JPS6044224A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS6044224A
JPS6044224A JP14930783A JP14930783A JPS6044224A JP S6044224 A JPS6044224 A JP S6044224A JP 14930783 A JP14930783 A JP 14930783A JP 14930783 A JP14930783 A JP 14930783A JP S6044224 A JPS6044224 A JP S6044224A
Authority
JP
Japan
Prior art keywords
discharge
signal
voltage
gap
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14930783A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14930783A priority Critical patent/JPS6044224A/en
Publication of JPS6044224A publication Critical patent/JPS6044224A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent discharge concentration and suppress occurrence of abnormal arc discharge, by decreasing the rate of increase in the interelectrode voltage per unit time and slowing down the rising of the applied voltage when it is judged from impulse waves produced by the discharging that the conditions between the electrodes are such that an abnormal arc will imminently occur. CONSTITUTION:When an ultrasonic wave produced and transmitted to an ultrasonic wave sensor 35 is detected thereby as an electric signal, the output portion of the sensor 35 generates a signal Sp. A peak hold circuit 42 then stores the value which was the highest of the signal Sp. Then, a comparator 47 makes judgment whether the impulse signal Sp is normal or not and allows a normal signal to be input to a counter 49 as a reset signal. If the conditions indicating imminent occurrence of abnormal discharge last, the counts in the counter 49 are increased, and when the counts reach a predetermined value, a light emitting diode 52 is turned on and a signal S of a switch 51 is turned to ''1'' level and output to the outside. The voltage responding to the output of the counter 49 is then inverted through an inversion amplifier, whereby the voltage rising rate dv/dt is made smaller and the rising of the applied voltage is slowed down in proportion as the conditions between the electrodes are worse to make the discharge difficult to occur and prevent discharge concentration.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は放電加工装置、特に電極と被加工物とを絶縁性
加工液を介在させて対向さゼ、その極間間隙内に放電を
発生させて上記被加工物を加工する放電加工装置に関す
るものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electric discharge machining apparatus, in particular, an electric discharge machining apparatus in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and an electric discharge is generated in the gap between the electrodes. The present invention relates to an electric discharge machining apparatus for machining the workpiece described above.

〔従来技術〕[Prior art]

第1図には従来の放電加工装置の概要構成図が示されて
いる。第1図において、電極10は加工槽12内に置か
れた被加工物14と絶縁性加工液]6を介して対向して
いる。電極10と被加工物14間には加工電源18が接
続されている。この加工電源18は直流電源18aと、
加工電流の断続を行なうためのスイッチング素子18b
と、電流制限抵抗18cと、上記スイッチング素子18
bの断続を制御するための発振器18dとによって構成
され、加工電流を断続的に電極10と被加工物14との
極間間隙20に供給する。
FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, an electrode 10 faces a workpiece 14 placed in a processing tank 12 with an insulating processing liquid 6 interposed therebetween. A processing power source 18 is connected between the electrode 10 and the workpiece 14. This processing power source 18 includes a DC power source 18a,
Switching element 18b for intermittent machining current
, a current limiting resistor 18c, and the switching element 18
The machining current is intermittently supplied to the gap 20 between the electrode 10 and the workpiece 14.

上記の加工電流1は、■−□旦二内−(Eは直流電に 源18aの電圧値、Rは電流制限抵抗18cの抵抗値、
v9は極間電圧値)の式であられされる。極間電圧値v
9は、アーク放電中は20〜30v、短絡時はOv1無
放電中はEVとなり、スイッチング素子18bがオフ状
態の時は0■となる。
The above machining current 1 is - (E is the voltage value of the DC power source 18a, R is the resistance value of the current limiting resistor 18c,
v9 is the interelectrode voltage value). Electrode voltage value v
9 is 20 to 30V during arc discharge, Ov1 during short circuit and EV during no discharge, and 0■ when switching element 18b is in the off state.

