JPS6045024A - Dry etching device - Google Patents

Dry etching device

Info

Publication number
JPS6045024A
JPS6045024A JP15377283A JP15377283A JPS6045024A JP S6045024 A JPS6045024 A JP S6045024A JP 15377283 A JP15377283 A JP 15377283A JP 15377283 A JP15377283 A JP 15377283A JP S6045024 A JPS6045024 A JP S6045024A
Authority
JP
Japan
Prior art keywords
sample
dry etching
electrodes
electric field
etching apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15377283A
Other languages
Japanese (ja)
Other versions
JPH0566724B2 (en
Inventor
Haruo Okano
晴雄 岡野
Takashi Yamazaki
隆 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15377283A priority Critical patent/JPS6045024A/en
Publication of JPS6045024A publication Critical patent/JPS6045024A/en
Publication of JPH0566724B2 publication Critical patent/JPH0566724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to etch in a high speed the various kinds of semiconductor manufacturing materials, and moreover, to enable to check previously generation of ion damage at a dry etching device by a method wherein a magnetic field generated according to magnets is applied to the direction to meet at right angles with an electric field at usually reactive ion etching. CONSTITUTION:Gutter type electrodes 4a, 4b are arranged oppositely along the outer peripheral surface of a bell jar 1 on the outside of the bell jar 1. A permanent magnet 7a is arranged over a sample desk 2, and a permanent magnet 7b is fitted to the under surface of the sample desk 2. Reactive gas is introduced from a gas introducing port into the vacuum vessel 1, and gas in the vacuum vessel 1 is exhausted from a gas exhaust port. When a dry etching device is formed in such a construction, electrons (e) perform drift motion in space on a sample 3 according to actions of an electric field E generated by the electrodes 4a, 4b and a magnetic field B generated by the magnets 7a, 7b and to meet at right angles with the electric field, and motion length thereof is elongated substantially. Accordingly, frequency of collisions of electrons and reactive gas is increased sharply, and as a result, efficiency of ionization is enhanced sharply.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造等に用いられるドライエツ
チング装置に係1つり、待に永久磁石による磁場を利用
したドライエツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dry etching apparatus used for manufacturing semiconductor devices, and more specifically to a dry etching apparatus that utilizes a magnetic field generated by a permanent magnet.

〔発明の技lfj的背稍とその問題点〕近年、半導体集
積回路は微細化の一途を辿り、最近では最少寸法が1〜
2[μm]の超LSIも試作間nされている。この微細
加工には、平行平板型電極を有する真空容器内にCF4
やCC+4等の反応性ガスを導入し、試料載置の電極に
高周波電力を印加することによりグロー放雷を生じさせ
、この電極に生じる負の直流自己バイアス(陰極降下電
圧)によりプラス7中の正イオンを加速して試料に垂直
に照射して[ツ1ングを行う反応性イオンエツヂング(
RI E : ReacHve l onEtchin
q)か注目され−Cいる。
[Background of the invention and its problems] In recent years, semiconductor integrated circuits have been becoming increasingly finer, and recently the minimum dimensions have become smaller than 1.
A 2 [μm] ultra-LSI has also been produced as a prototype. For this microfabrication, CF4 was placed in a vacuum container with parallel plate electrodes.
By introducing a reactive gas such as or CC+4 and applying high frequency power to the electrode on which the sample is placed, glow lightning is generated, and the negative DC self-bias (cathode drop voltage) generated in this electrode causes Reactive ion etching (twisting) involves accelerating positive ions and irradiating them perpendicularly to the sample.
RIE: ReacHve l onEtchin
q) or attract attention -C.

