JPS6044645B2 - Lightwave ranging device - Google Patents
Lightwave ranging deviceInfo
- Publication number
- JPS6044645B2 JPS6044645B2 JP58052092A JP5209283A JPS6044645B2 JP S6044645 B2 JPS6044645 B2 JP S6044645B2 JP 58052092 A JP58052092 A JP 58052092A JP 5209283 A JP5209283 A JP 5209283A JP S6044645 B2 JPS6044645 B2 JP S6044645B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- reflected
- modulated light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【発明の詳細な説明】
本発明は、測距光束の有害反射光の影響を減少させた
光波測距装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light wave distance measuring device that reduces the influence of harmful reflected light of a distance measuring light beam.
発光ダイオード等の発光素子に変調信号を与えて射出
変調光を発生させ、この射出変調光を測点に配置したた
とえばコーナーキユーブ等の反射器により反射させ、該
反射変調光を受光素子により受光し、上記射出変調光と
上記反射変調光との位相差により距離測定を行う光波測
距装置は公知である。A modulation signal is applied to a light-emitting element such as a light-emitting diode to generate emitted modulated light, this emitted modulated light is reflected by a reflector such as a corner cube placed at a measurement point, and the reflected modulated light is received by a light-receiving element. However, a light wave distance measuring device that measures distance based on the phase difference between the emitted modulated light and the reflected modulated light is known.
しかし、発光素子の発光面の位置及び放射方向によつて
変調光の位相にむらが発生し、またM号 、]’ −ゴ
ーを−嘲フ 、1’コゴin61LL−Bη7・11−
−一ーエα、F、l:ー 「コ」、A一相むらが発生す
ることから、受光素子及び発光素子の配置に関する制約
が生ずる。 そこで、束でない単芯のオプティカルファ
イバーを受光素子から発光素子までの光路中に配置する
ことによつて上記問題を解決することが提案されている
。However, unevenness occurs in the phase of the modulated light depending on the position of the light-emitting surface of the light-emitting element and the direction of radiation.
-1-A α, F, l: - “C”, A single-phase unevenness occurs, resulting in restrictions regarding the arrangement of the light-receiving element and the light-emitting element. Therefore, it has been proposed to solve the above problem by arranging a single-core optical fiber that is not a bundle in the optical path from the light receiving element to the light emitting element.
そして、光波測距装置においては、オプテイカルフアイ
バーヘ測距光束を入射する場合に、測距光射出光学系に
よつて射出変調光が集光した位置(焦点位置近傍)にオ
プティカルファイバーの端部を配置し、またオプティカ
ルファイバーから対物光学系へ光束を伝達する場合に、
対物光学系の焦点近傍へその端面を配置することによつ
て、測距光束の光量損失を防止している。 しカルなが
ら、対物光学系の焦点位置近傍に配置されたオプティカ
ルファイバーの端面において測距光束の反射が生ずると
、この端面が対物光学系の焦点位置に配置されているこ
とから、該反射光が逆進し測点に配置された反射器との
間を数往復した後受光素子に受光される場合が生ずる。
そ・して、光波測距装置は、射出変調光と反射変調光と
の位相差により距離測定を行うものであるから、上記の
場合のように測距光束がオプティカルファイバーと反射
器との間を数往復して受光素子に達する反射変調光は、
誤測定の原因となり、ま・た信頼性の低下を来す問題が
生ずる。本発明は、対物光学系の焦点位置近傍に配置さ
れた上記のオプティカルファイバー端面での測距光束の
反射を減少させて、有害反射光の影響が少ない光波測距
装置の提供を目的とし、その構成上の特徴とするところ
は、対物光学系を通して発光素子から射出された変調光
を測点に配置された反射器によつて反射し、反射された
変調光を受光素子によつて受光し、上記射出された変調
光と上記反射された変調光との位相差によつて測点まで
の距離を測定する光波測距装置において、上記対物光学
系の焦点位置近傍に端面が配置された、上記変調光を伝
達するための単芯のオプティカルファイバーを有し、上
記オプティカルファイバーの上記端面に上記オプティカ
ルファイバーと略同一の屈折率の光学部材を密着して配
置したことてある。以下、本発明の実施例を図について
説明明すると、第1図において、発光素子1からの変調
光は、コンデンサレンズ2を通つてA部に結像する。In a light wave ranging device, when a ranging light flux is incident on an optical fiber, the end of the optical fiber is placed at a position (near the focal point) where the output modulated light is focused by the ranging light output optical system. and when transmitting the light flux from the optical fiber to the objective optical system,
By arranging the end face near the focal point of the objective optical system, loss of light quantity of the distance measuring light beam is prevented. However, when the distance measurement light beam is reflected at the end face of the optical fiber placed near the focal position of the objective optical system, the reflected light is There are cases in which the light is received by the light receiving element after it travels backwards and makes several reciprocations between it and the reflector placed at the measurement point.