そこでこの極間電圧値v9を検出して平滑回路22て平
均化すれば、この値で極間間隙制御を行なうことができ
る。すなわち、極間間隙20が広い時は放電が起りにく
く平均電圧値Vsは高い。極間間隙20が狭い時は短絡
したり、容易に放電するため平均電圧値Vsは低下する
。従って、この平均電圧値Vsを基準電圧値Vtと比較
して、この差を増幅器24で増幅して油圧サーボコイル
26に入力すれば、油・圧発生ポンプ28と油圧シリン
ダ30とて構成される油圧サーボ機構によって、極間間
隙20がほぼ一定になるように電極]0を制御ずろこと
がてきる。
Therefore, if this inter-electrode voltage value v9 is detected and averaged by the smoothing circuit 22, the inter-electrode gap can be controlled using this value. That is, when the inter-electrode gap 20 is wide, discharge is difficult to occur and the average voltage value Vs is high. When the inter-electrode gap 20 is narrow, short circuits or discharges occur easily, resulting in a decrease in the average voltage value Vs. Therefore, if this average voltage value Vs is compared with the reference voltage value Vt, and this difference is amplified by the amplifier 24 and inputted to the hydraulic servo coil 26, the oil/pressure generating pump 28 and the hydraulic cylinder 30 are configured. A hydraulic servo mechanism can control and shift the electrode 0 so that the interpolar gap 20 is approximately constant.

従来の放電加工装置で加工状態の良否を判別する際、最
も一般的なのは上記の極間電圧値v9の平均電圧値Vs
を*Jl 1rrllすることである。すなわち、平均
電圧値Vsが低い時は極間インピーダンスが低い場合で
あって、短絡、連続的アーク放電となり、極間間隙20
には加工粉やスラッジの滞留等が考えられろ。しかし放
電加工において最も危険な異常アーク放電は、−反発生
すると加工液の熱分解によるカーボン発生のために、カ
ーボンと被加工物との間の放電となり、極間インピーダ
ンスが高くなったような状態になる。このため平均電圧
値Vsの観l!tqでは異常アーク放電による極間間隙
状態悪化の検出は不可能であるという欠点があった。
When determining whether the machining condition is good or bad with a conventional electrical discharge machining device, the most common method is to use the average voltage value Vs of the machining voltage value v9 mentioned above.
It is to *Jl 1rrll. In other words, when the average voltage value Vs is low, the impedance between the electrodes is low, resulting in a short circuit and continuous arc discharge, and the gap between the electrodes is 20.
Possible causes include accumulation of processed powder and sludge. However, the most dangerous abnormal arc discharge in electric discharge machining is - When it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in an electric discharge between the carbon and the workpiece, resulting in a state where the impedance between the electrodes becomes high. become. Therefore, the average voltage value Vs is tq has the disadvantage that it is impossible to detect deterioration of the inter-electrode gap condition due to abnormal arc discharge.

〔発明の概要〕[Summary of the invention]

本発明は前述した従来の課題に鑑み為されたものであり
、その目的は放電発生時の衝撃波を検出して極間間隙状
態を判別し、異常アーク発生の前駆状態と判断した時に
極間間隙状態が正常となるように、極間電圧の時間あた
りの上昇度dν/dtを変化させ、異常となるに従って
上記上昇度を減少さゼて印北電圧の立上りなり)ろやか
にし、放電の発生を困難とすることにまり、放電の集中
を防いで異常アーク放電の発生を防ぐようにした放電加
工装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to detect the shock wave at the time of discharge occurrence, determine the state of the gap between the poles, and detect the gap between the poles when it is determined that the state is a precursor to the occurrence of an abnormal arc. The rate of increase dν/dt of the inter-electrode voltage per hour is changed so that the state becomes normal, and as the condition becomes abnormal, the rate of increase is decreased (as the rise of the north-north voltage) becomes more gradual, and the discharge is reduced. The object of the present invention is to provide an electric discharge machining apparatus which prevents the occurrence of abnormal arc discharge by preventing concentration of electric discharge.

