JPS6044173B2 - Deceleration sensing proportioning valve - Google Patents

Deceleration sensing proportioning valve

Info

Publication number
JPS6044173B2
JPS6044173B2 JP52126246A JP12624677A JPS6044173B2 JP S6044173 B2 JPS6044173 B2 JP S6044173B2 JP 52126246 A JP52126246 A JP 52126246A JP 12624677 A JP12624677 A JP 12624677A JP S6044173 B2 JPS6044173 B2 JP S6044173B2
Authority
JP
Japan
Prior art keywords
oil chamber
valve
oil pressure
adjustment
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52126246A
Other languages
Japanese (ja)
Other versions
JPS5459568A (en
Inventor
利史 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP52126246A priority Critical patent/JPS6044173B2/en
Publication of JPS5459568A publication Critical patent/JPS5459568A/en
Publication of JPS6044173B2 publication Critical patent/JPS6044173B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【発明の詳細な説明】 本発明は車両後輪ブレーキ装置への油圧伝達に介設さ
れて前後輪の理想ブレーキカ配分比に近似した後輪ブレ
ーキカを得るための減速度感知式プロポーシヨニングバ
ルブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deceleration-sensing proportioning valve that is interposed in hydraulic pressure transmission to a rear wheel brake system of a vehicle and is used to obtain a rear wheel brake force that approximates an ideal brake force distribution ratio between the front and rear wheels. It is something.

車両制動時の前後輪ブレーキカ配分比は固定的でなく
、車両の積載荷重の変化に対応して変化することが知ら
れている。これは車両の適正制動は車輪と路面の間で一
定の好適スリップ率を維持して行なうことが望ましく、
このスリップ率が増大すると車輪ロック現象を招致する
ことに起因し、言い換えれば車輪と路面のなじみ状態の
低下により車輪ロックを生ずるのであるが、これは車輪
を路面に押し付ける車両重量等に大きく影響され、前輪
側は主にエンジン等の車両個有搭載物により荷重があま
り変動しないのに対し、後輪側は積載貨物の量によつて
その荷重が大きく変動する故に、車両の積載荷重量に応
じて前後輪の理想ブレーキカ配分比を変化する結果とな
るのである。 従来よりこの点を考慮して前輪ブレーキ
装置のブレーキ油圧に対して後輪ブレーキ装置のブレー
キ油圧をある一定の割合で低減せしめるための機構が種
々提供されている。例えばプロポーシヨニングバルブは
一定の油圧値を折点として、それ以下のブレーキ油圧で
はマスタシリンダと後輪ブレーキ装置を直接連通させた
上昇率1/1のブレーキ油圧上昇を行なわせると共に、
それ以上のブレーキ油圧では後輪ブレーキ装置の油圧上
昇率をマスタシリンダに対してTanO〈1なる緩上昇
を行なわせるようにし、りミッタ−バルブは一定の油圧
値で後輪ブレーキ装置の油圧上昇をカットするようにし
ている。
It is known that the front and rear wheel brake force distribution ratio during vehicle braking is not fixed, but changes in response to changes in the vehicle's carrying load. This means that it is desirable to properly brake a vehicle by maintaining a constant, suitable slip ratio between the wheels and the road surface.
When this slip rate increases, it causes wheel lock phenomenon. In other words, wheel lock occurs due to a decrease in the conformity between the wheels and the road surface, but this is greatly influenced by the weight of the vehicle that presses the wheels against the road surface. The load on the front wheels does not vary much due to the vehicle's own equipment, such as the engine, whereas the load on the rear wheels varies greatly depending on the amount of cargo loaded. This results in a change in the ideal brake power distribution ratio between the front and rear wheels. Conventionally, in consideration of this point, various mechanisms have been provided for reducing the brake oil pressure of the rear wheel brake system at a certain ratio with respect to the brake oil pressure of the front wheel brake system. For example, the proportioning valve uses a certain oil pressure value as the turning point, and when the brake oil pressure is lower than that, the master cylinder and the rear wheel brake system are directly connected, and the brake oil pressure is increased at a rate of 1/1.
If the brake oil pressure is higher than this, the oil pressure increase rate of the rear wheel brake device is made to gradually increase to TanO<1 with respect to the master cylinder, and the limiter valve increases the oil pressure of the rear wheel brake device at a constant oil pressure value. I'm trying to cut it.

