JPS6044178B2 - Boundary short circuit type non-insulated track circuit - Google Patents

Boundary short circuit type non-insulated track circuit

Info

Publication number
JPS6044178B2
JPS6044178B2 JP2202679A JP2202679A JPS6044178B2 JP S6044178 B2 JPS6044178 B2 JP S6044178B2 JP 2202679 A JP2202679 A JP 2202679A JP 2202679 A JP2202679 A JP 2202679A JP S6044178 B2 JPS6044178 B2 JP S6044178B2
Authority
JP
Japan
Prior art keywords
track circuit
circuit
resonator
receiver
signal frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2202679A
Other languages
Japanese (ja)
Other versions
JPS55114661A (en
Inventor
宜三 村尾
幸雄 小林
良治 岡田
実 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2202679A priority Critical patent/JPS6044178B2/en
Publication of JPS55114661A publication Critical patent/JPS55114661A/en
Publication of JPS6044178B2 publication Critical patent/JPS6044178B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、境界短絡式無絶縁軌道回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boundary short circuit type uninsulated track circuit.

従来、無絶縁軌道回路としては、第1図に示すようなも
のがある。
Conventionally, there is a non-insulated track circuit as shown in FIG.

軌条R、R(7)A、AおよびB、B間には軌条短絡線
が接続され、軌条間を短絡して、1T,2Tおよび3T
軌道回路を構成する。
A rail shorting line is connected between rails R, R (7) A, A and B, B, shorting the rails and connecting them to 1T, 2T and 3T.
Configure the track circuit.

A,AからA,A″へだてた2T軌道回路の軌条間A″
,A″間またB,BからB,B″へだてた2T軌道回路
の軌条間B″,B″間に、それぞれコンデンサC。を挿
入し、A,A″間の軌条のインダクタンスとC。またB
,B″間の軌条のインダクタンスとC。によつて、2T
軌道回路で使用する信号周波数fに並列共振を生ぜしめ
る。この場合A″,A″より右方およびB″,B″より
左方をそれぞれ眺めたインピーダンスは、信号周波数f
において、高インピーダンスを呈している。従つて、こ
のA″,A″に送信器TXを、B″,B″に受信器RX
を接続すれば、TXからの送信出力は、受信端の方向へ
のみ伝送され、反対方向に対しては、A,A間に存在す
る短絡線のため、その外方へは流出しない。列車が、こ
のA″,A″およびB″,B″間に進入すれば、RXの
軌道継電器は落下し、列車の検知が行われると同時に、
軌道回路には列車の車軸短絡による信号周波数fの短絡
電流が流れ、列車上に取付けられた受電器に電磁誘導的
に軌道回路の信号情報が誘起され、車上受信器によつて
信号情報が受信され、列車の速度制御が行なわれる。し
かし、この方式で送電端および受電端の伝送効率をよく
するためには、並列共振時のインピーダンスを大きくす
る必要があり、そのためには短絡点A,AおよびB,B
からコンデンサC。の挿入点A″,A″およびB″,B
″迄の距離を大きくする必要がある。しかしまた、この
距離を大きくすると、当該距離内における列車検知特性
がゆるやかになり、短絡線A,AおよびB,Bを中心と
した両側A,A″,A,A″間、またはB,B″,B,
B″間の若干部分に、列車検知のできない死区間が生ず
ることが避けられない。第1図に示す方式の欠陥を除去
するものとし.て、第2図に示すようなものがある。
A″ between the rails of the 2T track circuit from A, A to A, A″
, A'' and between the rails of the 2T track circuit from B, B to B, B'', and between B'' and B'', respectively. Insert the inductance of the rail between A and A'' and C. Also, B
, B'' and C., 2T.
Parallel resonance is produced in the signal frequency f used in the track circuit. In this case, the impedance when looking to the right of A'', A'' and to the left of B'', B'' is the signal frequency f
, exhibiting high impedance. Therefore, the transmitter TX is connected to A″, A″, and the receiver RX is connected to B″, B″.
When connected, the transmission output from TX is transmitted only in the direction of the receiving end, and in the opposite direction, it does not flow out due to the short circuit existing between A and A. When a train enters between A'', A'' and B'', B'', the RX track relay falls, and at the same time the train is detected,
A short-circuit current with a signal frequency f due to a short-circuit in the train's axle flows in the track circuit, and signal information of the track circuit is induced by electromagnetic induction in a power receiver installed on the train, and the signal information is transmitted by the on-board receiver. The signal is received and the speed of the train is controlled. However, in order to improve the transmission efficiency at the power transmitting end and the power receiving end with this method, it is necessary to increase the impedance at the time of parallel resonance.
From capacitor C. Insertion points A″, A″ and B″, B
However, if this distance is increased, the train detection characteristics within this distance will become looser, and both sides A, A'' centering on the short circuit lines A, A and B, B. , A, A″, or B, B″, B,
It is unavoidable that a dead section where trains cannot be detected will occur in some part between B''.A method shown in FIG. 2 is available to eliminate the defects of the method shown in FIG. 1.

