JPS6044882A - Deviation frequency measuring apparatus - Google Patents

Deviation frequency measuring apparatus

Info

Publication number
JPS6044882A
JPS6044882A JP58152670A JP15267083A JPS6044882A JP S6044882 A JPS6044882 A JP S6044882A JP 58152670 A JP58152670 A JP 58152670A JP 15267083 A JP15267083 A JP 15267083A JP S6044882 A JPS6044882 A JP S6044882A
Authority
JP
Japan
Prior art keywords
signal
linear
frequency
beat
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58152670A
Other languages
Japanese (ja)
Other versions
JPH0116394B2 (en
Inventor
Kozo Okada
岡田 昂三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP58152670A priority Critical patent/JPS6044882A/en
Publication of JPS6044882A publication Critical patent/JPS6044882A/en
Publication of JPH0116394B2 publication Critical patent/JPH0116394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To measure deviation frequency on a real time basis, by a small light wt. apparatus having such a mechanism that the beat signal of a received linear frequency modulating signal and a signal obtained by delaying said signal over a predetermined time is generated and a number of zero cross times are counted. CONSTITUTION:A delay linear FM signal (b) delayed over a predetermined time by a delay wire 1 and a non-delay linear signal (a) are inputted to a mixer 2 to generate an output mixture containing a beat signal. The output mixture is passed through a video amplifier 3 to extract only the beat signal component and a number of zero cross times thereof are counted by a zero cross counter 4. An operator 8 operates and outputs the deviation frequency of the linear FM signal (a) on the basis of the count number of the zero cross counter 4 and the pulse amplitude of the linear FM signal due to a pulse amplitude amplifier 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直線周波数変調方式(リニアFM/チャーブ
方式)により送信されるパルス圧縮レーダー信号を受信
してその偏移周波数を測定するようにした偏移周波数測
定装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is designed to receive a pulse compression radar signal transmitted by a linear frequency modulation method (linear FM/chirb method) and measure its shift frequency. The present invention relates to a deviation frequency measuring device.

(従来技術) 近年、距離分解能および感度的に優れた特性が得られる
パルス圧縮レーダーが多用される傾向にあり、例えば、
軍用レーダー警戒装置等では、相手型に所属する複数の
レーダが発射するパルス圧縮レーダ信号を受信し、各レ
ーダ信号をその発射源別に分類し、更に各発射源の種類
、例えばレーダの用途などを推定する必要がある。
(Prior art) In recent years, there has been a tendency for pulse compression radars to be used frequently, which provide excellent characteristics in terms of distance resolution and sensitivity.
Military radar warning systems, etc., receive pulse compression radar signals emitted by multiple radars belonging to the opponent type, classify each radar signal by its emission source, and then classify the type of each emission source, such as the purpose of the radar. It is necessary to estimate.

このための従来の分類・種別方式としては、受信レーダ
信号のキャリヤー周波数やパルス幅などの諸元が利用さ
れているが、パルス圧縮レーダについては不十分であり
、パルス圧縮レーダ固有のパルス圧縮比または偏移周波
数を測定し、これを利用する必要がある。しかしながら
、従来、パルス圧縮レーダを発射瀬切に分類し、且つ用
途を推定できるようなパルス圧縮比または偏移周波数の
測定装置は存在していない。
Conventional classification/classification methods for this purpose use specifications such as the carrier frequency and pulse width of the received radar signal, but this is insufficient for pulse compression radars, and the pulse compression ratio unique to pulse compression radars is insufficient. Alternatively, it is necessary to measure the deviation frequency and use this. However, conventionally, there is no pulse compression ratio or deviation frequency measurement device that can classify pulse compression radars into launch-end types and estimate their uses.

ここで、パルス圧縮レーダを対象として軍用レーダυ戒
装置に要求される事項を検討すると、次のようになる。
Now, if we consider the requirements for a military radar υ control device for pulse compression radar, we will find the following.

まず、軍用レーダ警戒装置では、通常複数のレーダから
の送信パルスを同時に受信するので、発射源の異なるパ
ルス列が互いにイン・ターリーブ(interleav
e)したパルス列を受信することになる。従って、この
パルス列を構成している各パルスを発射瀬切に分類する
ために、パルス1個毎にそのパルス圧縮比または偏移周
波数を測定する必要がある。
First, military radar warning systems usually receive transmission pulses from multiple radars at the same time, so pulse trains from different emission sources are interleaved with each other.
e) will receive the pulse train. Therefore, in order to classify each pulse constituting this pulse train into a firing end, it is necessary to measure the pulse compression ratio or shift frequency of each pulse.