しかし、このRIEでは、例えばCF4 1H2ガスを
用いた5iOzのエツチングではそのエツチング速度は
高々300へ400[人”m l +1]に過ぎず、1
[μm]のSiO2をエツヂング覆るのに数10分も掛
かる。また、△1やポリ3iに対してもエツチング速度
は遅く、量産性が悪いものであった。エツチング速度を
増大させるためには投入ミノJを大きくづると幾分効果
があることか知られているが、この場合陰(よ降下型D
Eが人さくなりイオン損傷“X)エツヂングiU択比が
スパッタリング比で決まる危険があり、またレジストが
高温になり変形する等の欠点があった。
However, in this RIE, for example, when etching 5 iOz using CF4 1H2 gas, the etching speed is only 300 to 400 [ml + 1], and 1
It takes several tens of minutes to cover [μm] of SiO2 by etching. Furthermore, the etching speed was slow for Δ1 and poly 3i, and the mass productivity was poor. It is known that in order to increase the etching speed, it is somewhat effective to make the input hole J larger, but in this case, the shadow (yoyo descending type D)
There was a risk that E would be reduced, ion damage would occur, the etching iU selectivity would be determined by the sputtering ratio, and the resist would become hot and deform.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、各種の半導体製造(イ判を高速にエツ
チングすることができ、かつイオン荊閂の光生をも未然
に防止し得るドライエツチング装置を提供するごとにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dry etching apparatus capable of high-speed etching of various types of semiconductor manufacturing (i-format) and also capable of preventing ion beam formation.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、磁石による磁界を通常のRIEにおけ
る電界方向と直交する方向に印加し、エツチング室内の
イオン化効率を高めることにある。
The gist of the present invention is to apply a magnetic field by a magnet in a direction perpendicular to the direction of the electric field in normal RIE, thereby increasing the ionization efficiency within the etching chamber.

づなわち本発明は、半導体装置の製造材料をエツチング
するドライエツチングIIにおいて、被エッグ〜ング試
料が配置される真空容器内に反応性ガスを導入する手段
と、上記容器の外部に該容器を挟んで対向配置され上記
試料配置の空間に高周波プラズマ放電を励起する一対の
WHIMと、上記試料を挟んでPa間対向配置され試料
載置の空間に上記?1ttIiによる電界方向と直交す
る方向に1場を印加する一対の永久磁石とを設けるよう
にしたものである。
That is, the present invention provides means for introducing a reactive gas into a vacuum container in which a sample to be egged is placed, and a means for introducing the container outside the container in dry etching II for etching materials for manufacturing semiconductor devices. A pair of WHIMs are disposed facing each other and excite high-frequency plasma discharge in the space where the sample is placed, and a pair of WHIMs are disposed facing each other with the sample between them and are placed in the space where the sample is placed. A pair of permanent magnets are provided that apply one field in a direction perpendicular to the direction of the electric field generated by 1ttIi.

また本発明は、上記構成のドライエツチング装置におい
て、前記電i糎(第1の電極)とは別に前記磁石による
fI HA印加方向と同方向に電界を印加する電極(第
2の電極)を設()るようにしたものである。
Further, in the dry etching apparatus having the above configuration, the present invention provides an electrode (second electrode) that applies an electric field in the same direction as the direction of fI HA application by the magnet, separately from the electric glue (first electrode). ().

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1の電極による電界と永久磁石によ
る磁界との作用により、電子をリーイクロイド運動させ
ることができ、て−の運動長の実71的な延長により反
応性ガス分子との笥突fJR度が大幅に増加する。この
ため、イオン1し効率が大幅に向上することとなり、従
ってエツチング速度の高速化をはかり得る。また、陰極
降下電圧を上げる必要がないので、イオン110の発生
を未然に防止することができる。従って、半轡体製造技
Hj分野における有用性は絶大である7 〔発明の実施例〕 第1図及び第2図はそ111Nし本弁明の第1の実施例
に係わるドライエツチング装置の霞Pl< (M成を示
づもので第1図は縦断面図、第20は横断面図である。
According to the present invention, electrons can be caused to undergo Leekroid motion by the action of the electric field generated by the first electrode and the magnetic field generated by the permanent magnet, and due to the substantial extension of the length of motion of the electrons, they are able to interact with reactive gas molecules. Sudden fJR degree increases significantly. Therefore, the ion efficiency is greatly improved, and the etching rate can therefore be increased. Further, since there is no need to increase the cathode fall voltage, generation of ions 110 can be prevented. Therefore, it is extremely useful in the field of half manufacturing technology.7 [Embodiments of the Invention] FIGS. <(Figure 1 is a vertical cross-sectional view, and Figure 20 is a cross-sectional view, showing the M formation.