この方式は、第1図の方式が軌道回路の境界を短絡線で
短絡しているのに対し、インダクタンスLまたはL2と
コンデンサC1またはC2を直列接続した共振子1,2
,1″,2″で短絡し、共振子1と2″は2T軌道回路
の信号周波数f1で、共振子2は1T軌道回路の信号周
波数F2で、また共振子1″は3T軌道回路の信号周波
数F2で直列共振するように設定して、B″,B″間お
よびA″,A″間で軌道回路を重複させて死区間の生ず
るのを防いでいる。
In contrast to the method shown in Figure 1, in which the boundaries of the track circuit are short-circuited with short-circuit wires, this method uses resonators 1 and 2 that are connected in series with an inductance L or L2 and a capacitor C1 or C2.
, 1'', 2'' are short-circuited, and resonators 1 and 2'' are at the signal frequency f1 of the 2T orbit circuit, resonator 2 is at the signal frequency F2 of the 1T orbit circuit, and resonator 1'' is the signal of the 3T orbit circuit. It is set to cause series resonance at frequency F2, and the track circuits are overlapped between B'' and B'' and between A'' and A'' to prevent dead sections from occurring.

なお、B″,B″間の軌条点B,BにコンデンサC。を
挿入し、B″,B″間の軌条のインダクタンスとC。に
よつて、2T軌道回路で使用する信号周波数f1に並列
共振を生ぜしめ、またB,B″間の軌条のインダクタン
スとC。によつて、1T軌道回路で使用する信号周波数
F2に並列共振を生ぜしめ、B,B点のインピーダンス
を高め、その点に1T軌道回路用送信器TXlおよび2
T軌道回路・用受信器RX2を接続し、またA″,A″
間の軌条点A,AにコンデンサCOを挿入し、同様にA
,A点のインピーダンスを高め、その点に2T軌道回路
用送信器TX2および3T軌道回路用受信器RX3を接
続している。この方式は、B″,BI間およびA″,A
″間で、軌道回路を重複させる構成であるので、第1図
に示すものと異なり、死区間が生ずることはないが、列
車がB″,B″を通過し、B″,B間に至つた時、TX
lによる1T軌道回路用の信号情報が車上受信器にて受
信されている状態で、2T軌道回路の受信器RX2の軌
道リレーが落下し、車上受信器に送信されているTXl
の1T軌道回路用の信号情報が停止信号になるため、列
車が走行出来なくなるという不合理が生ずる。次に第2
図に示す方式の上述する欠陥を除去する方法として、第
3図に示すような構成をとることが考えられる。
In addition, a capacitor C is installed at the rail points B and B between B″ and B″. Insert the inductance of the rail between B'' and B'' and C. This causes parallel resonance at the signal frequency f1 used in the 2T track circuit, and the inductance of the rail between B and B'' and C causes parallel resonance at the signal frequency F2 used in the 1T track circuit. 1T track circuit transmitter TXl and 2 are connected to that point.
Connect receiver RX2 for T orbit circuit, and also connect A″, A″
Insert the capacitor CO between the rail points A and A, and similarly
, the impedance of point A is increased, and the 2T orbit circuit transmitter TX2 and the 3T orbit circuit receiver RX3 are connected to that point. In this method, between B″ and BI and between A″ and A
Unlike the configuration shown in Figure 1, the track circuit is overlapped between B'' and B'', so there is no dead section, but if the train passes between B'' and B'' and reaches between B'' and B. Tsuta Toki, TX
While the signal information for the 1T track circuit is being received by the onboard receiver, the track relay of receiver RX2 of the 2T track circuit falls, and the signal information for the 1T track circuit is being received by the onboard receiver.
Since the signal information for the 1T track circuit becomes a stop signal, an unreasonable situation arises in which the train cannot run. Then the second
As a method of removing the above-mentioned defects in the method shown in the figure, it is possible to adopt a configuration as shown in FIG. 3.

軌条点B″,B″,B″,B″,A″,A″およびA″
,AIにそれぞれ、インダクタンスレまたは!とコンデ
ンサC1またはC2を直列接続した直列共振回路にコン
デンサC。
Rail points B″, B″, B″, B″, A″, A″ and A″
, AI respectively, inductance thread or! Capacitor C is connected in series with capacitor C1 or C2.