一方、インターリーブしたパルス列では、1つのパルス
が到着した直後に次のパルスが到着する可能性があり、
従って、1個のパルスについての測定をそのパルスを受
信している期間(パルス幅内)に完了し、直後に到@す
る次のパルスの測定に備えられることが要求される。
On the other hand, in an interleaved pulse train, the next pulse may arrive immediately after one pulse arrives.
Therefore, it is required to complete the measurement of one pulse during the period (within the pulse width) during which the pulse is being received, and to prepare for the measurement of the next pulse that arrives immediately after.

また、戦闘機等の小型航空機に主として搭載される軍用
レーダ警戒装置では、測定装置として小型、軽量である
ことが強く望まれる。
Furthermore, in military radar warning devices that are mainly installed on small aircraft such as fighter jets, it is strongly desired that the measuring device be small and lightweight.

(発明の目的) 本発明は係る状況に鑑みてなされたもので、パルス圧縮
レーダ信号のうち直線周波数変調方式を採るパルス圧縮
レーダ、即ち、チャープレーダ(Chirp ’rad
ar)からのレータ信号を対象とし、インターリーブし
て受信されるパルスの1つ1つに対応した偏移周波数の
測定がリアルタイムで可能となり、且つ測定装置として
小型、軽量化できる偏移周波数測定装置を提供すること
を目的とする。
(Object of the Invention) The present invention has been made in view of the above situation, and is based on a pulse compression radar that employs a linear frequency modulation method among pulse compression radar signals, that is, a chirp radar (Chirp'rad).
A deviation frequency measuring device that can measure in real time the deviation frequency corresponding to each pulse received by interleaving, and which can be made smaller and lighter as a measuring device. The purpose is to provide

〈発明の構成および作用) この目的を達成するため本発明は、受信した直線周波数
変調信号とこの信号を所定時間遅延した信号とのビート
信号を発生し、このビート信号のゼロクロス回数に基づ
いて該直線周波数変調信号の偏移周波数を演算するよう
にしたものである。
(Structure and operation of the invention) In order to achieve this object, the present invention generates a beat signal consisting of a received linear frequency modulation signal and a signal obtained by delaying this signal by a predetermined time, and detects the frequency of zero crossings based on the number of zero crossings of this beat signal. The shift frequency of a linear frequency modulation signal is calculated.

(実施例) 第1図は、本発明の一実施例を示した回路ブロック図で
ある。
(Embodiment) FIG. 1 is a circuit block diagram showing an embodiment of the present invention.

−まず、構成を説明すると、1は遅延時間τを有する遅
延線であり、受信されたヂャーブレーダ信号のIF出力
としてのリニアFM信号aが入力される。2は混合器で
あり、遅延線1で遅延した遅延リニアFM信号すと非遅
延リニアFM信号aを入力し、ビート信号成分を含む混
合出力を生ずる。
- First, to explain the configuration, numeral 1 is a delay line having a delay time τ, into which a linear FM signal a is input as an IF output of a received jab radar signal. 2 is a mixer which inputs the delayed linear FM signal delayed by the delay line 1 and the non-delayed linear FM signal a, and produces a mixed output containing a beat signal component.

3はビデオ増幅器であり、ご−ト周波数帯域(低周波帯
域)のみを増幅し、混合出力に含まれる高周波成分、例
えばIF酸成分除去される。4はゼロクロスカウンタで
あり、ビデオ増幅器3より出力されるビート信号Cのゼ
ロクロス回数をh1数する。
3 is a video amplifier which amplifies only the root frequency band (low frequency band) and removes high frequency components such as IF acid components contained in the mixed output. A zero-cross counter 4 counts the number of zero-crosses of the beat signal C output from the video amplifier 3 by h1.

