JPS6044993B2 - Water production equipment that utilizes cold energy from low-temperature gas - Google Patents

Water production equipment that utilizes cold energy from low-temperature gas

Info

Publication number
JPS6044993B2
JPS6044993B2 JP5440379A JP5440379A JPS6044993B2 JP S6044993 B2 JPS6044993 B2 JP S6044993B2 JP 5440379 A JP5440379 A JP 5440379A JP 5440379 A JP5440379 A JP 5440379A JP S6044993 B2 JPS6044993 B2 JP S6044993B2
Authority
JP
Japan
Prior art keywords
seawater
ice
low
temperature gas
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5440379A
Other languages
Japanese (ja)
Other versions
JPS55145586A (en
Inventor
義悟 長島
伸一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP5440379A priority Critical patent/JPS6044993B2/en
Publication of JPS55145586A publication Critical patent/JPS55145586A/en
Publication of JPS6044993B2 publication Critical patent/JPS6044993B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は低温ガスの加温に海水を用い、同時にこの海水
を低温ガスの冷熱により淡水化するものてある。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses seawater to heat low-temperature gas, and at the same time desalinates this seawater using the cold heat of the low-temperature gas.

例えばLNGの再ガス化時等の冷熱は利用することなく
すてられているのが現状である。
For example, the current situation is that cold energy generated during regasification of LNG is not used and is wasted.

本発明はこのガス化のための加熱を海水を用いて行い、
一方この海水はLNGの冷熱により氷を晶析させ、これ
を分離融解して海水の淡水化を行うものである。すなわ
ち低温ガスの冷熱を利用した進水装置である。これによ
れば従来の冷凍法海水淡水化装置のように冷媒、コンプ
レッサー、凝縮器等の冷凍サイクル形成用機器を必要と
せず、主として静止機器で構成しうるので低価格で運転
、保守の容易な装置となしうる。本発明装置をます第1
図の系統図により説明する。
The present invention performs heating for this gasification using seawater,
On the other hand, this seawater is produced by crystallizing ice using the cold heat of LNG, which is then separated and melted to desalinate the seawater. In other words, it is a launching device that utilizes the cold energy of low-temperature gas. According to this system, there is no need for refrigeration cycle forming equipment such as refrigerant, compressor, condenser, etc. as in conventional refrigeration seawater desalination equipment, and it can be constructed mainly from stationary equipment, resulting in low cost and easy operation and maintenance. It can be used as a device. The device of the present invention is the first
This will be explained using the system diagram shown in the figure.

1は直接接触式の海水・ガス熱交換器でその内部では上
部のノズル16から加熱用の海水がシャワーとなつて供
給される。
Reference numeral 1 denotes a direct contact type seawater/gas heat exchanger, into which seawater for heating is supplied as a shower from a nozzle 16 at the top.

器の下部近くには低温ガスが管17から供給され、海水
と低温ガスとはここで向流式に直接接触して熱交換を行
う。器の底部にはかく拌機6があり、上記の熱交換によ
る海水の過冷却によつて発生する氷の結晶核を海水と十
分に混合させる。加熱されたガスは管18より送出され
る。熱交換器1でできた氷結晶咳を含む海水は管19に
より結晶缶2に送られる。
Near the bottom of the vessel, low-temperature gas is supplied from a pipe 17, where the seawater and low-temperature gas come into direct contact in a countercurrent manner to exchange heat. There is a stirrer 6 at the bottom of the vessel, which thoroughly mixes the ice crystal nuclei generated by the supercooling of the seawater through the heat exchange with the seawater. The heated gas is sent out through pipe 18. Seawater containing ice crystals formed in the heat exchanger 1 is sent to the crystallizer 2 via a pipe 19.

1 結晶缶2にはミキサ7があり、海水はこれによりゆ
つくりとかく拌されて氷の結晶核は成長してそれが分離
可能なまでの氷結晶になる。
1. There is a mixer 7 in the crystal can 2, and the seawater is slowly stirred by the mixer 7, so that the ice crystal nuclei grow and become ice crystals that can be separated.

ミキサ7または氷ブロック発生防止の役目をする。一方
海水に溶解していた低温ガスは、ここで圧縮機5に・よ
り引出され熱交換器1にもどされる。このように結晶缶
2では晶析した氷と濃縮された海水すなわちブラインと
が混合してスラリー状で存在する。このスラリーをスラ
リーポンプ8により洗浄塔3にその下部より送りこむ。
It plays the role of mixer 7 or preventing the generation of ice blocks. On the other hand, the low temperature gas dissolved in the seawater is extracted by the compressor 5 and returned to the heat exchanger 1. In this way, in the crystallization can 2, crystallized ice and concentrated seawater, ie, brine, are mixed and exist in the form of a slurry. This slurry is sent to the washing tower 3 from the lower part by a slurry pump 8.