またはC。″を並列接続した共振子3,4,5,6を挿
入し、共振子3の直列共振回路が2T軌道回路の信号周
波数f1にて、共振子4の直列共振回路が1T軌道回路
の信号周波数F2にて、共振子5の直列共振回路が3T
軌道回路の信号周波数F2にて、共振子6の直列共振回
路が2T軌道回路の信号周波数f1にて、それぞれ直列
共振するように設定し、また更に、B″,B″間の軌条
のインダクタンスと、共振子3のコンデンサCJとで1
T軌道回路の信号周波数F2にて、また同様に共振子4
のコンデンサC。とで2T軌道回路の信号周波数f1に
て、またA″,A″間の軌条のインダクタンスと、共振
子5のコンデンサC。とで2T軌道回路の信号周波数f
1にて、また同様に共振子6のコンデンサC。″とで3
T軌道回路の信号周波数F2にて、並列共振させて、イ
ンピーダンスを高める様に設定し、共振子3に1T軌道
回路用の送信器TXlを、共振子4に2T軌道回路用受
信器RX2を、共振子5に2T軌道回路用送信器TX2
を、又共振子6に3T軌道回路用受信器RX3をそれぞ
れ接続し、BI,B″間において1T軌道回路と2T軌
道回路とが、又A″,A″間において2T軌道回路と3
T軌道回路とが重り合うようにする。このような構成と
しておけば、列車が、1T軌道回路の送信点B″,B″
を通過した後、B″,B″間で2T軌道回路の信号情報
を車上の受信器受信した状態で、2T軌道回路の受信器
RX2により列車検知が行われるので、第2図に示す方
式の有する前述のような不合理は生ぜず、また軌道回路
はB″,B″間およびA″,A″間で重り合つているの
で、死区間も生じない。しかし、この方式において、B
″,B″間およびA″,A″間を完全な重り合せ状態と
するには、隣接軌道回路、たとえば1Tと2Tとの周波
数間隔を非常に離れたものとするか、又は各共振子の直
列共振回路の尖鋭度を非常に鋭くし、かつ共振回路のイ
ンダクタンスを大にして、この直列共振回路を隣接軌道
回路の信号周波数では、短絡状態と同じ状態になしうる
ようにするとともに、軌道回路の所定の信号周波数では
、非常な高インピーダンスを呈するようにして、その挿
入の影響をほとんどなくした状態で、B″,B″″間お
よびA″,A″″間の軌条のインダクタンスと、2T軌
道回路の場合について云えば、B″,B″およびA″,
A″に挿入されたコンデンサC。とを共振させる必要が
ある。この方式は、原理的には可能であるが、実際上、
上述したごとき作用を実現できる直列共振回路をつくる
ことは無理で、その故に提案されたが実現されていない
。本発明は、従来の無絶縁軌道回路に存在する上述のよ
うな欠陥を除去するためになされたものである。
Or C. Resonators 3, 4, 5, and 6 connected in parallel are inserted, and the series resonant circuit of resonator 3 has the signal frequency f1 of the 2T orbit circuit, and the series resonant circuit of resonator 4 has the signal frequency of the 1T orbit circuit. At F2, the series resonant circuit of resonator 5 is 3T.
At the signal frequency F2 of the track circuit, the series resonant circuit of the resonator 6 is set to resonate in series at the signal frequency f1 of the 2T track circuit, and furthermore, the inductance of the rail between B'' and B'' , 1 with capacitor CJ of resonator 3
Similarly, at the signal frequency F2 of the T-orbit circuit, resonator 4
capacitor C. At the signal frequency f1 of the 2T track circuit, the inductance of the track between A'' and A'', and the capacitor C of the resonator 5. and the signal frequency f of the 2T orbital circuit
1, and similarly capacitor C of resonator 6. ″Tode 3
At the signal frequency F2 of the T orbit circuit, parallel resonance is caused and the impedance is set to be increased, and the transmitter TXl for the 1T orbit circuit is attached to the resonator 3, and the receiver RX2 for the 2T orbit circuit is attached to the resonator 4. 2T orbit circuit transmitter TX2 on resonator 5
In addition, a 3T orbit circuit receiver RX3 is connected to the resonator 6, and a 1T orbit circuit and a 2T orbit circuit are connected between BI and B'', and a 2T orbit circuit and a 3T orbit circuit are connected between A'' and A''.
Make sure that the T-orbit circuit overlaps with the T-orbit circuit. With this configuration, the train can reach the transmission points B″, B″ of the 1T track circuit.
After passing through, train detection is performed by the receiver RX2 of the 2T track circuit while the on-board receiver receives the signal information of the 2T track circuit between B'' and B'', so the method shown in Figure 2 is used. The above-mentioned unreasonableness of the above does not occur, and since the track circuits overlap between B'' and B'' and between A'' and A'', no dead section occurs. However, in this method, B
In order to achieve complete overlap between ``, B'' and between A'' and A'', the frequency interval between adjacent track circuits, for example 1T and 2T, should be very far apart, or the frequency interval between each resonator should be very large. The sharpness of the series resonant circuit is made very sharp and the inductance of the resonant circuit is made large so that the series resonant circuit can be in the same state as a short circuit at the signal frequency of the adjacent track circuit. At a given signal frequency, the inductance of the rail between B'' and B'' and between A'' and A'''' is In the case of the track circuit, B'', B'' and A'',
It is necessary to make the capacitor C inserted into A'' resonate.This method is possible in principle, but in practice,
It is impossible to create a series resonant circuit that can realize the above-mentioned effect, and therefore, although it has been proposed, it has not been realized. The present invention has been made in order to eliminate the above-mentioned defects existing in conventional non-insulated track circuits.

本発明を第4図から第7図bに従つて説明する。The present invention will be explained with reference to FIGS. 4 to 7b.