図中1は石英−1のベルジ1? r (真2容器)であ
る。このベルジt+1内にけ水冷された試料台2が配置
されCおり、試料台2上には被1ツヂンク試1”+ 3
が載置されるものどなっている。ベルジt−iの外側に
はベルジャ1の外周面に治って(4状のTi極4a、4
bが対向ii!置されている。そしC1これらの1fl
Ii4a、4b間にはマツチング回路5を介し−C高周
波電源6から高周波電力が印加されるものとなっている
Is 1 in the diagram Verge 1 of quartz-1? r (true 2 containers). A water-cooled sample stage 2 is placed inside this verge t+1, and on the sample stage 2 there is a
There are many things that will be posted. On the outside of the bell jar 1, there are 4-shaped Ti poles 4a, 4 on the outer peripheral surface of the bell jar 1.
b is facing ii! It is placed. Then C1 these 1fl
High frequency power is applied from a -C high frequency power source 6 through a matching circuit 5 between Ii4a and Ii4b.

ここまでの構成は従来装置と間係であり、本実施例では
新たに永久磁石7a、7bが前記ベルジャ1内に対向配
置されている。1なわち、前記試料台2の上方には永久
磁石7aが配設され、試料台1の下面には永久磁石7b
が取着されている。
The configuration up to this point is similar to the conventional device, and in this embodiment, permanent magnets 7a and 7b are newly disposed inside the bell jar 1 to face each other. 1, a permanent magnet 7a is disposed above the sample stage 2, and a permanent magnet 7b is disposed on the lower surface of the sample stage 1.
is attached.

また、磁石7a、7bの表面には磁石7a、7bからの
金属汚染を避けるため石英や弗素樹脂等の絶縁躾8a、
8bが被着されている。なお、図中9は水冷管を示して
いる。また、図には示さないが真空容器1内にはガス導
入口から反応性ガスが導入され、真空容器1内のガスは
ガス排気口から排気されるものとなっている。
In addition, the surfaces of the magnets 7a and 7b are coated with an insulating layer 8a made of quartz, fluororesin, etc. to avoid metal contamination from the magnets 7a and 7b.
8b is applied. Note that 9 in the figure indicates a water-cooled pipe. Although not shown in the figure, a reactive gas is introduced into the vacuum container 1 from a gas inlet, and the gas in the vacuum container 1 is exhausted from a gas exhaust port.

このような偶成であれば、N極4a、4bによる電界E
とこれに貴女する磁石7a、7bにょる磁界Bとの作用
により、試別3上の空間で電子eはドリフト運動(サイ
クロイ1こ運動)することになり、その運動長が実質的
に延長リ−る。このため、電子と反応性ガスとの衝突明
度が大幅に増大し、その結果イオン化効率が大幅に向上
りる。この時発生する高度プラズマ領域10は磁石4a
If this is the case, the electric field E due to the N poles 4a and 4b
Due to the action of the magnetic field B generated by the magnets 7a and 7b, the electrons e drift in the space above the specimen 3 (cycloid motion), and their length of motion is substantially extended. -ru. Therefore, the brightness of the collision between the electrons and the reactive gas is greatly increased, and as a result, the ionization efficiency is greatly improved. The high plasma region 10 generated at this time is magnetized by the magnet 4a.
.

