮力が低下して湿田性
能に悪影響を及ぼすことになシ、逆の場合だと。
If this raised part (e) has a high height (h) and a large angle (r), the traction force and buoyancy of the lug will decrease, which will have a negative effect on wet field performance. .

隆起部(ハ)の排泥性能が低下し、高さくh)が高く且
つ角度(γ)が小であると隆起部(ハ)の強度が低く破
損し9 易くなり、実験結果よシ前記数値が得られた。
The sludge removal performance of the raised part (c) is reduced, and if the height (h) is high and the angle (γ) is small, the strength of the raised part (c) is low and it becomes easy to break. was gotten.

タイヤ本体αQの羽根ラグ部θυ間の略中央位置(P)
の内部側には、内部方向へ隆起した厚肉部員が形成され
、その位置でのタイヤ本体の剛性を他位置に比べて増大
し、羽根ラグ部6!メ位置の剛性と可及的に等しくされ
ている。
Approximately center position (P) between the blade lug parts θυ of the tire body αQ
A thick-walled member that protrudes inward is formed on the inner side of the blade lug portion 6!, increasing the rigidity of the tire body at that position compared to other positions. The rigidity is made as equal as possible to that of the main position.

との厚肉部(ホ)は、クラウン部(至)からサイドウオ
ール部αF9の中途にかけて形成され、且つ局方向には
中央小ラグ部(イ)からその前後の小ラグ部(イ)近傍
まで形成されている。図示の実施例では肉厚(ロ)はク
ラウン部a3の肉厚の半分、周方向長さく9)は羽根ラ
グ部eη間長さの4分の1に設定されており%実験から
肉厚(ロ)はクラウン部α3の肉厚の30〜70%(最
適値は40〜60%)、長さ函は羽根ラグ部60間隔(
0の10〜40%(最適値は20〜30%)であること
が好ましいと得られたが、小ラグ部(イ)及び羽根ラグ
部Qvの形状によって若干異なる。要は、羽根ラグ部←
η位置での剛性とその略中央位置(P)での剛性とが可
及的に尋しくなるように厚肉部に)の形状を設定するこ
とによシ1両位置での撓み量が略醇しくなり、り10 イヤ(3)の全周に亘る焼み量の差が縮まって本機の振
動を減少させることができる。
The thick part (E) is formed from the crown part (to) to the middle of the sidewall part αF9, and in the central direction from the central small lug part (A) to the vicinity of the small lug parts (A) before and after it. It is formed. In the illustrated embodiment, the wall thickness (B) is set to half the wall thickness of the crown portion a3, and the circumferential length 9) is set to one quarter of the length between the blade lug portions eη. b) is 30 to 70% (optimal value is 40 to 60%) of the thickness of the crown part α3, and the length box is 60 intervals of the blade lug part (
Although it was found that 10 to 40% of 0 (optimal value is 20 to 30%) is preferable, it differs slightly depending on the shape of the small lug part (a) and the blade lug part Qv. In short, the feather lug part←
By setting the shape of the thick wall part so that the rigidity at the η position and the rigidity at the approximately central position (P) are as small as possible, the amount of deflection at the 1-car position is approximately It becomes mellower, and the difference in the amount of roasting over the entire circumference of the ear (3) is reduced, reducing the vibration of the machine.

次に、トレッドパターンについて説明する。Next, the tread pattern will be explained.

前記タイヤ(3)のトレッドパターンは所要の湿田性能
を確保するという基本要件に立って、タイヤ外径、許容
荷重を考慮して、羽根ラグ部Qυは8〜10個、各羽根
ラグ部間の小ラグ部(財)は1〜5個の範囲内で設定さ
れる。第1図のタイヤ(3)は羽根ラグ部621)が9
個、小ラグ部(ハ)は3個であり、総ラグ数は36個と
なっている。
The tread pattern of the tire (3) is based on the basic requirement of ensuring the required wet field performance, and taking into account the tire outer diameter and allowable load, the number of blade lugs Qυ is 8 to 10, and the number of blade lugs Qυ is 8 to 10. The number of small lag parts (goods) is set within a range of 1 to 5. In the tire (3) in Fig. 1, the blade lug portion 621) is 9
There are three small lugs (c), making the total number of lugs 36.