軌条Rl,R2における軌道回路の仮想境界線S1をは
さんで、1T軌道回路側の軌条点A,Aに、インダクタ
ンスL1とコンデンサC1を直列接続した直列共振回路
にコンデンサC。
A capacitor C is connected to a series resonant circuit in which an inductance L1 and a capacitor C1 are connected in series at rail points A and A on the 1T track circuit side across the virtual boundary line S1 of the track circuit on the rails Rl and R2.

″を並列接続した共振子7を挿入し、それに1T軌道回
路用送信器TXlを接続する。1方2T軌道回路側にお
ける軌条点B,Bに、インダクタンスL2とコンデンサ
C2を直列接続した直列共振回路の共振子8を挿入し、
それに2T軌道回路用受信器RX2を接続する。
'' are connected in parallel, and the transmitter TXl for the 1T track circuit is connected to it.A series resonant circuit is formed by connecting an inductance L2 and a capacitor C2 in series to the rail points B and B on the 2T track circuit side. Insert the resonator 8 of
The 2T orbit circuit receiver RX2 is connected to it.

同様に2T軌道回路と3T軌道回路の仮想境界線S2を
はさんで、2T軌道回路側の軌条点C,Cに、インダク
タンスL2とコンデンサC2を直列接続した直列共振回
路の共振子9を、3T軌道回路側の軌条点D,Dに、イ
ンダクタンスL1とコンデンサC1を直列接続した直列
共振回路にコンデンサC。″を並列接続した共振子10
を挿入し、共振子9に2T軌道回路用送信器TX2を、
共振子10に3T軌道回路用受信器RX3を接続する。
共振子7の直列共振回路は2T軌道回路の信号周波数f
1にて、共振子8は1T軌道回路の信号周波数F2にて
、共振子9は3T軌道回路の信号周波数F2にて、また
共振子10の直列共振回路は2T軌道回路用の信号周波
数f1にて、それぞれ直列共振するように設定される。
また、共振子7は、A,B間の軌条のインダクタンスと
、1T軌道回路の信号周波数F2にて、共振子8はA,
B間の軌条のインダクタンスと、2T軌道回路の信号周
波数f1にて、共振子9は、C,D間の軌条のインダク
タンスと、2T軌道回路の信号周波数f1にて、また共
振子10は、C,D間の軌条のインダクタンスと、3T
軌道回路の信号周波数F2にて、それぞれ並列共振する
ように設定される。1T軌道回路の他方境界線に近接し
た軌条間には、共振子7と同一構成からなる共振子が挿
入され、それに1T軌道回路用受信器が接続され、又3
T軌道回路の他方境界線に近接した軌条間には、共振子
10と同一構成からなる共振子が接続され、それに3T
軌道回路用の送信器が接続される。
Similarly, across the virtual boundary line S2 between the 2T track circuit and the 3T track circuit, a resonator 9 of a series resonant circuit in which an inductance L2 and a capacitor C2 are connected in series is connected to the rail points C and C on the 2T track circuit side. A capacitor C is connected to a series resonant circuit in which an inductance L1 and a capacitor C1 are connected in series to the rail points D and D on the track circuit side. resonator 10 connected in parallel with
Insert the 2T orbit circuit transmitter TX2 into the resonator 9,
A 3T orbit circuit receiver RX3 is connected to the resonator 10.
The series resonant circuit of the resonator 7 has the signal frequency f of the 2T orbital circuit.
1, the resonator 8 is at the signal frequency F2 of the 1T orbit circuit, the resonator 9 is at the signal frequency F2 of the 3T orbit circuit, and the series resonant circuit of the resonator 10 is at the signal frequency f1 for the 2T orbit circuit. and are set to resonate in series.
In addition, the resonator 7 has the inductance of the rail between A and B and the signal frequency F2 of the 1T track circuit, and the resonator 8 has the inductance of the rail between A and B.
At the inductance of the rail between C and D and the signal frequency f1 of the 2T track circuit, the resonator 9 has the inductance of the rail between C and D and the signal frequency f1 of the 2T track circuit. , the inductance of the rail between D and 3T
They are set to resonate in parallel at the signal frequency F2 of the track circuit. A resonator having the same configuration as the resonator 7 is inserted between the rails close to the other boundary line of the 1T track circuit, and a receiver for the 1T track circuit is connected to it.
A resonator having the same configuration as the resonator 10 is connected between the rails close to the other boundary line of the T track circuit, and a 3T
A transmitter for the track circuit is connected.

従つて、1T軌道回路と2T軌道回路はA,B間におい
て、2T軌道回路と3T軌道回路は、C,D間において
重り合つている。2T軌道回路用のATC信号波f1は
、送信器TX2から送信され、2T軌道回路を伝送され
て受信器RX2によつて受信される。
Therefore, the 1T orbit circuit and 2T orbit circuit overlap between A and B, and the 2T orbit circuit and 3T orbit circuit overlap between C and D. The ATC signal wave f1 for the 2T orbit circuit is transmitted from the transmitter TX2, transmitted through the 2T orbit circuit, and received by the receiver RX2.