」二記の目的を達成するために、本発明は、電極と被加
工物とを絶縁性加工液を介在させて対向させ、その極間
間隙内に放電を発生させて上記被加工物を加工する放電
加工装置において、電極と被加工物の極間間隙で放電し
た際の超音波等のlli撃波な加工液中に設置した検出
器により検知し、集中放電によるアーク前駆現象を知る
異常放電検出手段と、上記衝撃波の波形分析によって極
間間隙状態が悪い状態にあると判断して48号を出力す
る極間間隙状態判別手段と、該出力に基すいて、極間間
隙に印加するパルス電圧の立上り時間の傾きを制御ずろ
制御手段を備えたことを特徴とする。
In order to achieve the second object, the present invention makes an electrode and a workpiece face each other with an insulating machining liquid interposed therebetween, and generates an electric discharge in the gap between the electrodes to machine the workpiece. In electrical discharge machining equipment, abnormal electrical discharge is detected by a detector installed in the machining fluid that generates waves such as ultrasonic waves when electrical discharge occurs in the gap between the electrode and the workpiece, and detects the arc precursor phenomenon caused by concentrated electrical discharge. a detecting means, a gap state determining means for determining that the gap condition is in a bad state by analyzing the waveform of the shock wave and outputting No. 48; and a pulse for applying a pulse to the gap based on the output. The present invention is characterized by comprising means for controlling the slope of the rise time of the voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の好適な実施例を説明する
。第2図は第1図と同一部分に同一符号を付した本発明
の一実施例の構成を示す概要図で、放電々流Iの波形と
、電極支持ロッド31に埋めて取りつれられた超音波セ
ンサ35て検出される超音波圧力波形との関係を第3図
に示す。第3図の上図ではL1〜t4の各時間毎に放電
電流■が流れ、放電発生点付近の加工液は約6000゜
近い高温により急速に気化爆発して気泡が生成さA]る
。これに伴い付近の加工液は急激な圧力変化を受けろこ
とになり、これが超音波衝撃波として狭い極間間隙に伝
播し、電極を介して上記超音波センサ35に伝わり、電
気信号として検知される。正常なる放電の際には、上記
衝撃波は電流の大小に応じて、はぼ周期的に検出される
わけであるが、放電がある一点て集中して行オ)れるよ
うになると、加速度的に、乙の点のイオン濃度は被加工
粉や、加工液の熱分解によるカーボン量の増加により非
絶縁状態に近くなるほど増大ずろ。このような場合放電
点て(よ、放電により気泡が消滅(通常0.1〜2m5
ec程度必要とする)する前に、再度放電するため、液
中ての放電と異り体積変化率は、通常放電の場合と比較
して大きくなく従って発生する超音波衝撃力も低下する
。第2図の40は、上記動作原理に基づいて正常放電と
異常放電を検出し、第3図に示したようにt5て発生し
た放電々流による超音波圧力なL5て検出して、この値
が正常放電時のものと比較して小さくなっている状況が
、ある個数連続的に発生した場合に、異常放電として判
別している。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. FIG. 2 is a schematic diagram showing the configuration of an embodiment of the present invention, in which the same parts as in FIG. 1 are denoted by the same reference numerals. The relationship with the ultrasonic pressure waveform detected by the sonic sensor 35 is shown in FIG. In the upper diagram of FIG. 3, a discharge current (2) flows at each time from L1 to t4, and the machining fluid near the discharge point rapidly vaporizes and explodes due to the high temperature of approximately 6000 degrees, producing bubbles (A). As a result, the nearby machining fluid undergoes a rapid pressure change, which propagates as an ultrasonic shock wave into the narrow gap between the poles, is transmitted to the ultrasonic sensor 35 via the electrode, and is detected as an electrical signal. During normal discharge, the shock waves mentioned above are detected periodically depending on the magnitude of the current, but when the discharge becomes concentrated at one point, the shock waves are detected at an accelerated rate. , The ion concentration at point B increases as it approaches the non-insulating state due to an increase in the amount of carbon due to thermal decomposition of the processed powder and processing fluid. In such a case, the discharge point (usually 0.1 to 2 m5) will eliminate the bubbles.
Since the discharge is performed again before the discharge (necessary as much as ec) occurs, the rate of change in volume is not as large as in the case of normal discharge, unlike discharge in a liquid, and therefore the generated ultrasonic impact force is also reduced. 40 in Fig. 2 detects normal discharge and abnormal discharge based on the above operating principle, and detects the ultrasonic pressure L5 due to the discharge flow generated at t5 as shown in Fig. 3. An abnormal discharge is determined when a certain number of consecutive occurrences occur in which the discharge voltage is smaller than that during normal discharge.