Since the optical distance measuring device measures distance by using the phase difference between the emitted modulated light and the reflected modulated light, the distance measuring light beam is transmitted between the optical fiber and the reflector as in the above case. The reflected modulated light that travels back and forth several times and reaches the photodetector is
This causes problems that cause measurement errors and lower reliability. An object of the present invention is to provide a light wave distance measuring device in which the reflection of the distance measuring light beam at the end face of the above-mentioned optical fiber disposed near the focal point of the objective optical system is reduced, and the influence of harmful reflected light is reduced. The features of the configuration are that the modulated light emitted from the light emitting element through the objective optical system is reflected by a reflector placed at the measuring point, and the reflected modulated light is received by the light receiving element. In a light wave distance measuring device that measures a distance to a measurement point based on a phase difference between the emitted modulated light and the reflected modulated light, the end face is disposed near the focal position of the objective optical system, It has a single-core optical fiber for transmitting modulated light, and an optical member having substantially the same refractive index as the optical fiber is disposed in close contact with the end surface of the optical fiber. Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. In FIG. 1, modulated light from a light emitting element 1 passes through a condenser lens 2 and forms an image on a section A.
3はオプティカルファイバーで、両端には反射防止用板
4,5か接着剤により接着されている。3 is an optical fiber, and anti-reflection plates 4 and 5 are bonded to both ends with adhesive.
オプティカルファイバー3は、その入射側端面が上述の
コンデンサレンズ2を通過した光束の結像点Aに位置す
るように配置される。オプティカルファイバー3を出た
光束は、反射防止用板5及ひ対物レンズ系を構成する対
物レンズ6を通り平行光束となつて測点に配置された反
射器に当てられる。すなわち、オプティカルファイバー
3の対物レンズ6側の端面は、対物レンズ6の焦点位置
に配置されている。また反射防止用板は、オプティカル
ファイバーの屈折率と同一またはそれに近い屈折率を持
つた透明な板により構成し、該反射防止用板を接着剤に
よりオプティカルファイバーの端面に接着する場合には
、接着剤もオプティカルファイバーに近い屈折率を有す
るものとすることが好ましい。そして、オプティカルフ
ァイバー3に反射防止用板4,5を接着剤によつて接着
することによつてオプティカルファイバー3と反射防止
用板4,5との十分な密着を図つている。本発明におい
ては、対物光学系の焦点位置近傍に配置されたオプティ
カルファイバー3の両端に反射防止用板5が配置されて
いるので、ファイバー端面における反射は大巾に減少す
る。板4,5の外面における反射は生じるが、焦点位置
外てあるため、悪影響はほとんど生じない。すなわち、
反射器からの反射変調光が対物レンズ6から入射して反
射防止用板5の外面において反射されても、この反射位
置は対物レンズ6の焦点位置から隔つているためその有
害な反射光束は平行光束ではなく拡散光束となつて対物
レンズ6から射出される。このため、反射器て反射され
る有害反射光束の光量は著しく減少し、この拡散光束が
再び反射器で反射されて受光素子に達したとしても、こ
れが測定に与える影響は無視できる程度のものである。
本実施例においては、オプティカルファイバー3が屈曲
して配置されているため、発光素子1からの変調光は、
オプティカルファイバー3内で繰り返し反射される過程
に於て、発光面の位置による位相むらのみでなく、放射
方向の位相むらも混合均質化が十分に行われる。The optical fiber 3 is arranged so that its entrance side end face is located at the imaging point A of the light beam that has passed through the above-mentioned condenser lens 2. The light beam exiting the optical fiber 3 passes through an anti-reflection plate 5 and an objective lens 6 constituting an objective lens system, and becomes a parallel light beam, which is applied to a reflector placed at a measurement point. That is, the end face of the optical fiber 3 on the objective lens 6 side is arranged at the focal point of the objective lens 6. In addition, the anti-reflection plate is composed of a transparent plate having a refractive index that is the same as or close to the refractive index of the optical fiber, and when the anti-reflection plate is adhered to the end face of the optical fiber with an adhesive, the