従つて、2T軌道回路内に列車が存在しないときは、2
T軌道回路の受信器RX2の軌道継電器は動作状・態に
なつている。列車Tnは、1T軌道回路から矢印a方向
へ進行しているものとする。列車が1T軌道回路内にあ
る間は、A,Aにおいて、共振子7の直列共振回路によ
り短絡されているので、2T軌道回路は、何ら影響も受
けず、送信器TX2からのATC信号波f1を受信器R
X2で受信し、軌道継電器を動作させている。列車がA
,Aを通過し、2T軌道回路に進入することによつて、
列車の車軸短絡によつて2T軌道回路の受信器RX2の
受信レベルが低下し、A,B間で受信器RX2の軌道継
電器が落下して、列車が2T軌道回路に進入したことを
検知する。車上のATC信号については、列車がA,A
に至る迄は、送信器TXlから1T軌道回路のA,Aに
送信され、列車の車軸短絡により軌条を流れるATC信
号波F2が、車上の受電器により電磁誘導的に受信され
、伝送されるが、A,Aを通過した後は、送信器TX2
からC,Cに送信される2T軌道回路用のATC信号波
f1が、車上の受電器により受信され、伝送される。従
つて、本発明においては、第1図に示す方式の有する、
境界部分にて列車検知の出来ない死区間が生ずるという
欠陥、および第2図に示す方式の有する、列車が1T軌
道回路から2T軌道回路に進入した時に生ずる、2T軌
道回路の列車検知が、まだ1T軌道回路のATC信号波
を車上にて受信している状態で行なわれてしまうため、
1T軌道回路の停止信号を車上にて受信し、列車が走行
出来なくなるという欠陥は生ずることがない。また、第
3図について前述したことにかんがみ、本発明の最も大
きな特徴は、通常の製作可能な共振子を用いて、送電端
および受電端のインピーダンスを十分高くできるように
した点にある。
Therefore, when there is no train within the 2T track circuit, 2T
The track relay of receiver RX2 of the T track circuit is in operation. It is assumed that train Tn is traveling in the direction of arrow a from the 1T track circuit. While the train is in the 1T track circuit, A and A are short-circuited by the series resonant circuit of the resonator 7, so the 2T track circuit is not affected by the ATC signal wave f1 from the transmitter TX2. The receiver R
It is received by X2 and operates the track relay. The train is A
, A and enters the 2T orbital circuit,
Due to the train axle short circuit, the reception level of the receiver RX2 of the 2T track circuit decreases, and the track relay of the receiver RX2 falls between A and B, detecting that the train has entered the 2T track circuit. Regarding the ATC signal on the train, the train is A, A
Until then, the ATC signal wave F2, which is transmitted from the transmitter TXl to A and A of the 1T track circuit and flows through the rails due to a short circuit in the axle of the train, is received by the power receiver on the train by electromagnetic induction and transmitted. After passing through A and A, the transmitter TX2
The ATC signal wave f1 for the 2T track circuit transmitted from to C and C is received by the power receiver on the vehicle and transmitted. Therefore, in the present invention, the system shown in FIG.
There is a defect that a dead section where trains cannot be detected occurs at the boundary part, and the method shown in Figure 2 has a defect that train detection on the 2T track circuit, which occurs when a train enters the 2T track circuit from the 1T track circuit, is still not possible. Because this is done while the ATC signal wave of the 1T track circuit is being received on the train,
There is no problem in which the stop signal of the 1T track circuit is received on the train and the train is unable to run. Further, in view of what has been described above with respect to FIG. 3, the most significant feature of the present invention is that the impedance at the power transmitting end and the power receiving end can be made sufficiently high using a resonator that can be manufactured normally.

