JPS6045395B2 - Electromagnet non-contact ONMAG detection circuit for reactor control rods - Google Patents

Electromagnet non-contact ONMAG detection circuit for reactor control rods

Info

Publication number
JPS6045395B2
JPS6045395B2 JP52078632A JP7863277A JPS6045395B2 JP S6045395 B2 JPS6045395 B2 JP S6045395B2 JP 52078632 A JP52078632 A JP 52078632A JP 7863277 A JP7863277 A JP 7863277A JP S6045395 B2 JPS6045395 B2 JP S6045395B2
Authority
JP
Japan
Prior art keywords
electromagnet
voltage
amplifier
detection circuit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52078632A
Other languages
Japanese (ja)
Other versions
JPS5413900A (en
Inventor
卓 小金沢
弘紀 川上
貢 佐藤
秀之 田中
哲夫 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Kinzoku Kogyo KK
Original Assignee
Tohoku Kinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Kinzoku Kogyo KK filed Critical Tohoku Kinzoku Kogyo KK
Priority to JP52078632A priority Critical patent/JPS6045395B2/en
Publication of JPS5413900A publication Critical patent/JPS5413900A/en
Publication of JPS6045395B2 publication Critical patent/JPS6045395B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は原子炉制御棒用電磁石無接点ONMAG検出
回路に関し、詳細には原子炉制御棒用電磁石に制御棒吸
収体が着いたか離れたかを無接点方式の検出部により検
出する回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact ONMAG detection circuit for electromagnets for nuclear reactor control rods, and more specifically, a non-contact type detection circuit for detecting whether a control rod absorber has arrived at or left an electromagnet for a nuclear reactor control rod. This invention relates to a circuit for detecting

一般に、原子炉で使用する制御棒用電磁石は、常時高
放射線下に置かれ完全に密閉された場所にある。
Generally, control rod electromagnets used in nuclear reactors are constantly exposed to high radiation and in completely sealed locations.

原子炉運転時には、前記電磁石に吸着して作動する制御
棒吸収体を吸着したか離れたかを確認するために、前記
電磁石に接して設けられた検出部から何らかの信号を取
出す必要がある。 従来は前記の検出部にリミットスイ
ッチ、りードリレー等の機械的接点方式によるもの、例
えば第1図に示されているように電磁石2に検出用スイ
ッチ1、ガイド棒4等を取付けて吸着体3がガイド棒4
を押し上けることにより検出用スイッチ1が作動し検出
信号が出力されるといつたものを使用していた。この方
式は安価であるが電磁石の構造が複雑になり、検出用ス
イッチ部を完全に気・密にすることができないため、接
点が原子炉内の高放射線下及び重水蒸気中にあるため腐
蝕、酸化等により導通劣化、更に絶縁劣化が生じて、使
用不能になるという欠点があつた。原子炉内で検出用ス
イッチを使用中に前記の故障が発生した場合、高放射線
下であるためにこの検出用スイッチ部だけを交換するこ
とは容易にできず、事実上高価な制御棒全体を交換せざ
るを得なかつた。従つて、本発明の目的は、検出部に機
械的接点をなくし無接点方式にして接点の故障をなくし
原子炉制御棒用電磁石としての信頼性を高めることがで
きる無接点検出回路を提供することである。以下に、本
発明を図示実施例を参照して詳細に説明する。第2図に
本発明による実施例を示す。
During nuclear reactor operation, it is necessary to extract some kind of signal from a detection unit provided in contact with the electromagnet in order to confirm whether the control rod absorber, which is activated by adsorption to the electromagnet, is attracted or separated. Conventionally, the detection part uses a mechanical contact system such as a limit switch or read relay, for example, as shown in FIG. is the guide rod 4
The detection switch 1 is activated by pushing up and a detection signal is output. Although this method is inexpensive, the structure of the electromagnet is complicated, and the detection switch part cannot be made completely airtight, so the contact points are exposed to high radiation and heavy steam inside the reactor, causing corrosion and The drawback was that oxidation caused conductivity deterioration and further insulation deterioration, making it unusable. If the above-mentioned failure occurs while a detection switch is being used in a nuclear reactor, it is not easy to replace just the detection switch part due to the high radiation environment, and in fact, the entire expensive control rod must be replaced. I had no choice but to replace it. Therefore, an object of the present invention is to provide a non-contact detection circuit that eliminates mechanical contacts in the detection section, uses a non-contact system, eliminates contact failure, and can improve reliability as an electromagnet for reactor control rods. It is. In the following, the invention will be explained in detail with reference to illustrated embodiments. FIG. 2 shows an embodiment according to the present invention.