また、羽根ラグ部ψυはタイヤ本体aQに対する取付は
強度を増大するために、その部分の剛性が小ラグ部(ハ
)よシ高く設定されているが1羽根ラグ部←ηとその回
転方向後方側、即ち後行側の小ラグ部(イ)との間のラ
グ間隙(84)を他のラグ間隙(81−81)に比べて
大きくすることによ如、同一間隔の場合に比べて負荷時
の撓み量が多くなり、小ラグ部(2)の撓み量に近すき
、振動のエネルギーを減少させ衝撃力の最大値が低下す
る。
In addition, in order to increase the strength when attaching the blade lug part ψυ to the tire body aQ, the rigidity of that part is set higher than that of the small lug part (c). By making the lug gap (84) between the small lug part (A) on the side, that is, the trailing side larger than the other lug gaps (81-81), the load can be reduced compared to the case of the same spacing. The amount of deflection increases and approaches the amount of deflection of the small lug portion (2), reducing the energy of vibration and the maximum value of impact force.

このラグ間隙(84)を大きくとることは、前記中l6
11 央小うグ部翰の内側の厚肉部(ホ)を形成することと併
用することにより、タイヤ(3)全体の撓み量の差をよ
り縮めることができる。
Increasing this lug gap (84) means that the middle l6
11 By using this together with forming a thick wall part (E) on the inside of the central minor arm ridge, the difference in the amount of deflection of the entire tire (3) can be further reduced.

同、羽根ラグ部Qηの接地面の周方向長さは小うグ部翰
のそれよυも充分に短いので、ラグ間隙(84)を大き
くしても、ラグピッチ(R4)をその他のラグピッチ(
R+〜Rs )のいずれかと同一にすることはできる。
Similarly, since the circumferential length of the ground contact surface of the blade lug Qη is sufficiently shorter than that of the small wing part υ, even if the lug gap (84) is increased, the lug pitch (R4) is smaller than the other lug pitch (
R+ to Rs).

第7図(2)〜(7)はFM理論の一般式で算出された
被変調波の衝撃力、即ちエネルギーの分散状態を示すも
のであり、搬送波及び信号波として羽根ラグ部数、小ラ
グ部数、ラグピッチ変化、羽根ラグピッチ変化及び羽根
ラグ部の剛性をラグ間隙(S4)の長さに換算した数値
等を挿入して計算する。但し、現実にはこれら総てを包
含した数値、即ち、タイヤ(3)では36ラグピツチを
周方向の順にコンピュータに入力して演算する。
Figures 7 (2) to (7) show the impact force of the modulated wave calculated by the general formula of FM theory, that is, the dispersion state of energy, and the number of blade lags and the number of small lags are used as carrier waves and signal waves. , lug pitch change, blade lug pitch change, and values obtained by converting the rigidity of the blade lug portion into the length of the lug gap (S4), etc. are inserted and calculated. However, in reality, numerical values that include all of these, ie, 36 lag pitches for tire (3), are input into a computer in order in the circumferential direction and calculated.

この計算結果から明らかになることは、ラグ(ホ)のフ
グピッチ(R)が総て等しい場合、羽根ラグ部a℃から
の振動及び小うグ部翰からの振動等は一定周波数であり
、羽根ピッチ(Lt〜Ls)の最大と最小の比はLma
x/Lmin =1.0 、 ラグピッチ(R+ 〜R
4)の最大と最小の比はRmax /Rmi n = 
1.0となり、搬送波のみで信号波に相当するものがな
いため、FM理論は成り立たず、前述の如く第7図(1
)に示す大衝撃力を生じることになる。
What is clear from this calculation result is that if the puffer pitches (R) of the lugs (E) are all equal, the vibrations from the blade lug part a°C and the vibrations from the minor blade part are at a constant frequency, and the blade The ratio of the maximum and minimum pitches (Lt to Ls) is Lma
x/Lmin = 1.0, lag pitch (R+ ~R
The maximum and minimum ratio of 4) is Rmax /Rmin =
1.0, and there is only a carrier wave and nothing corresponding to a signal wave, so the FM theory does not hold, and as mentioned above, as shown in Figure 7 (1.
) will result in a large impact force as shown in ().

これに対し5羽根ピッチ(L)を一定にした上で。On the other hand, after keeping the 5-blade pitch (L) constant.

各羽根ラグ部(ハ)内のラグピッチ(Rs〜R4)の最
大最小比を、 Rmaz /Rmin = 1.11に
設定したところ、第7図(2)に示すように衝撃力の分
散が生じ、大衝撃力は減小する代プに小衝撃力が発生す
る。これは、ラグピッチ(n)のピッチ変化が信号波と
なって1羽根ラグ部及び小ラグ部によって発生する振動
の搬送波を変調しているのである。
When the maximum-minimum ratio of the lug pitch (Rs to R4) in each blade lug portion (c) was set to Rmaz /Rmin = 1.11, the impact force was dispersed as shown in Figure 7 (2). A small impact force is generated in the place where the large impact force is reduced. This is because the pitch change of the lug pitch (n) becomes a signal wave and modulates the carrier wave of the vibration generated by the single-blade lug portion and the small lug portion.