第4図は、上記装置40の詳細図であって、超音波セン
サ35の出力は、増幅器41により増幅さ1]、信号S
l、を発生する。42はピークホールド回路であって、
信号S、の最も高かった値を記憶している。すなわち、
積分量#I43には、アナグロスイソタ44と、コンパ
l/−タ45を介して、積分量g843の最も高かった
出力より、高い電圧のみが抵抗Rを通して、積分回路の
コンデンサCに充電される。よって、分圧抵抗46の出
力は、正常時の最も高い出力の分圧されたものとなり、
これにより、正常と異常の判別を行うものである。
FIG. 4 is a detailed diagram of the device 40, in which the output of the ultrasonic sensor 35 is amplified by an amplifier 41 and the signal S
generate l. 42 is a peak hold circuit,
The highest value of the signal S is stored. That is,
To the integral quantity #I43, only a voltage higher than the highest output of the integral quantity g843 is charged to the capacitor C of the integrating circuit via the analog isator 44 and the comparator 45 through the resistor R. Therefore, the output of the voltage dividing resistor 46 is the voltage divided version of the highest output during normal operation.
This is used to distinguish between normality and abnormality.

というのは、爆発の圧力は放電エネルギーや、エネルギ
ーの印加時間によっても変化し、放電加工のように、粗
加工から、微細な仕上加工まてのエネルギー景の種類の
多い加工では、一様に、正常な!1!7%!力の規格化
が難しいことがあげられ、装置40のように、ピークホ
ールド回路42を用いて、最も正規な衝撃力との比較を
行う必要がある。
This is because the explosion pressure changes depending on the discharge energy and energy application time, and in machining such as electrical discharge machining, which has many types of energy landscapes from rough machining to fine finishing machining, it is uniformly applied. ,normal! 1!7%! It is difficult to standardize the force, and it is necessary to use a peak hold circuit 42 like the device 40 to compare it with the most normal impact force.

コンパレーター47て、’tj撃波信号SDの正否判別
を行い、カウンター49にリセットパルスとして入力さ
せる。電流検出パルスSIは、カレン1、トランスCT
により、電流検出を行い増幅整形回路50を介し上記カ
ウンター49にアップカウント信号として入力さAする
。よってこの回路では、電流が極間間隙に流れるたびに
、+1. r!けカウントされ、そのすぐあとに、正常
放電であるとりセラ)・されるので、カウンター内容の
増加はない。異常放電となり、第3図のt4、t5のよ
うな状態が続くと、カウンター49は、リセットがかか
らないのでどんどん内容が増加し、スイッチ51て、設
定しt:量まで達すると、発光ダイオード52のドライ
バー53の入力が、”1” レベルとなり、52は点灯
するとともに51の出力信号Sが“1ルベルとなり、外
部に出力される。尚アントゲ−1・54は、カウンター
がフル状態となった時、それ以上増加させないためのも
のである。このカウンターの内容を検出し処理すること
により極間間隙で発生している放電に伴う各種の状況が
容易に判断される。すなわち上記カウンター内容が大で
あれば、極間間隙状態は悪化し、放電集中の状態にある
ことから何等の不具合、例えば加工粉の滞留によって極
間間隙にスラッジがたまっているとか、異常アークによ
って加工液が熱分解してカーボンが発生しているとか、
電極の一部が破損してそのかけらが極間間隙に存在する
ことを検出できる。
The comparator 47 determines whether the 'tj attack wave signal SD is correct or not, and inputs it to the counter 49 as a reset pulse. Current detection pulse SI is Karen 1, transformer CT
As a result, current is detected and input as an up-count signal to the counter 49 via the amplification and shaping circuit 50. Therefore, in this circuit, each time a current flows through the gap between the poles, +1. r! The counter contents do not increase because the current is counted and immediately after that, a normal discharge occurs. If an abnormal discharge occurs and the conditions like t4 and t5 in FIG. The input of the driver 53 becomes "1" level, 52 lights up, and the output signal S of 51 becomes "1 level" and is output to the outside. This is to prevent the counter from increasing any further. By detecting and processing the contents of this counter, various situations associated with the discharge occurring in the gap between the electrodes can be easily determined. In other words, if the contents of the counter are large, If there is, the gap condition between the machining poles will worsen and the discharge will be concentrated, which may indicate some kind of problem, such as sludge accumulating in the machining gap due to the retention of machining powder, or thermal decomposition of the machining fluid due to an abnormal arc. Is carbon being generated?
It can be detected that a part of the electrode is damaged and its fragments are present in the gap between the electrodes.