しかしこれらの制御バルブは固定的なブレーキ油圧値を
折点として後輪ブレーキ油圧の上昇を低下若しくはカッ
トするのみであるから、前述した車両積載荷重の変動に
相応した前後輪ブレーキカ配分比の修正はできないとい
う欠点があり、更にこの点を考慮して車両積載荷重の変
動が車軸と車体の相対移動に現われることを引用した荷
重応答機構を付設して前記プロポーシヨニングバルブ等
の折点油圧を可変させる方法も提供されているが、機構
の複雑化、コスト上昇等の難点を持つていた。また一定
油圧ではなく、車両制動時の一定減速度によつて流路の
連通を遮断する所謂Gバルブを提供されている。
However, since these control valves only reduce or cut the increase in rear wheel brake oil pressure using a fixed brake oil pressure value as a turning point, it is not possible to modify the front and rear brake power distribution ratio in accordance with the fluctuations in vehicle payload mentioned above. Furthermore, in consideration of this point, a load response mechanism has been added that takes into account that fluctuations in the vehicle load appear in the relative movement of the axle and the vehicle body, and the turning point oil pressure of the proportioning valve etc. can be varied. Although methods have been proposed to do so, they have drawbacks such as complicating the mechanism and increasing costs. Furthermore, a so-called G valve is provided which cuts off communication of the flow path not by constant oil pressure but by constant deceleration during braking of the vehicle.

これは一定減速度を得るに要するブレーキカが車両積載
荷重の増大に略比例して増大するため積載荷重と油圧カ
ット点の相関性を有するが、実際には車両減速度の値が
前輪ブレーキカに依存する度合が大きくしかも一定油圧
で油圧伝達をカットすることから結局前述した理想ブレ
ーキカ配分からのズレは大きくなつていた。本発明は以
上述べた種々の点を考慮し、Gバルブが一定の範囲で車
両積載荷重と油圧カット点の相関性を示すこと、及びプ
ロポーシヨニングバルブが一定油圧を折点として後輪ブ
レーキ油圧を緩上昇せしめる機能を有することを組合せ
て、車両積載荷重の量によつて異なる曲線を示す理想ブ
レーキカ配分曲線に出来るだけ近似した制動力制御を行
なわせることができる減速度感知式プロポーシヨニング
バルブを提供せんとするものである。具体的には異面積
の油圧受圧面を有する制御ピストンが、油圧作用によつ
て付勢バネカに抗して軸方向に移動することにより入力
油室及び出力油室の連通路を遮断し、この後は付勢バネ
カと軸両方向の油圧作用のバランスによつて出力油室の
油圧緩上昇を得る方式のプロポーシヨニングバルブにお
いて、折点油圧は軸両方向の面積差分に作用する油圧力
とバネカの値により定まることに着目し、このバネカを
Gバルブの車両積載荷重と油圧カット点との相関性を利
用して折点油圧の制御を行なわせるものである。即ちG
バルブの前述した相関性を異面積ピストン(段付ピスト
ン)により拡大してプロポーシヨニングバルブのバネカ
増大に連動させたのである。以下本発明を図面に示す実
施例に基づいて説明する。
This is because the brake force required to obtain a constant deceleration increases approximately in proportion to the increase in vehicle load, so there is a correlation between the load and the hydraulic cut point, but in reality the value of vehicle deceleration depends on the front wheel brake force. Since the degree of brake force distribution is large and the hydraulic pressure transmission is cut at a constant hydraulic pressure, the deviation from the ideal brake force distribution mentioned above becomes large. The present invention takes into consideration the various points mentioned above, and the G valve shows a correlation between the vehicle load and the oil pressure cut point within a certain range, and the proportioning valve changes the rear wheel brake oil pressure with the constant oil pressure as the turning point. This deceleration-sensing proportioning valve is capable of controlling braking force as closely as possible to the ideal brake force distribution curve, which shows a curve that varies depending on the amount of vehicle payload. We aim to provide the following. Specifically, the control piston, which has hydraulic pressure receiving surfaces with different areas, moves in the axial direction against the biasing spring due to hydraulic action, thereby blocking the communication path between the input oil chamber and the output oil chamber. In a proportioning valve that obtains a gradual increase in the oil pressure in the output oil chamber by balancing the hydraulic action in both directions of the shaft and the biasing spring, the corner oil pressure is determined by the hydraulic pressure acting on the area difference in both directions of the shaft and the spring force. By paying attention to the fact that it is determined by the value, this spring is used to control the corner oil pressure by utilizing the correlation between the vehicle load of the G valve and the oil pressure cut point. That is, G
The above-mentioned correlation of the valves was expanded by using a piston with a different area (stepped piston), and linked to the increase in the spring force of the proportioning valve. The present invention will be described below based on embodiments shown in the drawings.