adhesive Preferably, the agent also has a refractive index close to that of the optical fiber. By adhering the antireflection plates 4 and 5 to the optical fiber 3 with an adhesive, sufficient adhesion between the optical fiber 3 and the antireflection plates 4 and 5 is achieved. In the present invention, since the anti-reflection plates 5 are placed at both ends of the optical fiber 3 placed near the focal point of the objective optical system, reflection at the fiber end face is greatly reduced. Although reflection occurs on the outer surfaces of the plates 4 and 5, since it is located outside the focal position, there is almost no adverse effect. That is,
Even if the reflected modulated light from the reflector enters the objective lens 6 and is reflected on the outer surface of the anti-reflection plate 5, the harmful reflected light flux is parallel because the reflection position is far from the focal position of the objective lens 6. The light is emitted from the objective lens 6 as a diffused light flux instead of a light flux. Therefore, the amount of harmful reflected light reflected by the reflector is significantly reduced, and even if this diffused light is reflected again by the reflector and reaches the photodetector, the effect this has on the measurement is negligible. be.
In this embodiment, since the optical fiber 3 is arranged in a bent manner, the modulated light from the light emitting element 1 is
In the process of being repeatedly reflected within the optical fiber 3, not only the phase unevenness due to the position of the light emitting surface but also the phase unevenness in the radiation direction is sufficiently mixed and homogenized.
たとえば、直径50ないし250ミクロン、長さ30?
程度のオプティカルファイバーにより、十分な位相むら
の混合均質化を行ない得ることが確認された。また屈曲
していないオプティカルファイバーでは第2図に示す如
く光の方向により光路長が異なり、この為方向による位
相むらがオプティカルファイバー自体から発生し、その
大きさは例えばファイバー長3h1放射角度300では
約、4.5TnInにも達するが本発明てはオプティカ
ルファイバーを屈曲させて光の方向についても混合均質
化を行つているので、この様な不都合は生じない。第1
図に示す実施例においては、オプティカルファイバー3
の両端は、同゛軸に配置されているが、本発明において
は、第3図、第4図に示すように、オプティカルファイ
バー3a,3bの両端を互に偏心或いは偏心、偏向させ
て配置してもよい。この様にオプティカルファイバーの
両端面を偏心、偏向させることにより発光、受光素子の
配置を任意に選べることは全体の小形化、組立の容易化
、誘導防止等について構造設計上の利益となる。以上の
ように構成することによつて、本発明を適用した光波測
距装置においては、オプティカル゛ファイバーの端面に
おける有害反射を減少せしめ、信頼性の向上が図れる。For example, diameter 50 to 250 microns, length 30?
It was confirmed that sufficient mixing and homogenization of phase unevenness could be achieved by using optical fibers of about 100%. In addition, in an unbent optical fiber, the optical path length differs depending on the direction of the light as shown in Figure 2. Therefore, phase unevenness depending on the direction occurs from the optical fiber itself. , 4.5TnIn, but in the present invention, such inconvenience does not occur because the optical fiber is bent to homogenize the mixing in the direction of light. 1st
In the embodiment shown in the figure, the optical fiber 3
However, in the present invention, as shown in FIGS. 3 and 4, both ends of the optical fibers 3a and 3b are arranged eccentrically or eccentrically or deflected from each other. You can. In this way, by decentering and deflecting both end faces of the optical fiber, the arrangement of the light emitting and light receiving elements can be arbitrarily selected, which has advantages in terms of structural design, such as miniaturization of the entire structure, ease of assembly, and prevention of induction. By configuring as described above, in the optical distance measuring device to which the present invention is applied, harmful reflections at the end face of the optical fiber can be reduced and reliability can be improved.