電磁石10の励磁コイル12に直流の電磁石励磁電源1
4を接続し、電磁石10内に検出用コイル13を設ける
。この検出用コイル13に抵抗21を介して検出用電源
15を接続してAC4OOHzlOVの電圧を加えると
、増幅器16の出力電圧(検出電圧)は電磁石励磁電流
値に対して電磁石に吸着体が着いている時(0NMAG
)に第3図の曲線32の、また吸着体が離れている時(
0FFMAG)には同図の曲線31の各特性を示す。直
線30は電磁石励磁電流に対する増幅器16の出力の基
準電圧を示す。この0NMAG及び0FFMAGにおけ
る特性の変化は、吸着体の吸着状態により電磁石内の磁
束,が変化し検出コイルのインダクタンスが変化するの
で抵抗21にはこの検出コイルのインダクタンスの変化
に見合う電圧変化が検出されるのである。実際には第3
図のように0NMAG時にはOFFMAG時よりも低い
電圧値が検出される。こ.のようにして検出され増幅器
16により増幅された電圧と増幅器17からの基準電圧
とを増幅器18で比較する。検出電圧が基準電圧よりも
高い場合には表示器19が0FFMAGの表示をし、逆
に低い楊合には表示器19は0NMAGの表示を行な!
う。このように機械的接点を使用しなくとも吸着体の吸
着状態を知ることができるのである。本発明に使用の電
磁石は最大励磁電流が直流1〔A〕、470〔AT〕、
ヨーク材N−50(ニッケル50%)の電磁石で、検出
コイルはコア直径約1cmの巻コアで、N−50のコア
は1100〔ターン〕、TN4l]コアは1300〔タ
ーン〕のものを2個直列に接続し電磁石底面に固定して
いる。この電磁石を現在励磁電流400〔Rn.A〕で
使用しており、検出電圧は0FFMAG時直流約1.5
〔■〕、0NMAG時直流約・1.0〔■〕で電圧差と
して直流約0.5〔V〕を得ている。従つて基準電圧は
直流1。25〔V〕に設定し、検出電圧と比較を行なつ
ている。
A DC electromagnet excitation power source 1 is connected to the excitation coil 12 of the electromagnet 10.
4 is connected, and a detection coil 13 is provided within the electromagnet 10. When the detection power supply 15 is connected to the detection coil 13 via the resistor 21 and a voltage of AC4OOHzlOV is applied, the output voltage (detection voltage) of the amplifier 16 will be the same as the electromagnet excitation current value when the adsorbent is attached to the electromagnet. When there is (0NMAG
) of curve 32 in Fig. 3, and when the adsorbent is far apart (
0FFMAG) shows each characteristic of curve 31 in the figure. Straight line 30 shows the reference voltage of the output of amplifier 16 relative to the electromagnet excitation current. This characteristic change in 0NMAG and 0FFMAG is caused by the magnetic flux inside the electromagnet changing depending on the adsorption state of the adsorbent, and the inductance of the detection coil changing. Therefore, a voltage change corresponding to the change in the inductance of the detection coil is detected in the resistor 21. It is. Actually the third
As shown in the figure, a lower voltage value is detected at 0NMAG than at OFFMAG. child. The voltage detected as described above and amplified by the amplifier 16 and the reference voltage from the amplifier 17 are compared by the amplifier 18. When the detected voltage is higher than the reference voltage, the display 19 displays 0FFMAG, and conversely, when it is lower, the display 19 displays 0NMAG!
cormorant. In this way, it is possible to know the adsorption state of the adsorbent without using mechanical contacts. The electromagnet used in the present invention has a maximum excitation current of 1 [A] DC, 470 [AT],
The electromagnet is made of yoke material N-50 (nickel 50%), and the detection coil is a wound core with a core diameter of approximately 1 cm.The N-50 core has 1100 [turns] and the TN4L core has 1300 [turns]. They are connected in series and fixed to the bottom of the electromagnet. This electromagnet is currently excited with an exciting current of 400 [Rn. A], and the detection voltage is approximately 1.5 DC at 0FFMAG.
[■], DC approx. 1.0 [■] at 0NMAG, and a voltage difference of about 0.5 [V] DC is obtained. Therefore, the reference voltage is set to 1.25 [V] DC and compared with the detected voltage.

以上の検出方法におけるポイントは検出コイルの巻数及
び検出用電源(AC4OOHzlOV)てあるが、実験
によつて本体となる電磁石の特性(コイル材、巻数、形
状等)に基づいて種々の検出コイルが使用可能であるこ
とがわかつている。従つて、検出用電源においても種々
の周波数の電源が使用てき電圧値も変化し得る。本発明
の効果は、前記のように、検出部を無接点化したことに
より、故障がなくなつたことが挙げられる。
The key points in the above detection method are the number of turns of the detection coil and the detection power supply (AC4OOHzlOV), but various detection coils can be used based on the characteristics of the main electromagnet (coil material, number of turns, shape, etc.) through experiments. I know it's possible. Therefore, power supplies with various frequencies are used in the detection power supply, and the voltage value may also vary. As mentioned above, the effect of the present invention is that failures are eliminated by making the detection section contactless.