直列共振回路のインピーダンス1ZIは第5図に示すご
とく、共振周波数ちにおいて、非常に小さい値とあるが
、共振周波数以外の周波数、たとえばFaおよびFbに
おいて再び高くなり、共振周波数F。より低い周波数F
aにおいては、容量性のインピーダンスに、また高い周
波数ルにおいては、誘導性のインピーダンスとなる特性
がある。従つて第6図aに示すごとき無絶縁軌道回路と
する場合.の境界部分のA,Aに、軌道回路の信号周波
数f1に共振する直列共振回路の共振子11を接続し、
次にB,Bに、隣接軌道回路の信号周波数F2に共振す
る直列共振回路の共振子12を接続すれば、周波数F2
,flより高い場合には、信号周波数f1に−おいて、
信号周波数F2に共振する直列共振回路の共振子12が
、容量性のインピーダンスとなり、また信号周波数f1
に共振する直列共振回路の共振子11が、非常に低いイ
ンピーダンスになるので、第6図aの無絶縁軌道回路境
界部分は、A,B間の軌条のインダクタンスを!、また
抵抗をR。とすると、第6図bの等価回路として表わす
ことが出来る。このように第6図bに示す等価回路から
明らかなごとく、この容量性のインピーダンスXcと軌
条インダクタンス!とを、並列共振させることによつて
、信号周波数f1の軌道回路の送電端および受電端に当
るB,Bのインピーダンスを高めることができる。しか
し、第6図AO)A,A゛に対しては、信号周波?2に
おいて、信号周波数f1に共振する直列共振回路の共振
子11が、誘導性のインピーダンスとなるため、このま
)では軌条のインダクタンスと並列共振させることがで
きず、従つてこのような構成では、信号周波数F2の隣
接軌道回路の送電端および受電端に当るA,Aのインピ
ーダンスを高めることができないので、無絶縁軌道回路
の境界部分を構成することはできない。本発明において
は、第7図aに示すごとく、無絶縁軌道回路の境界部分
のA,Aに、信号周波数f1に共振する直列共振回路の
共振子に代つて、信号周波数f1に共振する直列共振回
路に、更に並列にコンデンサC。
As shown in FIG. 5, the impedance 1ZI of the series resonant circuit has a very small value at the resonant frequency, but increases again at frequencies other than the resonant frequency, such as Fa and Fb, and reaches the resonant frequency F. lower frequency F
At a, the impedance is capacitive, and at high frequencies, the impedance is inductive. Therefore, when using an uninsulated track circuit as shown in Figure 6a. A resonator 11 of a series resonant circuit that resonates with the signal frequency f1 of the track circuit is connected to A and A at the boundary part of
Next, if the resonator 12 of the series resonant circuit that resonates with the signal frequency F2 of the adjacent track circuit is connected to B and B, the frequency F2
, fl, then at the signal frequency f1 -
The resonator 12 of the series resonant circuit that resonates at the signal frequency F2 becomes a capacitive impedance, and the resonator 12 resonates at the signal frequency f1.
Since the resonator 11 of the series resonant circuit that resonates in the circuit has a very low impedance, the inductance of the track between A and B at the boundary part of the uninsulated track circuit in Figure 6a is ! , and the resistance is R. Then, it can be expressed as the equivalent circuit shown in FIG. 6b. As is clear from the equivalent circuit shown in FIG. 6b, this capacitive impedance Xc and rail inductance! By causing these to resonate in parallel, it is possible to increase the impedance of B and B that correspond to the power transmitting end and the power receiving end of the track circuit of the signal frequency f1. However, for Fig. 6 AO) A and A, the signal frequency? In 2, since the resonator 11 of the series resonant circuit that resonates at the signal frequency f1 becomes an inductive impedance, it is impossible to make it resonate in parallel with the inductance of the rail. Therefore, with such a configuration, Since it is not possible to increase the impedance of A and A that correspond to the power transmitting end and the power receiving end of the adjacent track circuit of signal frequency F2, it is not possible to form a boundary portion of an uninsulated track circuit. In the present invention, as shown in FIG. 7a, instead of the resonator of the series resonant circuit resonating at the signal frequency f1, a series resonator resonating at the signal frequency f1 is installed at the boundary portion A and A of the non-insulated track circuit. Add a capacitor C in parallel to the circuit.

″を挿入した共振子13を接続して、信号周波数F2に
おいて、共振子13のインピーダンスを容量性のインピ
ーダンスとし、第7図bの等価回路の如く表わされるよ
うにして、この容量性のインピーダンスXc″と、軌条
のインダクタンス!とを並列共振させることによつて信
号周波数F2の隣接軌道回路の送電端および受電端に当
るA,Aのインピーダンスをも高め、無絶縁軌道回路の
境界部分を構成することができるようにすることによつ
て、第3図に示す方式の有する欠陥を除去している。本
発明によれば、第1図に示す従来方式における軌道回路
の境界部分に列車検知の出来ない死区間が生ずることが
なく、又第2図に示す従来方式における列車が後方軌道
回路から前方軌道回路に進入する際、後方軌道回路の信
号情報を受けている状態で前方軌道回路が列車検知され
ることにより、車上にて一時的に停止信号を受信すると
いう不合理を解消できるとともに、通常の技術にて、製
作可能な部品で構成出来る共振子を用いて、送電端と受
電端のインピーダンスを高めて、無絶縁軌道回路の境界
の明確化を計ることができる。
By connecting the resonator 13 in which a ” and the inductance of the rail! By resonating in parallel, the impedance of A and A corresponding to the power transmitting end and the power receiving end of the adjacent track circuit of signal frequency F2 is increased, so that the boundary part of an uninsulated track circuit can be configured. This eliminates the defects of the method shown in FIG. According to the present invention, a dead section where a train cannot be detected does not occur at the boundary between the track circuits in the conventional system shown in FIG. By detecting a train on the front track circuit while receiving signal information from the rear track circuit when entering the circuit, it is possible to eliminate the unreasonable situation of temporarily receiving a stop signal on board the train, and With this technology, it is possible to increase the impedance between the power transmitting end and the power receiving end by using a resonator that can be constructed from manufacturable parts, and to clarify the boundaries of non-insulated track circuits.