さて、上記検出回路によって得られた出力にもとづいて
、極間印加電圧の時間あたりの傾きdV/dtを変化さ
ぜることにより、極間状態が悪い場合には、ゆるく立上
らせて、放電をさせ難くし、放電集中を防ぎ、良好な状
態の時には、急速に立上らゼて放電さぜやずくして加工
能率を向上させろことができる。このための実施例を第
5図に、動作説明を第6図のタイムチャー1・を用いて
説明する。第5図における100は反転増幅器であって
、カウンタ49の出力に応じたアナログ電圧V。
Now, based on the output obtained by the above-mentioned detection circuit, by varying the slope dV/dt of the voltage applied between the electrodes per time, if the electrode gap condition is poor, the voltage can be raised slowly. It is possible to make it difficult to generate electric discharge, prevent concentration of electric discharge, and when the condition is good, to quickly rise and stop the electric discharge, thereby improving machining efficiency. An embodiment for this purpose will be described with reference to FIG. 5, and an explanation of the operation using time chart 1 of FIG. 6. Reference numeral 100 in FIG. 5 is an inverting amplifier, and an analog voltage V corresponding to the output of the counter 49.

(尚、該アナログ電圧Voは、カウンタ49のディジク
ル出力をI) / Aコンバータ40に接続して得られ
る)を反転してPNP トランジスタ101のベースに
加えるための回路である。
This is a circuit for inverting the analog voltage Vo (obtained by connecting the digital output of the counter 49 to the I/A converter 40) and applying it to the base of the PNP transistor 101.

さて極間間隙に印加される電圧v9は以下のような値と
なる。
Now, the voltage v9 applied to the gap between the electrodes has the following value.

Vg= IcX t / C−−−(11尚、Icはト
ランジスタ101のコレクタ電流、tはパルス電圧印加
後の経過時間、Cは、コンデンサ102の容置である。
Vg=IcXt/C---(11) where Ic is the collector current of the transistor 101, t is the elapsed time after the pulse voltage is applied, and C is the capacity of the capacitor 102.

次にIcはトランジスタ101のエミッタフォロア負荷
抵抗103に流れる電流にほぼ等しく(99に程度)乙
のIcは、抵抗103の値をRi、とすれば以下のよう
に表される。
Next, Ic is approximately equal to the current flowing through the emitter follower load resistor 103 of the transistor 101 (approximately 99).If the value of the resistor 103 is Ri, Ic can be expressed as follows.

尚、vEはトランジスタ101のエミッタ電圧、VBは
ベース電圧である。よって極間印加電圧v9は+11式
と(2)式より となる。
Note that vE is the emitter voltage of the transistor 101, and VB is the base voltage. Therefore, the voltage applied between electrodes v9 is obtained from equation +11 and equation (2).