一方、5はスレッショルド検波器であり、スレッショル
ドレベルを上回るリニアFM信@aの■ンベローブを検
波して出力する。6はゲート信号発生回路であり、スレ
ッショルド検波器5の検波出力の立上がりから遅延線1
の遅延時間τと同じ遅延時間τ後にゲート信@dを発生
し、スレッショルド検波器5の検波出力が立下がったと
きにグー]へ信号dの出ツノを停止する。7はパルス幅
検出器であり、スレッショルド検波器5の検波出力を入
力し、リニアFM信号aのパルス幅Tの情報をもつ信号
、例えばディジタル信号を出力する。
On the other hand, 5 is a threshold detector which detects and outputs the envelope of the linear FM signal @a which exceeds the threshold level. 6 is a gate signal generation circuit, which connects the delay line 1 from the rising edge of the detection output of the threshold detector 5.
After a delay time τ equal to the delay time τ, the gate signal @d is generated, and when the detection output of the threshold detector 5 falls, the output of the signal d is stopped. A pulse width detector 7 inputs the detection output of the threshold detector 5 and outputs a signal, for example, a digital signal, having information on the pulse width T of the linear FM signal a.

8は演算器であり、ゼロクロスカウンタ4のカラン1〜
数Nおよびパルス幅検出器7によるリニアFM信@aの
パルス幅Tが与えられ、後の説明で明らかにづる演算処
理をもってリニアFM信号の偏移周波数ΔFを演算出力
する。
8 is an arithmetic unit, and the numbers 1 to 8 of the zero cross counter 4
Given the number N and the pulse width T of the linear FM signal @a from the pulse width detector 7, the deviation frequency ΔF of the linear FM signal is calculated and outputted through calculation processing that will be explained later.

第2図は第1図の実施例における各部の信号およびその
時間的関係を示したもので、第2図(a )は遅延線1
.混合器2/f3よびスレッショルド検波器5に入力す
るリニアFM信号aを示し、パルス幅Tの間に周波数が
fOからfO+ΔFに直線的に変化する。ここで、ΔF
は偏移周波数である。第2図(b)は遅延線1より出力
される遅延リニアFM信号(b)を示し、また同図(C
)はビデオ増幅器3より出力される非遅延リニアFM信
号aと遅延リニアFM信号すとの混合により得られたビ
ート信号Cを示し、更に同図(d )はゼロクロスカウ
ンタ4の制m端子に印加されるゲート信号発生器6より
のゲート信号dを示す。
FIG. 2 shows the signals of each part and their temporal relationships in the embodiment of FIG. 1, and FIG. 2(a) shows the delay line 1.
.. A linear FM signal a input to the mixer 2/f3 and the threshold detector 5 is shown, and the frequency changes linearly from fO to fO+ΔF during the pulse width T. Here, ΔF
is the deviation frequency. Figure 2 (b) shows the delayed linear FM signal (b) output from delay line 1, and Figure 2 (C
) shows the beat signal C obtained by mixing the non-delayed linear FM signal a and the delayed linear FM signal outputted from the video amplifier 3, and (d) of the same figure shows the beat signal C obtained by mixing the non-delayed linear FM signal a and the delayed linear FM signal outputted from the video amplifier 3. The gate signal d from the gate signal generator 6 is shown.

また第3図は、非遅延リニアFM信号aと遅延リニアF
M信号すの周波数が時間と共に変化する様子を示し、a
とbの周波数差(ビート周波数)fbが一定であり、イ
の接続周期が(T−τ)であることを示す。
In addition, Fig. 3 shows the non-delayed linear FM signal a and the delayed linear FM signal a.
M shows how the frequency of the signal changes over time, a
This shows that the frequency difference (beat frequency) fb between and b is constant, and the connection period of a is (T-τ).

次に、第1図の実施例の作用を偏移周波数ΔFの測定原
理と共に説明する。
Next, the operation of the embodiment shown in FIG. 1 will be explained together with the principle of measuring the deviation frequency ΔF.

まず、第1図の入力信@aは、例えば1Fアンプの出力
であり、第3図に示すように、パルス幅Tの間に周波数
がfOからfO+ΔFに直線的に変化するものとする。
First, it is assumed that the input signal @a in FIG. 1 is, for example, the output of a 1F amplifier, and the frequency changes linearly from fO to fO+ΔF during the pulse width T, as shown in FIG.