逆に、ラグピッチ(Rs〜R4)を一定条件に設定した
下で、羽根ピッチ(L、、L、)の最小最大比の異なる
ものを比較してみると、第7図(6) (7)に示す如
く。
On the other hand, if we compare the blade pitches (L, , L,) with different minimum-maximum ratios under the condition that the lag pitch (Rs to R4) is set to a constant condition, Figure 7 (6) (7) As shown.

大衝撃力の大きさ、小衝撃力の大きさ及び周期に変化を
生じていることが明らかであり、羽根ピッチ(gのピッ
チ変化が信号波となっていることが証13 明されている。但し、ラグピッチ最大最小比はRmaz
/Rmin = 1.92に設定されている。
It is clear that changes occur in the magnitude and period of the large impact force and the small impact force, and it is proven that the pitch change in the blade pitch (g) is a signal wave. However, the lag pitch maximum/minimum ratio is Rmaz
/Rmin = 1.92.

そして、#c7図(3)〜(5)に示されるように、ラ
グピッチ最大最小比をRmax/Rmin = 1.2
0〜1.80に、羽根ピツチ最大最小比をL maz 
/Lmin z 1.06〜1.20に夫々設定すれば
、更に衝撃力が分散され且つ均一される。この衝撃力の
総和は常に略一定であり、エネルギーを減少させるもの
ではないが、大小の変化が少なくなり且つ均される。
Then, as shown in #c7 diagrams (3) to (5), the lag pitch maximum/minimum ratio is set to Rmax/Rmin = 1.2
Set the blade pitch maximum to minimum ratio to 0 to 1.80.
If /Lmin z is set to 1.06 to 1.20, the impact force will be further dispersed and made uniform. The total sum of this impact force is always approximately constant, and although the energy does not decrease, changes in magnitude are reduced and evened out.

このようなピッチバリエーションによる衝撃力の分散は
1羽根ピッチ(1)の内の少なくとも1つ。
The dispersion of impact force due to such pitch variations is at least one of the pitches of one blade (1).

羽根ラグ部(ハ)間のラグピッチ(ロ)の内の少なくと
も1つを夫々他のピッチと異ならせれば発生するもので
あり、羽根ピッチ(L)及びラグピッチ(R)の総てを
異々らせることは可能であるが%製造が困難であると共
に、羽根ピッチ(1)とラグピッチ(輸との2種類のピ
ッチ変化を組合せるのでその必要はなく、各ピッチ(L
) (R)共に2〜3種類の変化を付けるだけで充分で
ある。
This occurs when at least one of the lug pitches (b) between the blade lug portions (c) is made different from the other pitches, and when all of the blade pitches (L) and lug pitches (R) are made different. Although it is possible to change the pitch, it is difficult to manufacture, and since it combines two types of pitch changes: blade pitch (1) and lag pitch (transport), it is not necessary, and each pitch (L
) (R) It is sufficient to make two to three types of changes for both.

下記の表は、実車フィーリングテスト結果を5点14 段階評価したものであり、全フグピッチ(R)を等しく
したものを1とし、5が最良である。尚、テストは、市
販乗用m6条植田植alt−コンクリート平坦路上にお
いて時速7.9 Km/hで行なわれた。
In the table below, the results of the actual vehicle feeling test are evaluated on a 5-point, 14-point scale, where 1 means that all puffer pitches (R) are equal, and 5 is the best. The test was conducted at a speed of 7.9 km/h on a commercially available m6-row Ueda Alt-concrete flat road.

タイヤの振動はそれ自体が発生するものだけでなく、路
面の凹凸、エンジンの振動及び左右車輪の位相差等のあ
らゆる条件が加わってきて、それらによる振動も合成さ
れることKなるが、前記テスト結果においても、略前記
理論上の振動緩和が認められ、ラグピッチ比を1.2〜
1.81羽根ピッチ比を1.06〜1.2に夫々設定す
れば、振動を人体に不快に感じさせない程度に緩和でき
ることが明らかとなる。伺、ラグピッチ比1,8〜2.
0でも羽根ピツチ比を1.20程度にすれば、へンドル
フィー’):/I”fr向A15 上させることができる。
Tire vibrations are not only generated by the tire itself, but are also compounded by various conditions such as road surface irregularities, engine vibrations, and phase differences between the left and right wheels. The results also show that approximately the above-mentioned theoretical vibration mitigation is observed, and the lag pitch ratio is 1.2 to 1.2.
It is clear that by setting the 1.81 blade pitch ratio to 1.06 to 1.2, vibrations can be alleviated to an extent that does not make the human body feel uncomfortable. The lag pitch ratio is 1.8~2.
Even if the blade pitch ratio is set to about 1.20, it is possible to increase the hendolphy'):/I''fr direction A15.