なおポンプ9で結晶缶2の底部のブラインを熱交換器1
との間に循環させ、熱交換器1における氷の結晶核発生
を助ける。
The pump 9 pumps the brine at the bottom of the crystallizer 2 into the heat exchanger 1.
This helps generate ice crystal nuclei in the heat exchanger 1.

洗浄塔3て氷結晶は浮上して塔の上部に氷層をなす。The ice crystals float to the surface of the washing tower 3 and form an ice layer on the top of the tower.

この氷層を洗浄するための淡水を散水する洗浄器12が
塔の上部にあり、またここには氷層の頂部をかき落すた
めの氷かき取り機10がある。ここでかきとられた氷は
洗浄塔3の周囲をなす融解槽4に落される。一方ブライ
ンは洗浄塔3の高さの中程の塔壁に設けられたスクリー
ン3aを通して管13により塔3の外に送り出される。
このようにして洗浄塔3に送りこまれた氷の量に相当す
る氷がかきとられ、またブラインが送出されて分離作用
は連続的に進行する。なお管14はスラリー濃度を一定
に保つ為の循環ブラインを洗浄塔3より結晶缶2へもど
すためのものである。4は洗浄塔3の外周をなしている
融解槽である。
A washer 12 for sprinkling fresh water to wash this ice layer is located at the top of the tower, and there is also an ice scraper 10 here for scraping off the top of the ice layer. The ice scraped here is dropped into a melting tank 4 surrounding the washing tower 3. On the other hand, the brine is sent out of the column 3 by a pipe 13 through a screen 3a provided on the column wall at the middle of the height of the washing column 3.
In this way, ice corresponding to the amount of ice fed into the washing tower 3 is scraped off, brine is sent out, and the separation action proceeds continuously. The pipe 14 is for returning circulating brine from the washing tower 3 to the crystallization vessel 2 in order to keep the slurry concentration constant. 4 is a melting tank forming the outer periphery of the cleaning tower 3.

前述のようにしてここにかき落された氷は海2水による
加熱管15によつて融解され、淡水ポンプ11により槽
外に送出される。なおこの図では送出される淡水の一部
は前述のようにして洗浄塔3の氷の洗浄に用いている。
以上から理解されるように本発明は一部既にの2べてい
る処であるが、つぎのような特徴をもつ。
The ice scraped here as described above is melted by the heating pipe 15 using sea water, and is sent out of the tank by the fresh water pump 11. In this figure, a part of the fresh water sent out is used for washing the ice in the washing tower 3 as described above.
As can be understood from the above, the present invention has the following features, although some parts of the present invention have already been completed.

1多量の海水を使用して低温ガスを間接的に加熱してい
た従来の方法に比べこの発明は直接々触式により加熱し
、しかも海水の凍結潜熱まで利用することから海水使用
量が大巾に減少出来る。
1.Compared to the conventional method of indirectly heating low-temperature gas using a large amount of seawater, this invention uses a direct catalytic method to heat the gas, and also utilizes the freezing latent heat of the seawater, which significantly reduces the amount of seawater used. can be reduced to

2冷媒(ブタン又はフレオン等)液を海水中に吹き込み
その潜熱を利用して海水を冷却(晶析を含む)させてい
た従来方法は冷凍サイクルを形成する為に圧縮機・凝縮
器等の冷凍機器を要したが今回の発明によればにれ等の
機器は不要と成りプロセスが簡単に成る。
2) The conventional method of injecting liquid refrigerant (butane or freon, etc.) into seawater and utilizing its latent heat to cool the seawater (including crystallization) is to refrigerate compressors, condensers, etc. to form a refrigeration cycle. However, according to the present invention, there is no need for such equipment and the process is simplified.

又低温ガスが高圧ガス取締法にかからないもので得るこ
とが出来るならば淡水化プロセスは大気開放式とする事
が出来るので建設費等大巾に低減される。
Furthermore, if low-temperature gas can be obtained that is not subject to the High Pressure Gas Control Law, the desalination process can be open to the atmosphere, which greatly reduces construction costs.

3本発明は−20′C程度までのいわゆる低温ガスなら
ば適用でき、その応用範囲は広い。
3. The present invention can be applied to so-called low-temperature gases up to about -20'C, and has a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の系統図である。 1・・・・・・海水・ガス熱交換器、2・・・・・・結
晶缶、3・・・・洗浄塔、4・・・・・・融解槽、5・
・・・・・圧縮機、6,7・・・・・・かく拌機類、8
,9,10・・・・・・ポンプ類、10・・・・・・氷
かきとり機。
FIG. 1 is a system diagram of the apparatus of the present invention. 1... Seawater/gas heat exchanger, 2... Crystallizer, 3... Washing tower, 4... Melting tank, 5...
...Compressor, 6,7...Agitator, 8
, 9, 10... Pumps, 10... Ice scraper.