第1図において1はバルブボディ、2,2″は段付シリ
ンダであり、プロポーシヨニング作動機構3と該機構の
折点油圧を荷重スプリング4のバネ荷重を可変せしめる
押圧力制御機構14とを収容している。
In FIG. 1, 1 is a valve body, and 2, 2'' are stepped cylinders, which include a proportioning actuating mechanism 3 and a pressing force control mechanism 14 that changes the corner oil pressure of the mechanism and the spring load of a load spring 4. It is accommodated.

プロポーシヨニング作動機構3は、段付シリンダ2,2
″内に軸方向移動可能に滑合されかつ調整スプリング5
により大径シリンダ2″側に偏倚されて1つの段付ピス
トンを構成する異径の調整ピストン6,7(筒状第1部
6,一端開放筒状第2部)と、と、この一方の小径調整
ピストン6の軸心部を貫通するように形成されたシリン
ダ6″に一端部が水密的に嵌挿滑合され、かつ他方の大
径調整ピストン7との間に圧縮型の荷重スプリング4が
張設された制御ピストン8と、段付シリンダ2に固定さ
れかつ制御ピストン8の先端大径フランジ部8″と協働
して流路の開閉弁部を構成する円環状のバルブシート9
と、制御ピストン8の”大径フランジ部8″が位置し、
後輪ブレーキ装置のホイルシリンダ(図示せず)に連通
されている出力油室10と、制御ピストン8とバルブシ
ート9の構成する弁部により前記出力油室10と区分さ
れかつマスタシリンダ(図示せず)に連通されている入
力油室11とから構成されている。
The proportioning operation mechanism 3 includes stepped cylinders 2, 2
The adjustment spring 5 is slidably fitted to be movable in the axial direction within the
adjusting pistons 6 and 7 (cylindrical first part 6, one end open cylindrical second part) of different diameters, which are biased toward the large diameter cylinder 2'' side and constitute one stepped piston; One end of the cylinder 6'' is formed to penetrate through the axial center of the small-diameter adjusting piston 6, and a compression-type load spring 4 is connected to the other large-diameter adjusting piston 7 in a water-tight manner. a control piston 8 with a tensioned control piston 8, and an annular valve seat 9 that is fixed to the stepped cylinder 2 and cooperates with the large-diameter flange portion 8'' at the tip of the control piston 8 to constitute an opening/closing valve portion of the flow path.
, the "large diameter flange portion 8" of the control piston 8 is located,
An output oil chamber 10 communicates with a wheel cylinder (not shown) of a rear wheel brake device, and is separated from the output oil chamber 10 by a valve portion constituted by a control piston 8 and a valve seat 9, and is connected to a master cylinder (not shown). The input oil chamber 11 is connected to the input oil chamber 11.