以上詳述した本発明によれば、各羽根ラグ部Qυ間のラ
グピッチ(ロ)の内の1つ以上は他と異な如最大ピ”/
 4− (Rmax )は最小ピッ4− (Rmin 
)の約1.2〜1.8倍に設定されているので、タイヤ
振動には搬送波の他に信号波を発生し、この信号波によ
って搬送波の周波数が変調され、これによって衝撃力は
分散されるので、大衝撃力は減小し、総ての衝撃力は均
されて、人体に不快に感じさせる振動は減小する。
According to the present invention described in detail above, one or more of the lug pitches (b) between the respective blade lug portions Qυ is different from the others, such as the maximum pitch "/
4- (Rmax) is the minimum pitch 4- (Rmin
), the tire vibration generates a signal wave in addition to the carrier wave, and this signal wave modulates the frequency of the carrier wave, thereby dispersing the impact force. Therefore, large impact forces are reduced, all impact forces are evened out, and vibrations that make the human body feel uncomfortable are reduced.

また、各羽根ラグ部Qηとその後行側の小ラグ部(イ)
との間隙(S4)をその他のラグ間隙(8)より広く設
定して、剛性の高い羽根ラグ部(ロ)の挑み量が多くな
るように構成しているので、小ラグ部(イ)との撓み量
の差が縮ま如、更に振動を減少することができる。
In addition, each blade lug part Qη and the small lug part (a) on the succeeding side
The gap between the small lug (S4) and the other lug gaps (8) is set wider than the other lug gaps (8) to increase the amount of challenge of the highly rigid blade lug (B), so the small lug (A) As the difference in the amount of deflection is reduced, vibration can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の実施例を示しており、第1図はタ
イヤの全体正面図、第2図はタイヤの部分拡大図、第3
図は羽根ラグ部の平面図、第4図は第2図のff−W線
に相当する車輪の断面図、第5図は小ラグ部の平面図、
第6図#′i第2図の■−■線に相当子や車輪の断面図
、第7図(1)〜(7)は7例のトレッドパターンの理
論振動を示すグラフである。 111・・・農用重輪、(3)・・・空気入りタイヤ、
αQ・・・タイヤ本体、Q91−・・外周部、屹・・ラ
グ、(21)・・・羽根ラグへか・・小ラグ部、(至)
・・・隆起部、QfQ胃厚肉都、(L)・・・羽根ピッ
チ、(R)・・・ラグピッチ、(S)・・・ラグ間隙。 特許出願人 オーツタイヤ珠弐会社 Il 了i 特開昭GO−45402(7)
1 to 6 show examples of the present invention, in which FIG. 1 is an overall front view of the tire, FIG. 2 is a partially enlarged view of the tire, and FIG. 3 is a partially enlarged view of the tire.
The figure is a plan view of the blade lug, FIG. 4 is a sectional view of the wheel corresponding to the ff-W line in FIG. 2, and FIG. 5 is a plan view of the small lug.
FIG. 6 #'i The line ■--■ in FIG. 2 is a sectional view of the corresponding element and the wheel, and FIGS. 7 (1) to (7) are graphs showing the theoretical vibrations of seven examples of tread patterns. 111... Agricultural heavy wheels, (3)... Pneumatic tires,
αQ...Tire body, Q91-...Outer periphery, Leopard...Lug, (21)...Blade lug...Small lug part, (to)
... Protuberance, QfQ stomach thickness, (L) ... Blade pitch, (R) ... Lug pitch, (S) ... Lug gap. Patent applicant: Otsu Tire Juuni Company Il Ryoi JP-A-Sho GO-45402 (7)

Claims (1)