一方、遅延線1よりの遅延リニアFM信号すは非遅延リ
ニアFM信号aを一定時間τだけ遅延した信号2Zので
、混合器2の混合出力にはfb=ΔF(τ/T) (1
) で与えられるビート周波数fb が含まれる。勿論、混
合器2よりはビート周波数f6 より高い周波数成分、
例えばIF酸成分出力されるが、次段のビデオ増幅器3
がビート周波数帯域のみを増幅する機能を有することか
ら、ビデオ増幅器3よりは周波数fb のビート信@C
が得られる。
On the other hand, since the delayed linear FM signal from delay line 1 is a signal 2Z obtained by delaying the non-delayed linear FM signal a by a certain time τ, the mixed output of mixer 2 is fb=ΔF(τ/T) (1
) is included, which is the beat frequency fb given by . Of course, the frequency components higher than the beat frequency f6 than mixer 2,
For example, the IF acid component is output, but the next stage video amplifier 3
Since video amplifier 3 has the function of amplifying only the beat frequency band, the beat signal @C of frequency fb is better than video amplifier 3.
is obtained.

従って、このビート信号の周波数fbを測定すれば、別
にパルス幅Tについてはパルス幅検出器7で測定でき、
またτは回路定数なので、次式で偏移周波数ΔFを知る
ことができる。
Therefore, if the frequency fb of this beat signal is measured, the pulse width T can be measured separately using the pulse width detector 7.
Further, since τ is a circuit constant, the deviation frequency ΔF can be determined by the following equation.

ΔF=f&、 (T/τ) (2) しかしながら、ビート信号の周波数「ト を計測するた
めには回路構成が複雑化して小型軽石化を要求される軍
用レーダg戒装置用には不十分なため、本発明において
はビート信号の周波数fb を計測する代わりにビート
信号が何回極性を変えるか、即ち、ビート信号がゼロボ
ルトを横切る回数を計数する装置構成をとる。以下、こ
のビート信弓のゼロボルトを横切る回数をゼロクロス回
数Nとして説明する。
ΔF=f&, (T/τ) (2) However, in order to measure the beat signal frequency ``T'', the circuit configuration becomes complicated and is insufficient for military radar g-force equipment, which requires compact pumice. Therefore, in the present invention, instead of measuring the frequency fb of the beat signal, a device configuration is adopted that counts the number of times the beat signal changes polarity, that is, the number of times the beat signal crosses zero volts. The number of times zero volts are crossed will be described as zero crossing number N.

即ち、ビート信号Cのゼロクロス回数Nを計数するため
、ビデオ増幅器3の出力はゼロクロスカウンタ4に入力
され、更にゼロクロスカウンタ4の制御端子には、ピー
1−信号Cが存在する期間たり計数動作を行ない、他の
期間で雑音を計数することを防止するため、ゲート信号
発生器6よりビー1〜信号Cの発生期間のあいだだけ、
カウンタ動作を許容状態どするゲート信号dを与えるよ
うにしている。尚、ゲート信号dの立上がりでゼロクロ
スカウンタ4はリセットされる。
That is, in order to count the number of zero-crossings N of the beat signal C, the output of the video amplifier 3 is input to a zero-crossing counter 4, and the control terminal of the zero-crossing counter 4 is connected to the period during which the P1-signal C exists and the counting operation. In order to prevent noise from being counted during other periods, the gate signal generator 6 outputs signals only during the generation period of signals B1 to C.
A gate signal d is applied to allow the counter operation. Note that the zero cross counter 4 is reset at the rise of the gate signal d.

そこで、ビート信号のゼロクロス回数Nに基づく周波数
偏移ΔFの測定を詳細に説明すると、まず、第2図(C
)に示すように、ビート信号は1サイクル当り平均2回
極性が反転し、持続期間が(T−で)なのでゼロクロス
回数Nは N=2fb (T−τ) (3) で近似的に与えられる。尚、Nの計数は整数のため組子
化誤差を考慮して第(3)式を近似表現とした。従って
、ビート周波数fb を次式で近似することができる。
Therefore, to explain in detail the measurement of the frequency deviation ΔF based on the number of zero crossings N of the beat signal, first, we will explain in detail the measurement of the frequency deviation ΔF based on the number N of zero crossings of the beat signal.
), the polarity of the beat signal is reversed twice per cycle on average, and the duration is (T-), so the number of zero crossings N is approximately given by N = 2fb (T-τ) (3) . Note that since the count of N is an integer, formula (3) is approximated to take muntinization errors into account. Therefore, the beat frequency fb can be approximated by the following equation.