尚、12はピストンカップであり、制御ピストン8と調
整ピストン6の滑合面の水密性を確保するものである。
13は同様調整ピストン6,7と段付シリンダ2,2″
の水密性を確保するO−リングである。
In addition, 12 is a piston cup, which ensures watertightness of the sliding surfaces of the control piston 8 and the adjustment piston 6.
13 is the same adjustment piston 6, 7 and stepped cylinder 2, 2''
This is an O-ring that ensures watertightness.

次にプロポーシヨニング作動機構3の動作について説明
する。
Next, the operation of the proportioning actuation mechanism 3 will be explained.

制御ピストン8の軸部の断面積をA1、大径フランジ部
8″の断面積をA2、荷重スプリング4の初期押圧力(
初期荷重)をF1、バネ定数をK1とすれば、通常荷重
スプリング4の押圧力により制御ピストン8は先端側(
図の左方)の所定位置に偏倚係止されて入出力油室10
,11を連通する流路を開いており、マスタシリンダか
らの油圧は入力油室11、出力油室10次いで後輪ブレ
ーキ装置に伝えられる。
The cross-sectional area of the shaft of the control piston 8 is A1, the cross-sectional area of the large diameter flange 8'' is A2, and the initial pressing force of the load spring 4 (
If F1 is the initial load (initial load) and K1 is the spring constant, the control piston 8 is moved to the tip side (
The input/output oil chamber 10 is biased and locked in a predetermined position on the left side of the figure.
, 11 are opened, and the hydraulic pressure from the master cylinder is transmitted to the input oil chamber 11, the output oil chamber 10, and then to the rear wheel brake system.

このため制御ピストン8にはPi,O−A1なる油圧が
後端方向(図の右方)に作用し、これが次式のように荷
重スプリング4の初期荷重F1を上回ると制御ピストン
8は図の右方に移動して大径フランジ部8″がバルブシ
ート9に当合し、入力油室11と出力油室10の間の連
通を遮断することとなる。
Therefore, a hydraulic pressure Pi, O-A1 acts on the control piston 8 toward the rear end (to the right in the figure), and when this exceeds the initial load F1 of the load spring 4 as shown in the following equation, the control piston 8 moves as shown in the figure. Moving to the right, the large-diameter flange portion 8'' comes into contact with the valve seat 9, cutting off communication between the input oil chamber 11 and the output oil chamber 10.

このとき(連通遮断時)の油圧を (ただしS。Hydraulic pressure at this time (when communication is cut off) (However, S.

は制御ピストン8が図示位置からバルブシート9に当合
するまで移動したときの荷重スプリング4の縮み量)と
すれば、この油圧Pc以下で入・出力油圧はPi=PO
の状態にあり、それ以上では制御ピストン8に作用する
油圧力と荷重スプリング4の押圧力とのバランスに従い
、弁部が開閉を繰り返しながらA2−Altanθ=
〜 の傾きで入力油室Piに対する出力油P。
is the amount of contraction of the load spring 4 when the control piston 8 moves from the illustrated position until it abuts the valve seat 9), then below this oil pressure Pc, the input and output oil pressures are Pi = PO
Above this state, the valve part repeats opening and closing according to the balance between the hydraulic pressure acting on the control piston 8 and the pressing force of the load spring 4, and A2-Altanθ=
The output oil P with respect to the input oil chamber Pi with a slope of ~.