4b間に閉込められる。従って、被エツチング試料3の
エツチング速度の高速化をはかりfりる。しかも、陰極
降下電圧を高める必要もないので、イオン損傷の問題も
生じない。逆に占えば、従来と同一エツチング速度を1
qるにはイオンの加速電圧を低くすることができる。実
際、11来装置に比してラジエーションダメージを1 
、/ ’I Oに低減Cきることが確認された。
Trapped between 4b. Therefore, the etching speed of the sample 3 to be etched is increased. Moreover, since there is no need to increase the cathode fall voltage, there is no problem of ion damage. Conversely, the same etching speed as before is 1
To achieve this, the ion acceleration voltage can be lowered. In fact, the radiation damage was reduced by 1 compared to the 11th generation device.
, /' It was confirmed that C can be reduced to IO.

また、本発明溝等の実態によれば、反応1!lカスとし
てCF4を用い5i02を1−ツヂンクしたところ、約
160[μIn/ In I I+ ]のエツチング速
麿が達成され、エツチング均一性ち試訃13側の磁石8
bの径を十分大きくすることによって±1−2[%]と
言う極めて良々Yな(直が17られIこ。
Moreover, according to the actual situation of the present invention, reaction 1! When 5i02 was 1-twisted using CF4 as the lumber, an etching speed of about 160 [μIn/In I I+ ] was achieved, and the etching uniformity and test sample 13 side magnet 8
By making the diameter of b sufficiently large, ±1-2 [%] can be obtained, which is extremely good (direction is 17%).

第3図は第2の実施例の概略偶成を示す横断面図である
。なお、第1・図と同一部分には同一符号を付して、そ
の詳しい説明は省略する。この実施例が先に説明した第
1の実施例と異なる点は、前記電極4a、4b以外に電
子反則のための電極(電子反射板)を設けたことにある
。すなわち、前記ベルジャ1の外周には電t14a、4
bと直交する関係で霜子反61仮21a、21bが対向
配置されている。そし”C1これらの電子反射板には直
流電源22a、22bから負の電圧が印加されている。
FIG. 3 is a cross-sectional view schematically showing the combination of the second embodiment. Note that the same parts as in the first figure are given the same reference numerals, and detailed explanation thereof will be omitted. This embodiment differs from the first embodiment described above in that an electrode (electron reflection plate) for electron repulsion is provided in addition to the electrodes 4a and 4b. That is, on the outer periphery of the bell jar 1, electric currents t14a, 4 are provided.
The frosted cloth 61 temporary 21a and 21b are arranged facing each other in a relationship perpendicular to b. A negative voltage is applied to these electron reflection plates from DC power supplies 22a and 22b.

このような偶成であっても、先の実施例と間挿の効果が
あるのは勿論のことである。また、反射tN21a、2
1bを設けたことにより、イオン化効率をより向上させ
ることができ、先の実施例以上にエツチング速度の高速
化をはがり1qる。すなわち、電子反射板21a、21
bがない場合には、ドリフI〜軌道中の電子はベルジャ
1の壁面との一1突によりプラズマから消失するが、反
射板21a、21bの存在により図中に示す如くその軌
道長は著しく延長され、その拮’B rオン化1ノ串の
大幅なjl加がもたらされることになる。
Of course, even with such a combination, there is an interpolation effect as in the previous embodiment. Also, the reflection tN21a,2
By providing 1b, the ionization efficiency can be further improved, and the etching rate can be increased more than in the previous embodiment. That is, the electron reflection plates 21a, 21
If b is not present, the electrons in the orbit of Drift I will disappear from the plasma due to a collision with the wall of the bell jar 1, but due to the presence of the reflectors 21a and 21b, the length of the orbit will be significantly extended as shown in the figure. This results in a significant addition of 1 to 100% of the ionization.