f) −: N/2 (T−τ) (4)この第(4)
式を前記第(2)式に代入すると、求める周波数偏移Δ
Fは近似的に ΔF”N (T/2r (T−r)) <5)で与えら
れる。この第(5)式において、遅延時間τは回路定数
として与えられ、また、パルス幅Tはパルス幅検出器7
で得られることから、前記第(5)式の演算を演篩器8
で実行することによりリニアFM信号の偏移周波数ΔF
をめることができる。
f) −: N/2 (T−τ) (4) This (4)
By substituting the equation into the above equation (2), the desired frequency deviation Δ
F is approximately given by ΔF”N (T/2r (T-r)) <5). In this equation (5), the delay time τ is given as a circuit constant, and the pulse width T is the pulse width Width detector 7
Since the above equation (5) is obtained by
The deviation frequency ΔF of the linear FM signal is
can be used.

このJ:うに、リニアFM信号の偏移周波数ΔFがわか
ればレーダにおけるパルス圧縮後のパルス幅が1/ΔF
に相当することから、チャープレーダの分解能を決める
ことができる。また要約すれば、1/ΔFTがパルス圧
縮比を与えることから、該レーダのパルス圧縮比を知る
こともできる。
This J: Uni, if the deviation frequency ΔF of the linear FM signal is known, the pulse width after pulse compression in the radar is 1/ΔF.
Since it corresponds to , the resolution of the chirp radar can be determined. In summary, since 1/ΔFT gives the pulse compression ratio, it is also possible to know the pulse compression ratio of the radar.

尚、」−記の実施例では、演鋒器8により前記(5)式
から偏移周波数ΔFの近似値を演枠するようにしている
が、ゼロクロス回数NがN=△F (2r (T−r)
/T) (6)であり、レーダの諸元であるΔFと王の
関数であることから、このNそのものをレーダ固有の諸
元と考えて発射源の分類等に使用することができる。
In the embodiment described in "-", the operator 8 is used to derive an approximate value of the deviation frequency ΔF from the equation (5), but the number of zero crossings N is N=ΔF (2r (T -r)
/T) (6) Since it is a function of ΔF, which is a specification of the radar, and the king, this N itself can be considered as a specification specific to the radar and used for classification of emission sources, etc.

この場合には、演算器8とパルス検出器7を省くことが
できる。
In this case, the arithmetic unit 8 and pulse detector 7 can be omitted.

(発明の効果) 以上、説明してきたJ:うに、本発明によれば直線周波
数変調方式をとるパルス圧縮レーダを対象とし、受信し
た直線周波数変調信号と、この信号を所定時間遅延した
信号とのビート信号を発生し、このビート信号のゼロク
ロス回数に基づいて偏移周波数をめるようにしたため、
従来のキャリア周波数やパルス幅の測定では困難であっ
た偏移周波数またはパルス圧縮比のみが異なる複数のチ
ャープレーダーからの信号をその′R射源瀬切分類し、
更に、各発射源の種類、例えばレーダの用途を推定する
ことが可能となる。また、発射源の異なるパルス列が互
いにインターリーブして受信された場合にも、1つのパ
ルスについての偏移周波数の測定をそのパルスを受信し
ている期間内(パルス幅内)に完了することから、直後
に到着する次のパルスの偏移周波数に備えることができ
、複数の発射源からのレーダ信号に対しても略すアルタ
イム′C″偏移周波数を測定することができ、従って、
これらを発射瀬切に分類することを可能にした。
(Effects of the Invention) As explained above, according to the present invention, a pulse compression radar using a linear frequency modulation method is targeted, and a received linear frequency modulation signal and a signal obtained by delaying this signal by a predetermined time are Since a beat signal is generated and the deviation frequency is determined based on the number of zero crossings of this beat signal,
It is difficult to measure signals from multiple chirp radars that differ only in shift frequency or pulse compression ratio, which is difficult with conventional carrier frequency and pulse width measurements.
Furthermore, it becomes possible to estimate the type of each emission source, for example the use of radar. Furthermore, even if pulse trains from different emission sources are received interleaved with each other, the measurement of the deviation frequency for one pulse can be completed within the period (within the pulse width) during which that pulse is being received. It is possible to prepare for the shift frequency of the next pulse arriving immediately after, and to measure the abbreviated real-time 'C' shift frequency even for radar signals from multiple sources, thus:
This made it possible to classify these as launch-segiri.