の緩上昇が得られる。即ち油圧P。が折点油圧値となる
。荷重スプリング4の押圧力調整機構14は、一端開放
の筒状をなす大径調整ピストン7の閉塞した後端面が臨
む段付シリンダ2″内に設けた調整油室15を、Gバル
ブ機構16を介して前記入力油室11に接続し、先端面
が入力油室11に臨む小径調整ピストン6と該大径調整
ピストン7が1つの段付ピストンとして機能するよるに
設けられている。
A gradual rise in the temperature is obtained. That is, the oil pressure P. is the corner oil pressure value. The pressing force adjustment mechanism 14 for the load spring 4 includes an adjustment oil chamber 15 provided in a stepped cylinder 2'' facing the closed rear end surface of a large-diameter adjustment piston 7 having a cylindrical shape with one end open, and a G valve mechanism 16. A small-diameter adjusting piston 6 and a large-diameter adjusting piston 7 are connected to the input oil chamber 11 through the piston, and the tip end face faces the input oil chamber 11, and the large-diameter adjusting piston 7 is provided so as to function as one stepped piston.

尚Gバルブ機構16の構成は既知のものと同様であり、
図の矢印に示す車両前進方向に対して角度θの仰角をな
すガイド面17に案内されて、車両制動時の一定減速度
GOにてボール19が弁座18に当合して流路20を遮
断する構成をなしている。
The configuration of the G valve mechanism 16 is the same as the known one,
Guided by a guide surface 17 that forms an elevation angle of θ with respect to the forward direction of the vehicle as shown by the arrow in the figure, the ball 19 abuts against the valve seat 18 at a constant deceleration GO during vehicle braking and moves through the flow path 20. It has a configuration that blocks it.

またこの弁座18には調整油室15への油流入速度を規
制する絞り部21を設けている。これは油圧伝達速度に
伴なう車両減速度増大の作動遅れ即ちボール19の流路
20の遮断が適正油圧で行なわれるようにしたものであ
る。次に荷重スプリング4の押圧力調整機構14の動作
について説明する。
Further, the valve seat 18 is provided with a throttle portion 21 for regulating the speed of oil flowing into the regulating oil chamber 15. This is to delay the increase in vehicle deceleration due to the hydraulic pressure transmission speed, that is, to block the flow path 20 of the ball 19 at an appropriate hydraulic pressure. Next, the operation of the pressing force adjustment mechanism 14 for the load spring 4 will be explained.

今前述の調整ピストン6,7よりなる1つの段付ピスト
ンの入力油室11及び調整油室15に臨む油圧受圧面積
を夫々A3−Al,A4(A3くAi)とし、説明の便
宜上調整スプリング5の荷重を零と仮定すると、Gバル
ブ機構16が流路20を開いている状態において、段付
ピストン6,7に作用する図の左方への力は、となる。
For convenience of explanation, the hydraulic pressure receiving areas facing the input oil chamber 11 and the adjustment oil chamber 15 of one stepped piston consisting of the adjustment pistons 6 and 7 mentioned above are respectively referred to as A3-Al and A4 (A3-Ai), and for convenience of explanation, the adjustment spring 5 Assuming that the load is zero, the force acting on the stepped pistons 6 and 7 to the left in the figure when the G valve mechanism 16 opens the flow path 20 is as follows.

ここでPi,O(A4−A3+A1)≦F1のときは図
示の状態で段付ピストンは静止し続けることになる。そ
して段付ピストンと制御ピストン8は滑動関係にあるた
め荷重スプリング4の初期荷重F1を前記油圧力(Pi
,O(A4−A3+A1))が上回ると、段付ピストン
は荷重スプリング4を撓めながら図の左方に移動する。
次いでGバルブ機構16が流路20を遮断すると段付ピ
ストンはその位置で静止される。このときの段付ピスト
ンの移動量をS1調整油室15の封入油圧をPaとすれ
ば段付ピストンが静止したときの荷重スプリング4の押
圧力は分だけ増大し、前述した(1)式は と表わされる。
Here, when Pi,O(A4-A3+A1)≦F1, the stepped piston continues to stand still in the state shown. Since the stepped piston and the control piston 8 are in a sliding relationship, the initial load F1 of the load spring 4 is controlled by the hydraulic pressure (Pi
, O(A4-A3+A1)), the stepped piston moves to the left in the figure while bending the load spring 4.
Next, when the G valve mechanism 16 blocks the flow path 20, the stepped piston is stopped at that position. If the amount of movement of the stepped piston at this time is the sealed oil pressure in the S1 adjustment oil chamber 15 as Pa, the pressing force of the load spring 4 when the stepped piston is stationary increases by that amount, and the above-mentioned equation (1) is It is expressed as

と書き換えられる。It can be rewritten as

そしてプロポーシヨニング作動機構3の折点油圧(P″
Cとする)は、と表わされる。
And the corner oil pressure of the proportioning actuation mechanism 3 (P″
C) is expressed as.