尚、現在本発明による電磁石及ひ装置を1年以上原子炉
運転に使用しており故障がないことが実証されている。
It should be noted that the electromagnet and device according to the present invention have been used in nuclear reactor operation for more than one year and have been proven to have no failures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の検出方式を示す図。 FIG. 1 is a diagram showing a conventional detection method.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁コイルと励磁電源とを有する電磁石を含む原子
炉制御棒用電磁石無接点ONMAG検出回路において、
前記電磁石内に固定された検出コイルと、該検出コイル
の両端に抵抗を介して直列接続された前記検出コイル励
磁用電源と、前記抵抗の1端は順方向ダイオードを介し
て互いに並列接続されている抵抗とコンデンサの1端に
他端は該並列接続された抵抗とコンデンサの他端にそれ
ぞれ接続されてなる電圧検出回路と、該電圧検出回路の
出力電圧を増幅する第1の増幅器と、基準電圧を発生す
る第2の増幅器と、前記第1の増幅器の出力電圧と前記
第2の増幅器の出力電圧とを比較する第3の増幅器と、
該第3の増幅器の出力を表示する表示器とから成つてお
り、前記電磁石内の磁束変化による検出コイルのインダ
クタンス変化を前記抵抗の両端の電圧降下として検出し
て、この検出された電圧が前記基準電圧より大きいか小
さいかによりそれぞれ前記電磁石に吸着体が離れたか着
いたか検出することを特徴とする原子炉制御棒用電磁石
接点ONMAG壕検出回路。
1. In a reactor control rod electromagnet non-contact ONMAG detection circuit including an electromagnet having an excitation coil and an excitation power source,
A detection coil fixed in the electromagnet, a power supply for excitation of the detection coil connected in series to both ends of the detection coil via a resistor, and one end of the resistor connected in parallel to each other via a forward diode. a voltage detection circuit, the other end of which is connected to one end of the resistor and capacitor connected in parallel, a first amplifier that amplifies the output voltage of the voltage detection circuit; a second amplifier that generates a voltage; a third amplifier that compares the output voltage of the first amplifier and the output voltage of the second amplifier;
and a display that displays the output of the third amplifier, and detects a change in the inductance of the detection coil due to a change in the magnetic flux in the electromagnet as a voltage drop across the resistor, and this detected voltage An electromagnet contact ONMAG trench detection circuit for a nuclear reactor control rod, characterized in that it detects whether an adsorbent has left or arrived at the electromagnet depending on whether the voltage is higher or lower than a reference voltage.
JP52078632A 1977-07-01 1977-07-01 Electromagnet non-contact ONMAG detection circuit for reactor control rods Expired JPS6045395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52078632A JPS6045395B2 (en) 1977-07-01 1977-07-01 Electromagnet non-contact ONMAG detection circuit for reactor control rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52078632A JPS6045395B2 (en) 1977-07-01 1977-07-01 Electromagnet non-contact ONMAG detection circuit for reactor control rods

Publications (2)

Publication Number Publication Date
JPS5413900A JPS5413900A (en) 1979-02-01
JPS6045395B2 true JPS6045395B2 (en) 1985-10-09

Family

ID=13667240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52078632A Expired JPS6045395B2 (en) 1977-07-01 1977-07-01 Electromagnet non-contact ONMAG detection circuit for reactor control rods

Country Status (1)

Country Link
JP (1) JPS6045395B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634999U (en) * 1986-06-26 1988-01-13

Also Published As

Publication number Publication date
JPS5413900A (en) 1979-02-01

Similar Documents

Publication Publication Date Title
EP0886363B1 (en) Power source apparatus
US4914381A (en) Direct-coupled fluxgate current sensor
JP3185605B2 (en) DC power supply
GB853463A (en) Superconductive switching device
US4967145A (en) Active current transformer
KR910012668A (en) Inductance displacement sensor with resistance to external magnetic fields
JPS6045395B2 (en) Electromagnet non-contact ONMAG detection circuit for reactor control rods
US4227100A (en) Dual output force motor
US3439264A (en) Core assembly of prefabricated parts for a magnetic field sensor
US2807006A (en) Magnetic amplifier circuits
JPH0131591B2 (en)
US3384884A (en) Movable core differential transformer position sensor
JPS5843400Y2 (en) Accident pillar indicator
US3035253A (en) Magnetic storage devices
CN204408516U (en) A kind of SF6 pressure meter reading instrument being applicable to GIS
KR920008489A (en) Inspection device by electromagnetic induction
JPH0980081A (en) Current sensor
US2791742A (en) Magnetic amplifier
JP2019138868A (en) Dc current detection method for photovoltaic facility and dc current detection device therefor, and dc circuit breaker for photovoltaic facility
JPH1068744A (en) Direct current sensor
JPH0814939A (en) Noncontact direct-acting displacement sensor
JPH0247556A (en) Dc detecting apparatus and dc-detection controlling apparatus
US3416064A (en) Low noise dc to ac signal converter
JPS6312341B2 (en)
SU688107A3 (en) Device for the detection magnetic fields of biological objects