乙とテ、R=5Ω、C=0.01μF 、 V、= O
〜IOVとすると、電圧傾斜c/V/dtl;t、0〜
200V/ //Sの範囲で変化するようになる。尚、
反転増幅器100は、入力0V(7)時出力10v1人
力10vノ時OVとなるように設訂されているので、V
oが大となる程、ずなオ)ち、極間状態が悪くなるほど
、印加電圧の傾きdV/dtは減少する。また、抵抗1
04はコンデンサ102に蓄積された電荷を放電時に、
加工に影響しないように放電するためのものであり、ダ
イ4−ド105は、加工用のスイッチングトランジスタ
18bからの電流がコンデンサ102に逆流するのを防
いている。
Otsu and Te, R=5Ω, C=0.01μF, V,=O
~IOV, voltage slope c/V/dtl;t, 0~
It will change in the range of 200V///S. still,
The inverting amplifier 100 is designed so that when the input is 0V (7), the output is 10V, and when the human power is 10V, the output is OV.
The larger o is, the worse the electrode gap condition is, the lower the slope dV/dt of the applied voltage is. Also, resistance 1
04, when discharging the charge accumulated in the capacitor 102,
The die 4-de 105 is for discharging so as not to affect machining, and prevents the current from the machining switching transistor 18b from flowing back into the capacitor 102.

さらに、トランジスタ18bは、極間間隙で放電が発生
してから所定時間オンとなる。反転増幅器100の内部
ゲートは、パルス幅休止幅制御回路18dの制御信号S
Jによっても制御されており、休止時間中に極間間隙に
電圧が印加されることを防いている。第6図のタイムチ
ャートは、上記説明の具体的説明をするもので、検出電
圧Voとコンデンサ充電々m I cの関係、及びトラ
ンジスタ相互のオン・−t 7の状態が1.0のロジッ
クレベルで示されている。
Further, the transistor 18b is turned on for a predetermined period of time after discharge occurs in the gap between the electrodes. The internal gate of the inverting amplifier 100 receives the control signal S of the pulse width pause width control circuit 18d.
J is also controlled to prevent voltage from being applied to the interelectrode gap during the rest period. The time chart in FIG. 6 provides a concrete explanation of the above explanation, and shows the relationship between the detection voltage Vo and the capacitor charge m I c, and the logic level when the mutual on-t state of the transistors is 1.0. It is shown in

本実施例により、放電の集中やアークの前駆状態となる
と検出回路のカウンタ49の内容が増加し、反転増幅器
の出力は減少して印加電圧のの傾きは鈍くなり、放電し
難くなって放電が集中することはなくなり、極間状態は
回復する。
According to this embodiment, when discharge is concentrated or an arc precursor state occurs, the content of the counter 49 of the detection circuit increases, the output of the inverting amplifier decreases, and the slope of the applied voltage becomes slower, making it difficult to discharge and preventing discharge. I no longer concentrate, and my state of extremes is restored.

なお上記実施例では、検出回路のカウンタ49の内容に
応じて連続的に印加電圧の傾きを制御しているが、必ず
しも連続的にする必要はなく、折れ線的、あるいは数段
の切換あるいは級数的に変化させても、本発明実施の目
的には合致している。
In the above embodiment, the slope of the applied voltage is controlled continuously according to the contents of the counter 49 of the detection circuit, but it does not necessarily have to be continuous, and may be controlled linearly, in several steps, or in a series. Even if it is changed, it still meets the purpose of implementing the present invention.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明では、極間状態の異常を、既述の検
出方法で判別し、該判断結果をもとにして極間状態の回
復をはかるために、極間印加電圧の傾きを変化させて放
電発生のしやすさを制御し、放電が一点に集中したり、
消イオンされない状態で高電圧が連続的に印加されるを
防ぎ、極間状態を回復させるという従来にない放電加工
装置の提供を行うものである。
As described above, in the present invention, an abnormality in the contact gap state is determined by the detection method described above, and the slope of the voltage applied between the contacts is changed in order to recover the contact gap state based on the determination result. to control the ease with which discharge occurs, concentrating the discharge on one point,
The object is to provide an unprecedented electrical discharge machining apparatus that prevents continuous application of high voltage without deionization and restores the gap state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放電加工装置の原理図、第2図は本発明
になる装置の原理図、第3図は本発明になる検出装置の
説明のtコめのタイムチャート、第4図は検出装置と異
常放電判別装置図、第5図は本発明の詳細な説明図、第
6図は第5図に示す装置の動作状態を示すタイムチャー
トである。 図中10は電極、14は被加工物、16は加工液、49
は放電集中検出カウンターである。 なお図中同一符号は同−又は相当部分を示す。 代理人 大暑 増雄
Fig. 1 is a principle diagram of a conventional electric discharge machining device, Fig. 2 is a principle diagram of a device according to the present invention, Fig. 3 is a time chart for explaining the detection device according to the present invention, and Fig. 4 is a diagram showing the principle of a conventional electric discharge machining device. FIG. 5 is a detailed explanatory diagram of the present invention, and FIG. 6 is a time chart showing the operating state of the device shown in FIG. 5. In the figure, 10 is an electrode, 14 is a workpiece, 16 is a processing liquid, and 49
is a discharge concentration detection counter. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Ohatsu