調整油室Paに封入される油圧P8は、前述したように
車両の一定減速度GOを得るに要するブレーキカが車両
積載荷重Wに略比例して増大することから PaO
(−W ・・・・(5)であり前記
(3)式、(1)″式及び(4)式中の移動量Sも車両
積載荷重Wに略比例して増大することとなる。
The hydraulic pressure P8 sealed in the adjustment oil chamber Pa is PaO because the brake force required to obtain a constant deceleration GO of the vehicle increases approximately in proportion to the vehicle carrying load W, as described above.
(-W (5), and the amount of movement S in the equations (3), (1)″, and (4) also increases approximately in proportion to the vehicle carrying load W.

以上述べたことからプロポーシヨニング作動機構3の折
点油圧は調整油室15の封入油圧Paの増大に略比例し
て増大することが明らかであるが、車両無積載時におけ
る折点油圧(PClとする)から最大積載時における折
点油圧(PC2とする)の範囲で荷重スプリング4の撓
みによる制御ピストン8への付勢バネ荷重変動を得れば
よいことから、荷重スプリング4の初期荷重F1の大き
さを車両無積載時の調整油室15の封入油圧による段付
ピストンへの油圧力とほぼ等しく設定することによつて
該折点油圧値設定を容易にすることが望ましく、実際に
は図面に示した本実施例の如く段付ピストンの油圧作用
による移動力に抗した押圧力を付勢する調整スプリング
5を配設して該段付ピストンの荷重スプリング4を撓め
る移動開始時点及びその移動量を調整する構成とするこ
とも容易に理解されるところであろう。
From the above, it is clear that the corner oil pressure of the proportioning actuating mechanism 3 increases approximately in proportion to the increase in the oil pressure Pa sealed in the adjustment oil chamber 15, but the corner oil pressure when the vehicle is not loaded (PCl The initial load F1 of the load spring 4 can be calculated from It is desirable to facilitate the setting of the corner oil pressure value by setting the size of the oil pressure approximately equal to the oil pressure applied to the stepped piston due to the oil pressure sealed in the adjustment oil chamber 15 when the vehicle is not loaded. As in the present embodiment shown in the drawings, an adjustment spring 5 is provided to apply a pressing force against the moving force due to the hydraulic action of the stepped piston, and the movement start point at which the load spring 4 of the stepped piston is bent. It will also be easily understood that the configuration is such that the amount of movement thereof is adjusted.

以上のように本発明よりなる減速度感知式プロポーシヨ
ニングバルブは、第2図に示す如く車両制動時における
前後輪の理想ブレーキカ配分曲線が軽荷重積載時PXl
の曲線状態から高荷重積載時PO2の状態に変化するの
に対応して折点油圧POも増大し、制御ピストン8の軸
前後方向に異なる油圧受圧面積Al,A2により決定さ
れる緩上昇率A2−AltanO= 〜 で上昇する後
輪ブレーキ油圧の特性は前記油圧曲線Pxに極めて近似
して得られるものとなる。
As described above, the deceleration sensing type proportioning valve according to the present invention has an ideal brake force distribution curve for the front and rear wheels during vehicle braking as shown in FIG.
Corresponding to the change from the curve state to the state of PO2 at the time of high load loading, the corner oil pressure PO also increases, and the gradual rise rate A2 is determined by the hydraulic pressure receiving area Al, A2 which differs in the longitudinal direction of the axis of the control piston 8. The characteristic of the rear wheel brake oil pressure that increases when -AltanO= ~ is obtained by extremely approximating the oil pressure curve Px.