第4図は第3の実施例のlfW Fi’i In成を示
1組断面図である。なお、第1図と同一部分には同一符
号を付して、その詳しい説明は′aP13″fJる。こ
の実施例が先に説明した第1の実施例と異なる貞は、前
記電極4a、4b以外に該電倹4a、4bによる電界方
向と直交4る方向<NIE7a、7bにJ、る1ift
場印加方向)に電界を印加する電1= (第2のN極)
を設けたことにある。1なわも、前記磁石7aの下向に
は電(U31aが配置され、班57E)の上面には電t
!!aibが配置され、これらの電極31a、31bは
試F13を挟ん’CP!を間対向配冒されている。ここ
で、電極3 l bは前記試!31台20代りを果たす
ものとなってi3す、−テの1−に試1°+13が載置
される。そして、電4131a、31b間にはコイル3
2を介して直流電源33により直流電圧が印加されるも
のとなっCいる。また、図(、:、は示さないが水冷管
等により冷却されるものどなっている。
FIG. 4 is a cross-sectional view of one set showing the lfW Fi'i In structure of the third embodiment. Note that the same parts as in FIG. In addition, the direction perpendicular to the direction of the electric field due to the electric currents 4a and 4b < J to NIE7a and 7b, if
Electric field is applied in the direction (field application direction) = (second north pole)
This is because we have established 1. An electric wire (U31a) is placed below the magnet 7a, and an electric wire (U31a) is placed on the upper surface of the group 57E.
! ! aib is arranged, and these electrodes 31a, 31b are placed on both sides of the sample F13. The two are facing each other. Here, the electrode 3 l b is the same as the above sample! 31 machines will be used for the 20s, and the trial 1°+13 will be placed on the 1- of -Te. The coil 3 is connected between the electric wires 4131a and 31b.
A DC voltage is applied by a DC power supply 33 through C. Also, although not shown in the figure, it is cooled by a water-cooled pipe or the like.

一方、ベルジャ1の内壁面には電極4a、4bとそれぞ
れ対向4°るよう一対の補助?(sfi34a。
On the other hand, on the inner wall surface of the bell jar 1, a pair of auxiliary supports are provided on the inner wall surface of the bell jar 1 so as to face the electrodes 4a and 4b by 4 degrees, respectively. (sfi34a.

3/Ibが取着されている。そして、高周波電力印加の
電極4bに対向する補助電極34bは試料載置の電極3
1bに電気的に接続されている。
3/Ib is attached. The auxiliary electrode 34b facing the electrode 4b for applying high frequency power is the electrode 3 on which the sample is placed.
1b.

このような構成であれば、先の第1の実施例と同様に電
極/Ia、/Ibによる電界とこれに直交する川石7a
、7bによる磁界との作用によりイオン1ヒ効率を高め
ることができるので、第1の実施例と同様な効果は勿論
のこと、電tli3’1a、311、)の作用により次
のような効果が19られる。ずなわち、補助1f!1i
34b上にはベルジャ1の壁容量<Cw)を介して高周
波電圧が誘起されることになり、可変な直流電源33の
電圧を適当に選ぶことにより電極311)及び試II 
3表面には交流電圧に4#J乗した直流電圧が印加され
ることになる。
With such a configuration, the electric field caused by the electrodes /Ia and /Ib and the river stone 7a perpendicular to this are similar to the first embodiment.
, 7b can increase the efficiency of ion 1 due to the effect of the magnetic field, and the effect similar to that of the first embodiment can be obtained. 19. In other words, auxiliary 1f! 1i
A high frequency voltage is induced on the bell jar 34b via the wall capacitance of the bell jar 1 (<Cw), and by appropriately selecting the voltage of the variable DC power supply 33, the voltage of the electrode 311) and the sample II
A DC voltage obtained by multiplying the AC voltage by 4#J is applied to the surface 3.