またしかもその境界部分の構成は簡易で、たとえば第3
図に示す方式に比し、境界部分におけるコンデンサを1
個少なくして、軌道回路を構成することが出来る。従つ
て、本発明によれば、無絶縁軌道回路を設備する場合に
、従来の方式に比し、更に設備費および保守の低減を計
ることが可能である。図面の簡単な説明第1図は従来の
無絶縁軌道回路を示す回路図、第2図は従来の他の無絶
縁軌道回路を示す回路図、第3図は第1図および第2図
の無絶縁軌道回路の欠陥を除去するために考えられる無
絶縁軌道回路の回路図、第4図は本発明の実施例を示す
回路図、第5図は直列共振回路の特性を示す線図、第6
図aは無絶縁軌道回路における、考えられる境界部分の
構成を示す回路図、第6図bは第6図aの等価回路図、
第7図aは本発明の実施例における境界部分の構成を示
す回路図、第7図bは第7図aの等価回路図である。
Moreover, the structure of the boundary part is simple, for example, the third
Compared to the method shown in the figure, the capacitor at the boundary is 1
It is possible to configure a track circuit by reducing the number of pieces. Therefore, according to the present invention, when installing an uninsulated track circuit, it is possible to further reduce equipment costs and maintenance compared to conventional systems. Brief Description of the Drawings Figure 1 is a circuit diagram showing a conventional non-insulated track circuit, Figure 2 is a circuit diagram showing another conventional non-insulated track circuit, and Figure 3 is a circuit diagram showing a conventional non-insulated track circuit. A circuit diagram of an uninsulated track circuit considered to eliminate defects in an insulated track circuit, FIG. 4 is a circuit diagram showing an embodiment of the present invention, FIG. 5 is a diagram showing characteristics of a series resonant circuit, and FIG.
Figure a is a circuit diagram showing the configuration of a possible boundary part in an uninsulated track circuit, Figure 6b is an equivalent circuit diagram of Figure 6a,
FIG. 7a is a circuit diagram showing the configuration of a boundary portion in an embodiment of the present invention, and FIG. 7b is an equivalent circuit diagram of FIG. 7a.

Sl,S2・・・・・・軌道回路の境界、Rl,R2・
・・・・・軌条、Ll,Cl・・・・・・直列共振回路
、Ll,Cl,CO″・・・共振子、L2,C2・・・
・・・共振子、TXl,TX2・・・・・送信器、RX
2,RX3・・・・・受信器。
Sl, S2...Boundary of track circuit, Rl, R2・
...Rail, Ll, Cl...Series resonant circuit, Ll, Cl, CO''...Resonator, L2, C2...
...Resonator, TXl, TX2...Transmitter, RX
2, RX3...Receiver.

Claims (1)