更に、測定装置を構成する回路部品として容積おJ:び
重量的にも大きなものを必要としないことから、測定装
置を小型軽量に作ることができ、戦闘機等の小型航空機
に主として搭載される軍用レーダ警戒装置として高い実
用的価値を有する。
Furthermore, since the circuit components that make up the measuring device do not require large volume or weight, the measuring device can be made small and lightweight, and is mainly installed in small aircraft such as fighter jets. It has high practical value as a military radar warning device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した回路ブロック図、第
2図は第1図の実施例における各部の信号および相互の
時間関係を示したタイミングチャート、第3図は第1図
の実施例におけるビート信号の発生を時間軸に対する周
波数で示したグラフ図である。 1:遅延線 2:混合器 3:ビデオ増幅器 4:ゼロクf]スカウンタ 5:スレッショルド検波器 6:ブート信号発生器 7:パルス幅検出器 8:演算回路 特許出願人 株式会社東京計器 代罪人 弁理士 竹内逮 手続ネ市正由 (自発) 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年特許願第152670号 2、発明の名称 偏移周波数測定装置 3、補正をする者 事件との関係 特許出願人 住所 東京都大田区南蒲田2丁目16番46号名称 <
338)株式会社東京計器 4、代理人 住所 東京都港区西新橋三丁目15番8号西新橋中央ビ
ル4階 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第7頁第15行目「その接続周期」とあるを、「
その持続周期」と補正する。 以上 手続ン11i−tE書 (自発) 昭和59年2月10日 昭和58年特許願第152670号 2、発明の名称 偏移周波数測定装置 3、補正をする省 事件との関係 特許出願人 住所 東京都大田区南蒲田2丁目16番46号名称 (
338)株式会社東京計器 4、代理人 a所 東京都港区西新橋三丁目15番8号西新橋中央ビ
ル4階 明細書の1発明の詳細な説明」の欄 6、補正の内容 昭和58年10月13日提出の手続補正臼で補正した明
細書第7頁第15行目「その持続周期」を、「その持続
期間」と補正する。 以上
FIG. 1 is a circuit block diagram showing an embodiment of the present invention, FIG. 2 is a timing chart showing the signals of each part and their mutual time relationships in the embodiment of FIG. 1, and FIG. FIG. 3 is a graph diagram showing the generation of a beat signal in terms of frequency versus time axis in the example. 1: Delay line 2: Mixer 3: Video amplifier 4: Zero clock f] Counter 5: Threshold detector 6: Boot signal generator 7: Pulse width detector 8: Arithmetic circuit Patent applicant Tokyo Keikidai Shinshin Co., Ltd. Patent attorney Takeuchi Arrest Proceedings Masayoshi Ichi (Voluntary) Commissioner of the Japan Patent Office Kazuo Wakasugi 1. Indication of the case Patent Application No. 152670 filed in 1982. 2. Name of the invention Shift frequency measuring device 3. Person making the amendment. Relationship with the case. Patent applicant address 2-16-46 Minami Kamata, Ota-ku, Tokyo Name <
338) Tokyo Keiki Co., Ltd. 4, Agent address: 4th floor, Nishi-Shinbashi Chuo Building, 3-15-8 Nishi-Shimbashi, Minato-ku, Tokyo Column 6 of the detailed explanation of the invention in the specification, page 7 of the detailed description of the amendment In the 15th line, replace "its connection period" with "
Its duration period” is corrected. Above Procedure 11i-tE (spontaneous) February 10, 1980 Patent Application No. 152670 of 1988 2 Name of the invention Shift frequency measuring device 3 Relationship with the Ministry case for amendment Patent applicant address Tokyo 2-16-46 Minami Kamata, Ota-ku, Tokyo Name (
338) Tokyo Keiki Co., Ltd. 4, Agent A 4th floor, Nishi-Shinbashi Chuo Building, 3-15-8 Nishi-Shimbashi, Minato-ku, Tokyo Column 6 of ``Detailed explanation of the invention'' in the specification 1980 Contents of the amendment "Duration period" on page 7, line 15 of the specification, which was amended in the procedural amendment submitted on October 13th, is amended to "duration period."that's all

Claims (1)