ここで、コイル32のインピーダンスは容量インピーダ
ンスより十分大きい必要がある。従って、帯電電荷と反
対符号の電荷が交FA電圧の特定の位相角の時に試料3
表面へと流れ込むことになり、帯電現象によると考えら
れるn兜なエツチングプロファイルは発生しない。その
桔里、アンクーカットのないエツチングが達成される。
Here, the impedance of the coil 32 needs to be sufficiently larger than the capacitance impedance. Therefore, when the charge with the opposite sign to the charged charge is at a specific phase angle of the AC FA voltage, the sample 3
As a result, the etching profile that is considered to be caused by the charging phenomenon does not occur. The etching without the Anku cut is achieved.

なお、ここで示したエツヂング特性は、電極31bがプ
ラズマ中に入ってい”(も或いはプラズマから離れたア
フターグローの所におい”Cも1りられ、また該電極3
1bに対向iNv!31aを設(J、これを浮遊状態若
しくは接地状態にしても略同じ結果が得られる。また、
直流電圧を交流電圧に相乗する方法としては、第5図に
承り如く交流電源発生源37を新たに設け、基本的には
コンデンサ36及びコイル32により直流電圧を相乗り
るようにしてもよい。さらに、試1’i+ 3と電?M
 311)との間に誘電体物質、例えば弗M樹Un等を
敷い11+この直流電圧が交流電圧に相乗されているI
iに、前記作用効果としては同じである。
It should be noted that the etching characteristics shown here are the same as when the electrode 31b is in the plasma (or in the afterglow area away from the plasma),
Opposing iNv to 1b! 31a (J, approximately the same result can be obtained even if it is in a floating state or in a grounded state. Also,
As a method of synergizing the DC voltage with the AC voltage, as shown in FIG. 5, an AC power generation source 37 may be newly provided, and basically the DC voltage may be synergized by the capacitor 36 and the coil 32. Furthermore, test 1'i+3 and electric? M
311) A dielectric material, such as Fumiki Un, is laid between the
i, the above-mentioned effects are the same.