【特許請求の範囲】[Claims] 1、 外周部OIに周方向間隔をおいて多数のラグ(ホ
)が形成され、このラグ翰か多数個の羽根ラグ部QDと
、各羽根ラグ部(ハ)間に所定個ずつ配置された小うグ
部翰とで形成されている農用空気入りタイヤにおいて、
前記各羽根ラグ部(ハ)間のラグピッチ(川の内の1つ
以上は他と異なり最大ピッチ(Rmax ’)は最小ピ
ッチ(Rmin ) ノ約1.2〜1.8倍に設定され
、且つ、各羽根ラグ部Qpとその後行側の小ラグ部(支
)との間隙(84)はその他のラグ間隙(8)より広く
設定されていることを特徴とする農用空気入りタイヤ。
1. A large number of lugs (E) are formed at intervals in the circumferential direction on the outer circumferential portion OI, and a predetermined number of lugs are arranged between the lugs, a large number of vane lug parts QD, and each vane lug part (C). In agricultural pneumatic tires formed with a small ridge,
The lug pitch between each of the blade lug parts (c) (one or more of the lug parts is different from the others, the maximum pitch (Rmax') is set to about 1.2 to 1.8 times the minimum pitch (Rmin), and , an agricultural pneumatic tire characterized in that a gap (84) between each blade lug portion Qp and a small lug portion (support) on the trailing side thereof is set wider than other lug gaps (8).
JP58153603A 1983-08-22 1983-08-22 Pneumatic tyre for agricultural vehicle Granted JPS6045402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153603A JPS6045402A (en) 1983-08-22 1983-08-22 Pneumatic tyre for agricultural vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153603A JPS6045402A (en) 1983-08-22 1983-08-22 Pneumatic tyre for agricultural vehicle

Publications (2)

Publication Number Publication Date
JPS6045402A true JPS6045402A (en) 1985-03-11
JPH0124084B2 JPH0124084B2 (en) 1989-05-10

Family

ID=15566091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153603A Granted JPS6045402A (en) 1983-08-22 1983-08-22 Pneumatic tyre for agricultural vehicle

Country Status (1)

Country Link
JP (1) JPS6045402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355303U (en) * 1989-10-03 1991-05-28
EP0743200A1 (en) * 1995-05-19 1996-11-20 The Goodyear Tire & Rubber Company Radial agricultural tire with a pitched tread
US5690760A (en) * 1993-02-03 1997-11-25 Brown, Jr.; Jack Edward Pitch sequence
US5843248A (en) * 1995-05-19 1998-12-01 The Goodyear Tire & Rubber Company Radial agricultural tire with a pitched tread
JP2008120167A (en) * 2006-11-09 2008-05-29 Sumitomo Rubber Ind Ltd Method for evaluating vibration of tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531654B2 (en) * 2005-08-08 2010-08-25 住友ゴム工業株式会社 Agricultural wheels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355303U (en) * 1989-10-03 1991-05-28
US5690760A (en) * 1993-02-03 1997-11-25 Brown, Jr.; Jack Edward Pitch sequence
EP0743200A1 (en) * 1995-05-19 1996-11-20 The Goodyear Tire & Rubber Company Radial agricultural tire with a pitched tread
US5733394A (en) * 1995-05-19 1998-03-31 The Goodyear Tire & Rubber Company Radial agricultural tire with a pitched tread
US5843248A (en) * 1995-05-19 1998-12-01 The Goodyear Tire & Rubber Company Radial agricultural tire with a pitched tread
JP2008120167A (en) * 2006-11-09 2008-05-29 Sumitomo Rubber Ind Ltd Method for evaluating vibration of tire

Also Published As

Publication number Publication date
JPH0124084B2 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
EP0086172B1 (en) Pneumatic tractor tire
US5259429A (en) Pneumatic tire for offroad vehicles
US5375640A (en) Pneumatic tire for offroad vehicles
CN105246712B (en) Agri-vehicle Pneumatic belt tire
JPS63215405A (en) All terrain pneumatic tire
AU645175B2 (en) Pneumatic tire having laterally connected lugs
JP3569056B2 (en) Pneumatic tire
CA1158532A (en) Pneumatic tire
JPH0214205B2 (en)
JP3035172B2 (en) Radial tire
JPS6045402A (en) Pneumatic tyre for agricultural vehicle
CA1108041A (en) Tread for pneumatic tire
US4171676A (en) Low pressure, tread wear and speed indicator for vehicle tire
GB2166694A (en) Tractor tire tread
AU741644B2 (en) Wheel and tyre assembly
CN212499749U (en) Tyre for vehicle
JPH06320915A (en) Farm tire
JPS6361607A (en) Pneumatic tire
JPH0657487B2 (en) Agricultural wheels
CN111890846A (en) Tyre for vehicle
JPH0333521Y2 (en)
JPH1191313A (en) Pneumatic radial tire
JP4162793B2 (en) Agricultural wheels
JP4841067B2 (en) Agricultural wheels
JP3105387B2 (en) Paddy field vehicle wheels