【特許請求の範囲】 直線周波数変調によるパルス圧縮レーダーが送信するパ
ルス圧縮レーダ信号を対象としだ偏移周波数測定装置に
おいて、 受信された直線周波数変調信号と該変調信号を所定時間
遅延した信号とのビート信号を発生するご一1〜信号発
生手段と、 該ビート信号発生手段で得られたビート信号のゼロクロ
ス回数を割数する計数手段と、該計数手段のゼロクロス
計数値に基づいて前記直線周波数変調信号の周波数偏移
を演算する演算手段とを備えたことを特徴とする偏移周
波数測定装置。
[Claims] In a shift frequency measuring device that targets a pulse compression radar signal transmitted by a pulse compression radar using linear frequency modulation, a signal obtained by delaying the received linear frequency modulation signal and the modulated signal by a predetermined time is used. A signal generating means for generating a beat signal, a counting means for dividing the number of zero crossings of the beat signal obtained by the beat signal generating means, and a linear frequency modulation based on the zero crossing count value of the counting means. 1. A deviation frequency measuring device comprising: calculation means for calculating a frequency deviation of a signal.
JP58152670A 1983-08-22 1983-08-22 Deviation frequency measuring apparatus Granted JPS6044882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152670A JPS6044882A (en) 1983-08-22 1983-08-22 Deviation frequency measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152670A JPS6044882A (en) 1983-08-22 1983-08-22 Deviation frequency measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6044882A true JPS6044882A (en) 1985-03-11
JPH0116394B2 JPH0116394B2 (en) 1989-03-24

Family

ID=15545527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152670A Granted JPS6044882A (en) 1983-08-22 1983-08-22 Deviation frequency measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6044882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668611A1 (en) * 1990-10-26 1992-04-30 Thomson Applic Radars Centre High precision method and device for the dynamic measurement of the effective linearity of a linear frequency modulation
JP2012233824A (en) * 2011-05-06 2012-11-29 Toshiba Corp Passive radar device, guiding device and radio wave detecting method
CN108535540A (en) * 2018-05-08 2018-09-14 成都信息工程大学 A kind of method of magnetron radar transmitter frequency transient measurement
WO2022125584A3 (en) * 2020-12-09 2022-07-21 Meta Platforms Technologies, Llc Object detection using rf beat signal frequency and phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668611A1 (en) * 1990-10-26 1992-04-30 Thomson Applic Radars Centre High precision method and device for the dynamic measurement of the effective linearity of a linear frequency modulation
JP2012233824A (en) * 2011-05-06 2012-11-29 Toshiba Corp Passive radar device, guiding device and radio wave detecting method
CN108535540A (en) * 2018-05-08 2018-09-14 成都信息工程大学 A kind of method of magnetron radar transmitter frequency transient measurement
CN108535540B (en) * 2018-05-08 2020-10-23 成都信息工程大学 Method for instantaneously measuring transmitting frequency of magnetron radar
WO2022125584A3 (en) * 2020-12-09 2022-07-21 Meta Platforms Technologies, Llc Object detection using rf beat signal frequency and phase

Also Published As

Publication number Publication date
JPH0116394B2 (en) 1989-03-24

Similar Documents

Publication Publication Date Title
GB1524633A (en) Frequency spectrum analyzer and radar system embloying the same
US4153366A (en) Rangefinding system
US7064704B2 (en) Apparatus for radar
GB1432244A (en) Pulse radar apparatus
JPS6044882A (en) Deviation frequency measuring apparatus
US4800388A (en) Apparatus for measuring pulse compression ratio
JP2013024836A (en) Radar receiver
KR100780525B1 (en) Laser theodolite
US4003051A (en) Expanded range gate moving target indicator
US3993996A (en) System for measuring pulse instabilities in a radar system or the like
JPH05264729A (en) Range finder
RU2013787C1 (en) Phase method of measurement of range of two aerial targets
US3676793A (en) Digital frequency lock generator
JP2767274B2 (en) Propagation path measurement device using spread spectrum waves
US3408649A (en) Range and bearing measurement system
US4114156A (en) Frequency shift rate detector
US4209785A (en) Correlation arrangements
US2994866A (en) Doppler navigation system
JP2586801B2 (en) Receiver for Takan equipment
JPH0560648A (en) Light pulse tester using heterodyne detection of light
JPS604435B2 (en) radar device
RU2245562C2 (en) Carrier-tuning and mti-mode radar system
JP2933454B2 (en) Radio altimeter
JP2779515B2 (en) Propagation path measurement device using spread spectrum waves
JPS6234087A (en) Radar equipment