なお、本発明は上述した8実施例に限定されるものでは
ない。例えば、前記永久V4i石の配回IQ買は必ずし
もベルジャ内に限るものではなくベルジャの外側に配置
されたちのCあってもよい。但し、前記試料の配置空間
においで前記第1の電!勇による電界と直交する方向に
…月を印加する必要がある。また、試料配置の空間に印
加覆る電界及び磁界の強さ等の条件は、仕様に応じ°(
適宜定めればよい。さらに、真空容器の大きさや形状等
も適宜変更可能である。また、S+02の1ツヂングに
限らず、各種の半導体装置製造材料のエツチングに適用
できるのは勿論のことである。その他、本発明の要旨を
逸脱しない範囲で、l々変形し−【実施することができ
る。
Note that the present invention is not limited to the eight embodiments described above. For example, the distribution of the permanent V4i stones is not necessarily limited to inside the bell jar, but may be placed outside the bell jar. However, in the placement space of the sample, the first electric power! It is necessary to apply the moon in a direction perpendicular to the electric field caused by Isamu. In addition, conditions such as the strength of the electric field and magnetic field applied to the space where the sample is placed are determined according to the specifications.
It may be determined as appropriate. Furthermore, the size, shape, etc. of the vacuum container can be changed as appropriate. Furthermore, it goes without saying that the present invention is applicable not only to etching of S+02 but also to etching of various materials for manufacturing semiconductor devices. Other modifications may be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1の実施例に係わるドラ
イエツチング装置の慨P81flt成を示づもので第1
図は縦断面図、第2図は慣断面図、第3図は第2の実施
例の概略慴成゛を示す1FtlfIi面図、第4図及び
第5図はそれぞれ第3の実施例の曹P8徊成を示す縦断
面図である。 1・・・ベルジV、 2・・・試料台、 3・・・被1
ツチング試料、 4a、4b−f4’lI)’Fit@
、5−・・マツチング回路、 6・・・高周波71¥源
、 7a。 7b・・・永久川石、 1o・・・高密前プラス7.2
18.21b・−・電子層flJ (Ii、 22a、
221)−直流電源、 31a、311)・・・第2の
電1・π。 出願人代理人 弁理士 鈴江代彦 第1 図 第2 V′L3 第3図 第4図 第5図
1 and 2 show the general structure of a dry etching apparatus according to a first embodiment of the present invention.
The figure is a longitudinal sectional view, FIG. 2 is a conventional sectional view, FIG. 3 is a 1FtlfIi side view showing the schematic development of the second embodiment, and FIGS. 4 and 5 are schematic diagrams of the third embodiment. FIG. 1...Verge V, 2...Sample stage, 3...Target 1
Tsuching sample, 4a, 4b-f4'lI)'Fit@
, 5-... Matching circuit, 6... High frequency 71\ source, 7a. 7b... Nagakawaishi, 1o... High density front plus 7.2
18.21b ---electron layer flJ (Ii, 22a,
221) - DC power supply, 31a, 311)...second electric power 1·π. Applicant's agent Patent attorney Yohiko Suzue Figure 1 Figure 2 V'L3 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 (1)被エツチング試料−が配置される真空容器内に反
応性ガスを導入する手段と、上記容器の外部に該容器を
挟んで対向配置され上記試料配置の空間に高周波プラズ
マ放電を励起づる一対の電極と、上記試料を挟んで離間
対向配置され試料載置の空間に上記電極による電界方向
と直交する方向に磁場を印加づる一対の永久磁石とを具
備してなることを特徴とでるドライエツチング装置。 〈2)前記試料は、前記真空容器内に配設された試u台
上に載置されたもので、この試オ゛]台は水)りされて
いることを特徴とする特許請求の範囲第11n記載のト
ライエツチング装置。 (3)前記真空容器は、その外側に前記電極と共に電子
反61仮が設けられているものであることを特に′[請
求の範囲第1項記載のトライエツチング装置。 (4)被エツチング試料が配置される真空容器内に反応
性ガスを導入する手Rと、上記容器の外部に該容器を挟
んで対向配置され上記試料配置の空(6)に高周波プラ
ズマ放電を励起する一対σ)第1の電極と、上記試料を
挟んでPIIt間対向配冒され試料載置の空間に上記?
!極による電界方向と直交覆る方向に電界を印加する一
対の第2の電極と、前記試料を挟んで離間対向配置され
試■載阿の空間に上記第2の電極によるN昇方向と平行
な方向【こ磁場を印加する一対の永久磁石とを具備して
なることを特徴とづるトライエツチング装置。 (5)前記第2の電極、は前記真空容器内に配設され、
その一方に前記試料が配設されるもの(゛あることを特
徴とする特許請求の範囲第4項記載のドライエツチング
装@。 (6)前記真空容器は、その外側に前記電極と共に電子
反射板が設けられているものであることを特徴とする特
許請求の範囲第4項記載のトライエツチング装置。 (7)前記第2のWi極は、交流電圧に直流電圧を重畳
して印加され、エツチング条件に応じてそのバイアスが
調整されるものであることを特徴とする特許請求の範囲
第4項記載のドライエツチング装置。 (8)前記バイアスを調整−4る手段は、直流電圧を変
えて行うものであることを特徴とする特許請求の範囲第
7項記載のドライエツチング装置。
[Scope of Claims] (1) A means for introducing a reactive gas into a vacuum container in which a sample to be etched is placed; It comprises a pair of electrodes that excite plasma discharge, and a pair of permanent magnets that are placed facing each other with the sample in between and that apply a magnetic field to the space where the sample is placed in a direction perpendicular to the direction of the electric field produced by the electrodes. A dry etching device featuring: (2) The scope of the claim characterized in that the sample is placed on a test stand disposed within the vacuum container, and the test stand is wetted. Tri-etching device according to item 11n. (3) The tri-etching apparatus according to claim 1, wherein the vacuum vessel is provided with an electron beam 61 along with the electrode on the outside thereof. (4) A hand R for introducing a reactive gas into the vacuum container in which the sample to be etched is placed, and a hand R that is placed opposite to the outside of the container with the container in between, and a high-frequency plasma discharge is applied to the space (6) where the sample is placed. A pair of excited σ) first electrodes and the PIIt are arranged opposite to each other with the sample in between, and the above-mentioned ?
! A pair of second electrodes that apply an electric field in a direction perpendicular to the direction of the electric field caused by the poles, and a pair of second electrodes that are placed facing each other and spaced apart from each other with the sample in between, are applied in the space of the sample mounting area in a direction parallel to the direction of N rise by the second electrodes. [A tri-etching device characterized by comprising a pair of permanent magnets that apply a magnetic field. (5) the second electrode is disposed within the vacuum container;
The dry etching apparatus according to claim 4, characterized in that the sample is disposed on one side of the dry etching apparatus. The tri-etching device according to claim 4, characterized in that: (7) the second Wi pole is applied with a DC voltage superimposed on an AC voltage; The dry etching apparatus according to claim 4, wherein the bias is adjusted according to conditions. (8) The means for adjusting the bias is performed by changing a DC voltage. 8. A dry etching apparatus according to claim 7, wherein the dry etching apparatus is a dry etching apparatus.
JP15377283A 1983-08-23 1983-08-23 Dry etching device Granted JPS6045024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15377283A JPS6045024A (en) 1983-08-23 1983-08-23 Dry etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15377283A JPS6045024A (en) 1983-08-23 1983-08-23 Dry etching device