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物とを絶縁性加工液を介在させて対向させ
、その極間間隙にパルス電圧を印加して力又電を発生さ
せ上記被加工物を加工する放電加工装置において、電極
と被加工物の極間間隙で放電した際の超音波等の衝撃波
を加工液中に設置した検出器により検知し、集中放電に
よるアーク前駆現象を知る異常放電検出手段と、上記衝
撃波の波形分析によって極間間隙状態が悪い状態にある
と判断して信号を出力する極間間隙状態判別手段と、該
出力に基すいて上記パルス電圧の時間あたりの上昇速度
を制御する制御手段を備えたことを特徴とする放電加工
装置。
In electrical discharge machining equipment, an electrode and a workpiece are opposed to each other with an insulating machining fluid interposed between them, and a pulse voltage is applied to the gap between the electrodes to generate force or electricity to machine the workpiece. A detector installed in the machining fluid detects shock waves such as ultrasonic waves generated in the gap between the poles of the workpiece, and an abnormal discharge detection means detects the arc precursor phenomenon caused by concentrated discharge. The present invention is characterized by comprising: a gap condition determining means for determining that the gap condition is in a bad condition and outputting a signal; and a control means for controlling the rate of rise of the pulse voltage per time based on the output. electrical discharge machining equipment.
JP14930783A 1983-08-16 1983-08-16 Electric discharge machine Pending JPS6044224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14930783A JPS6044224A (en) 1983-08-16 1983-08-16 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14930783A JPS6044224A (en) 1983-08-16 1983-08-16 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS6044224A true JPS6044224A (en) 1985-03-09

Family

ID=15472268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14930783A Pending JPS6044224A (en) 1983-08-16 1983-08-16 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS6044224A (en)

Similar Documents

Publication Publication Date Title
US4892989A (en) Discharge machining apparatus having means for distinguishing abnormal interelectrode gap conditions
US3705287A (en) Process for shaping workpiece by electrical discharge and apparatus therefor
US3597570A (en) Device for detecting sustained arcing across electrospark machining gaps
US7175752B2 (en) Method and apparatus for electrochemical machining
JPS6044224A (en) Electric discharge machine
JP6165210B2 (en) Machining power supply for wire electrical discharge machining equipment
US3624337A (en) Method and apparatus for detecting and controlling through pulse energy variations arcing conditions in an edm process
JP3726940B2 (en) Wire cut electric discharge machine
JPS63318210A (en) Control device for electric discharge machine
JPS6044226A (en) Electric discharge machine
JP2914123B2 (en) Power supply unit for electric discharge machine
US5486765A (en) Insulating condition detecting apparatus for a wire-cut electrical discharge machine
JPS5924923A (en) Electric discharge machine
JPS59205223A (en) Electric discharge machining device
JPH07290317A (en) Electric discharge machining method and device therefor
JPS6057972B2 (en) Electric discharge machining equipment
JPS5924921A (en) Electric discharge machine
JPS597524A (en) Electric discharge machining device
JPS63318222A (en) Detecting device for short circuit of wire electric discharge machine
USRE29361E (en) Process for shaping workpiece by electrical discharge and apparatus therefor
JPS5923938B2 (en) Electric discharge machining equipment
WO1995006536A1 (en) Power source apparatus for electrical discharge machining
JPS5924918A (en) Electric discharge machine
JPH0453646B2 (en)
JPS6020136B2 (en) Electric discharge machining status detection device