【特許請求の範囲】[Claims] 1 隣接する軌道回路の境界をはさんで、後方の軌道回
路の軌条間にインダクタンスとコンデンサとを直列接続
した直列共振回路にコンデンサを並列接続した共振子を
、前方の軌道回路の軌条間にインダクタンスとコンデン
サとを直列接続した共振子を、それぞれ接続し、上記後
方の軌道回路の共振子に後方軌道回路用送信器を、又、
上記前方軌道回路の共振子に前方軌道回路用受信器を接
続し、上記前方の軌道回路と、それと隣接する、さらに
前方の軌道回路との境界をはさんで、上記前方の軌道回
路の軌条間にインダクタンスとコンデンサとを直列接続
した共振子を、又上記さらに前方の軌道回路の軌条間に
インダクタンスとコンデンサとを直列接続した直列共振
回路にコンデンサを並列接続した共振子を接続し、上記
前方の軌道回路の共振子に、上記前方の軌道回路用送信
器を、又、上記さらに前方の軌道回路の共振子に上記さ
らに前方の軌道回路用受信器を接続し、前記後方軌道回
路用送信器に接続された共振子は前記前方軌道回路用信
号周波数にて、前記前方軌道回路用受信器に接続された
共振子は前記後方軌道回路用信号周波数にて、前記前方
軌道回路用受信器に接続された共振子は前記さらに前方
の軌道回路用信号周波数にて、又前記さらに前方の軌道
回路用受信器に接続されている共振子は前記前方の軌道
回路用信号周波数にて、それぞれ直列共振するように設
定され、さらに又、前記後方軌道回路用送信器に接続さ
れた共振子は、当該共振子の軌条接続点と、前記前方軌
道回路用受信器に接続された共振子の軌条接続点との間
の軌条のインダクタンスと後方軌道回路用信号周波数に
て、前記前方軌道回路用受信器に接続された共振子は上
記軌条のインダクタンスと前記前方軌道回路用信号周波
数にて、前記前方軌道回路用送信器に接続された共振子
は、当該共振子の軌条接続点と、前記さらに前方の軌道
回路用受信器に接続された共振子の軌条接続点との間の
軌条のインダクタンスと前記前方軌道回路用信号周波数
にて、又前記さらに前方の軌道回路用受信器に接続され
た共振子は、上記軌条のインダクタンスと前記さらに前
方の軌道回路用信号周波数にて、それぞれ並列共振する
ように設定されたことからなる境界短絡式無絶縁軌道回
路。
1 Across the boundary between adjacent track circuits, a resonator consisting of a series resonant circuit with a capacitor connected in parallel is connected between the rails of the rear track circuit, and an inductance is connected between the rails of the front track circuit. and a capacitor connected in series, respectively, and connect a transmitter for the rear track circuit to the resonator of the rear track circuit, and
A receiver for the forward track circuit is connected to the resonator of the forward track circuit, and a receiver is connected between the rails of the forward track circuit across the boundary between the forward track circuit and the adjacent track circuit further forward. A resonator in which an inductance and a capacitor are connected in series is connected to a resonator in which an inductance and a capacitor are connected in series, and a resonator in which a capacitor is connected in parallel is connected to a series resonant circuit in which an inductance and a capacitor are connected in series between the rails of the track circuit in the front. The transmitter for the forward track circuit is connected to the resonator of the track circuit, the receiver for the further forward track circuit is connected to the resonator of the track circuit further forward, and the receiver for the further forward track circuit is connected to the transmitter for the rear track circuit. The connected resonator is connected to the forward track circuit receiver at the forward track circuit signal frequency, and the resonator connected to the forward track circuit receiver is connected to the forward track circuit receiver at the back track circuit signal frequency. The resonator connected to the receiver for the further forward track circuit resonates in series at the signal frequency for the further forward track circuit, and the resonator connected to the receiver for the further forward track circuit resonates in series at the signal frequency for the further forward track circuit. Further, the resonator connected to the rear track circuit transmitter has a rail connection point of the resonator and a rail connection point of the resonator connected to the forward track circuit receiver. The resonator connected to the receiver for the forward track circuit transmits the signal for the forward track circuit at the inductance of the rail and the signal frequency for the forward track circuit between the inductance of the rail and the signal frequency for the forward track circuit. The resonator connected to the resonator has a rail inductance between the rail connection point of the resonator and the rail connection point of the resonator connected to the receiver for the track circuit further ahead, and the rail inductance for the front track circuit. At the signal frequency, the resonator connected to the further forward track circuit receiver is set to resonate in parallel with the inductance of the rail and at the further forward track circuit signal frequency, respectively. A boundary short circuit type uninsulated track circuit consisting of.
JP2202679A 1979-02-28 1979-02-28 Boundary short circuit type non-insulated track circuit Expired JPS6044178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202679A JPS6044178B2 (en) 1979-02-28 1979-02-28 Boundary short circuit type non-insulated track circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202679A JPS6044178B2 (en) 1979-02-28 1979-02-28 Boundary short circuit type non-insulated track circuit

Publications (2)

Publication Number Publication Date
JPS55114661A JPS55114661A (en) 1980-09-04
JPS6044178B2 true JPS6044178B2 (en) 1985-10-02

Family

ID=12071466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202679A Expired JPS6044178B2 (en) 1979-02-28 1979-02-28 Boundary short circuit type non-insulated track circuit

Country Status (1)

Country Link
JP (1) JPS6044178B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568209B1 (en) * 1984-07-27 1988-07-08 Signaux Entr Electriques PERFECTED TRACK CIRCUIT FOR ALTERNATIVE CURRENT ELECTRIC RAILWAYS
JPH0723328Y2 (en) * 1990-10-08 1995-05-31 株式会社京三製作所 Non-insulated track circuit device

Also Published As

Publication number Publication date
JPS55114661A (en) 1980-09-04

Similar Documents

Publication Publication Date Title
US4420133A (en) Device for the transmission of information through the rails between a railway track and a group of vehicles running along this track
US3714419A (en) System for the transmission of information to a vehicle on rails
US4432517A (en) Circuit for detecting unbalance of the traction current in a track circuit
US4442988A (en) Information transmission device through the rails between a railway track and a vehicle assembly circulating on this track
JPS6044178B2 (en) Boundary short circuit type non-insulated track circuit
JP2876003B1 (en) Point control type signal sorting device
US4878638A (en) Combination frequency loop coupling for railway track signalling
US3952977A (en) Electrical detective circuits
JPS6137576A (en) Improved type rail circuit for alternating current electrification type railway
JP2758426B2 (en) Non-insulated track circuit
US4053128A (en) Jointless high frequency track circuit systems for railroads
US3543262A (en) Signal distribution circuit having inductive attenuation means
CA1081806A (en) Signal bandpass filter apparatus
JPS6218534Y2 (en)
JPH0319821B2 (en)
JP4346479B2 (en) Train detection system
JPS60215466A (en) Non-insulating track circuit
JPH092270A (en) Insulated track circuit
JPS6058068B2 (en) Boundary configuration method for uninsulated track circuit
JPH09207778A (en) In-car and on-ground simultaneous movement type ground element
JPH0528143Y2 (en)
JPH0539041A (en) Non-insulated track circuit device for voltage transmission/reception system
KR100356511B1 (en) Audio frequency track circuit
JPS58122255A (en) Non-insulating track circuit device for railroad crossing
GB2074768A (en) Track circuit