Publications (2)

Publication Number Publication Date
JPS6045024A true JPS6045024A (en) 1985-03-11
JPH0566724B2 JPH0566724B2 (en) 1993-09-22

Family

ID=15569796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15377283A Granted JPS6045024A (en) 1983-08-23 1983-08-23 Dry etching device

Country Status (1)

Country Link
JP (1) JPS6045024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164219U (en) * 1986-11-19 1988-10-26
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus
US5695597A (en) * 1992-11-11 1997-12-09 Mitsubishi Denki Kabushiki Kaisha Plasma reaction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164219U (en) * 1986-11-19 1988-10-26
JPH0513006Y2 (en) * 1986-11-19 1993-04-06
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus
US5695597A (en) * 1992-11-11 1997-12-09 Mitsubishi Denki Kabushiki Kaisha Plasma reaction apparatus

Also Published As

Publication number Publication date
JPH0566724B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
TWI245333B (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
TW494710B (en) Plasma processing apparatus
US5399830A (en) Plasma treatment apparatus
US4657619A (en) Diverter magnet arrangement for plasma processing system
JP2002289399A (en) Neutral particle beam treatment apparatus
JPH0353065A (en) Sputtering device
JPH0812856B2 (en) Plasma processing method and apparatus
JPS62235485A (en) Ion source device
EP0203573A2 (en) Electron beam-excited ion beam source
US4521719A (en) Ion beam gun
JPS6045024A (en) Dry etching device
JPS59232420A (en) Dry etching apparatus
KR950034507A (en) Helicon plasma processing method and device
JPS6094725A (en) Dry etching device
JPS6223987A (en) Dry etching device
JPH0645094A (en) Method for generating plasma and device therefor
JP4223143B2 (en) Plasma processing equipment
JPH0620794A (en) Method and device for generation of plasma
JPS6094724A (en) Dry etching device
JP2756911B2 (en) Magnetic field generator for magnetron plasma
JPH01183123A (en) Plasma etching device
JPH01295422A (en) Plasma treating apparatus
JPH0799160A (en) Method and apparatus for working of neutral particles
JP2756910B2 (en) Magnetic field generator for magnetron plasma
JP3236928B2 (en) Dry etching equipment