Claims (1)

【特許請求の範囲】 1 低温ガスと海水とが向流式に直接接触して氷の結晶
核を発生するまでに海水を過冷却させる海水・ガス熱交
換器と、この海水をうけて氷結晶を成長せしめる結晶缶
と、これより氷結晶とブラインのスラリーをうけて氷結
晶からブラインを分離して氷層を形成させ、淡水で洗浄
後これを融解槽へかき落す洗浄塔と、洗浄塔よりかき落
された氷を海水により間接的に加熱融解する融解槽とよ
りなる低温ガスの冷熱利用による造水装置。 2 融解槽の中心部に洗浄塔がおかれ、 この洗浄塔はその高さの中程塔壁にブライン抜出し用の
スクリーンと、上部に氷層に対する洗浄装置およびかき
落し装置とを具えて、氷の結晶とブラインとよりなるス
ラリーをその下部よりうけて上部より氷を融解槽に落し
こみ、融解槽には海水を通す加熱器をおいた。 低温ガスの冷熱の利用による造水装置の洗浄塔および融
解槽。
[Claims] 1. A seawater/gas heat exchanger that supercools seawater to the point where low-temperature gas and seawater directly contact each other in a countercurrent manner to generate ice crystal nuclei; A washing tower receives a slurry of ice crystals and brine, separates the brine from the ice crystals to form an ice layer, washes it with fresh water and scrapes it off into a melting tank; A water production system that utilizes the cold energy of low-temperature gas and consists of a melting tank that indirectly heats and melts scraped ice with seawater. 2. A washing tower is placed in the center of the melting tank, and this washing tower is equipped with a screen for removing brine on the wall of the tower mid-height, and a washing device and a scraping device for the ice layer on the top. A slurry consisting of crystals and brine was received from the bottom, and ice was dropped into the melting tank from the top, and a heater was placed in the melting tank to pass seawater. Cleaning towers and melting tanks for water production equipment that utilize the cold energy of low-temperature gas.
JP5440379A 1979-05-02 1979-05-02 Water production equipment that utilizes cold energy from low-temperature gas Expired JPS6044993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5440379A JPS6044993B2 (en) 1979-05-02 1979-05-02 Water production equipment that utilizes cold energy from low-temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5440379A JPS6044993B2 (en) 1979-05-02 1979-05-02 Water production equipment that utilizes cold energy from low-temperature gas

Publications (2)

Publication Number Publication Date
JPS55145586A JPS55145586A (en) 1980-11-13
JPS6044993B2 true JPS6044993B2 (en) 1985-10-07

Family

ID=12969720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5440379A Expired JPS6044993B2 (en) 1979-05-02 1979-05-02 Water production equipment that utilizes cold energy from low-temperature gas

Country Status (1)

Country Link
JP (1) JPS6044993B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374799U (en) * 1989-11-13 1991-07-26
JPH0416590B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk
JPH0416592B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk
JPH0416589B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3041545C (en) 2016-11-14 2023-04-18 William H. Mitchell, Jr. Systems and methods for separating soluble solutions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416590B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk
JPH0416592B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk
JPH0416589B2 (en) * 1986-12-29 1992-03-24 Shaapu Kk
JPH0374799U (en) * 1989-11-13 1991-07-26

Also Published As

Publication number Publication date
JPS55145586A (en) 1980-11-13

Similar Documents

Publication Publication Date Title
Rahman et al. Freezing‐melting process and desalination: I. Review of the state‐of‐the‐art
JP5855682B2 (en) Desalination system
CN110563067A (en) Energy-saving ammonium chloride wastewater freezing concentration crystallization system and process thereof
JP2008221140A (en) Joint supply equipment for natural gas hydrate cracked gas and fresh water
CN1837050A (en) Process for preparing anhydrous mirabilite by freezing method
US3269136A (en) Apparatus for separation of solvent from solute by freezing
CN107140772A (en) A kind of compound method for desalting seawater and system based on cold energy of liquefied natural gas
US3404536A (en) In situ flash freezing and washing of concentrated solutions
US3250081A (en) Process for freezing water from solutions to make fresh water or concentrated solutions
US4164854A (en) Desalination method with mercury refrigerant
US3385074A (en) Freeze crystallization, washing and remelting on a common rotary surface
US3478531A (en) Saline water conversion system
JPS6044993B2 (en) Water production equipment that utilizes cold energy from low-temperature gas
US3486848A (en) Refrigerated crystallizer system
Rahman et al. Freezing‐Melting Desalination Process
US3314881A (en) Water extraction by freezing
EP0078164B1 (en) Separation of a mixture by the vacuum freezing vapor desublimation desublimate vaporization process
JP3651170B2 (en) Seawater desalination system
US3073131A (en) Method and apparatus for rendering saline water potable
JP2004053142A (en) Ice water producer
Rahman et al. The Freezing–Melting Process in Liquid Food Concentration
US3204419A (en) Partial freezing purification process
US3253419A (en) Batch fractional crystallization and purification
US3182463A (en) Refrigeration method for reducing the salt content of brine
US3220203A (en) Simultaneous heat and mass transfer process