第1図は本発明の一実施例を示す概略図、第2図はオプ
ティカルファイバー内における光の反射を示す説明図、
第3図および第4図はオプティカルガイドの他の形態例
を示す概略図である。
1・・・・・・発光素子、2・・・・・・リレーレンズ
、3・・・・オプティカルファイバー、4,5・・・・
・・反射防止用板、6・・・・・・対物レンズ。FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing reflection of light within an optical fiber,
3 and 4 are schematic diagrams showing other embodiments of the optical guide. 1... Light emitting element, 2... Relay lens, 3... Optical fiber, 4, 5...
...Anti-reflection plate, 6...Objective lens.
Claims (1)
を測点に配置された反射器によつて反射し、反射された
変調光を受光素子によつて受光し、上記射出された変調
光と上記反射された変調光との位相差によつて測点まで
の距離を測定する光波測距装置において、上記対物光学
系の焦点位置近傍に端面が配置された上記変調光を伝達
するための単芯のオプティカルファイバーを有し、上記
オプティカルファイバーの上記端面に上記オプティカル
ファイバーと略同一の屈折率の光学部材を密着して配置
したことを特徴とする光波測距装置。1. The modulated light emitted from the light emitting element through the objective optical system is reflected by a reflector placed at a measuring point, the reflected modulated light is received by the light receiving element, and the emitted modulated light and the above In a light wave distance measuring device that measures the distance to a measurement point based on the phase difference between the reflected modulated light and the optical system, a single core for transmitting the modulated light, the end face of which is disposed near the focal point of the objective optical system. What is claimed is: 1. An optical distance measuring device comprising: an optical fiber, and an optical member having substantially the same refractive index as the optical fiber is disposed in close contact with the end face of the optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58052092A JPS6044645B2 (en) | 1983-03-28 | 1983-03-28 | Lightwave ranging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58052092A JPS6044645B2 (en) | 1983-03-28 | 1983-03-28 | Lightwave ranging device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55159084A Division JPS5855470B2 (en) | 1980-11-12 | 1980-11-12 | Phase unevenness mixing homogenization device for light wave ranging equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58174871A JPS58174871A (en) | 1983-10-13 |
JPS6044645B2 true JPS6044645B2 (en) | 1985-10-04 |
Family
ID=12905187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58052092A Expired JPS6044645B2 (en) | 1983-03-28 | 1983-03-28 | Lightwave ranging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6044645B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5454151A (en) * | 1977-10-07 | 1979-04-28 | Dainippon Toryo Co Ltd | Anti-corrosive coating composition |
-
1983
- 1983-03-28 JP JP58052092A patent/JPS6044645B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5454151A (en) * | 1977-10-07 | 1979-04-28 | Dainippon Toryo Co Ltd | Anti-corrosive coating composition |
Also Published As
Publication number | Publication date |
---|---|
JPS58174871A (en) | 1983-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4807954A (en) | Optical coupling device | |
US4213677A (en) | Light coupling and branching device using light focusing transmission body | |
US5499309A (en) | Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces | |
US5497438A (en) | Optical transmission and reception module having coupled optical waveguide chips | |
US6760517B2 (en) | Optical coupling device for two-way optical communications | |
US6654518B1 (en) | Tap output collimator | |
EP0803745B1 (en) | Fiber optics device | |
JPS6044645B2 (en) | Lightwave ranging device | |
US5721426A (en) | Optical transmitting/receiving module having communication lines coupled by a single lens | |
JPH1039181A (en) | Light transmitter/receiver | |
JPH08166527A (en) | Optical conversion device | |
JPH01225907A (en) | Optical coupler module | |
JPH048762B2 (en) | ||
JP3820816B2 (en) | Optical branching and coupling device | |
CN212905563U (en) | Optoelectronic component | |
CN214474082U (en) | Wavelength division multiplexing device | |
JPS5855470B2 (en) | Phase unevenness mixing homogenization device for light wave ranging equipment | |
JP2522607Y2 (en) | Optical device using optical fiber | |
JPS62269909A (en) | Light-receiving device | |
JP2532780Y2 (en) | Optical coupling device | |
JP3799860B2 (en) | Optical star coupler | |
JPH05196823A (en) | Waveguide chip | |
JPS602643B2 (en) | Optical coupling branch circuit using focusing optical transmitter | |
JPS6025042Y2 (en) | Tapered optical coupler | |
JPS5955407A (en) | Optical demultiplexer |