また本発明の他の特徴としては、荷重スプリング4の押
圧力の調整機構14がプロポーシヨニング作動機構3の
入力油室11と、Gバルブ機構16を介して該入力油室
11に接続された調整油室15の油圧バランスによつて
動作することにある。
Another feature of the present invention is that the adjustment mechanism 14 for the pressing force of the load spring 4 is connected to the input oil chamber 11 of the proportioning actuating mechanism 3 and the input oil chamber 11 via the G valve mechanism 16. It operates based on the hydraulic balance of the adjustment oil chamber 15.

即ち急制動の場合等においてはブレーキ油圧が急上昇す
ることがあり、仮りに段付ピストンが調整油室からの油
圧力とこれに抗した機械的バネ力等とのバランスによつ
て荷重スプリング4の撓め量を決定する方式とすれば、
Gバルブ機構が調整油室への油流入路を遮断する前(車
両一定減速度Gcが得られる前)に異常高圧が伝えられ
て油圧折点調整の誤動作を招くことがあるのに対し、本
発明ではこのような調整油室15への異常高圧伝達があ
つても、段付ピストンには入力油室11側からも相応し
た異常高圧が作用するため誤動作の程度は極めて軽減さ
れ、流路20に絞り部21を設けていることと合わせて
折点油圧Pcの誤調整の幣害は効果的に防止されている
In other words, in the case of sudden braking, the brake oil pressure may rise rapidly, and the stepped piston may cause the load spring 4 to increase due to the balance between the oil pressure from the adjustment oil chamber and the mechanical spring force that resists this. If the method is to determine the amount of deflection,
Abnormally high pressure may be transmitted before the G valve mechanism blocks the oil inflow path to the adjustment oil chamber (before constant vehicle deceleration Gc is obtained), leading to malfunction of oil pressure corner adjustment. In the present invention, even if such abnormal high pressure is transmitted to the adjustment oil chamber 15, the corresponding abnormal high pressure acts on the stepped piston from the input oil chamber 11 side, so the degree of malfunction is extremely reduced, and the flow path 20 In addition to the provision of the throttle portion 21 in the hydraulic pressure Pc, damage caused by incorrect adjustment of the corner oil pressure Pc is effectively prevented.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので第1図は減速度感
知式プロポーシヨニングバルブの縦断面図、第2図は前
後輪ブレーキ油圧の上昇特性図である。 1・・・・・・バルブボディ、2,2″・・・・・段付
シリンノダ、3・・・・・・プロポーシヨニング作動機
構、4・・・荷重スプリング、5・・・・・・調整スプ
リング、6,7・・・・調整ピストン、6″・・・・シ
リンダ、8・・・・・・制御ピストン、『・・・・大径
フランジ部、9・・・・・・バルブシート、10・・・
・・・出力油室、11・・・・・・入力油1室、12・
・・・・ゼストンカツプ、13・・・・・・0−リング
、14・・・・・・押圧力調整機構、15・・・・・調
整油室、16・・・・・・Gバルブ機構、17・・・・
・・ガイド面、18・・・・・・弁座、19・・・・・
・ボール、20・・・・・・流路、21・・・・・絞り
部。
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal sectional view of a deceleration sensing type proportioning valve, and FIG. 2 is a diagram showing the increase characteristic of front and rear wheel brake oil pressure. 1...Valve body, 2,2''...Stepped cylinder nodder, 3...Proportioning operation mechanism, 4...Load spring, 5... Adjustment spring, 6, 7...Adjustment piston, 6''...Cylinder, 8...Control piston, ``...Large diameter flange section, 9...Valve seat , 10...
...Output oil chamber, 11...Input oil chamber 1, 12.
... Zeston cup, 13 ... O-ring, 14 ... Pressure force adjustment mechanism, 15 ... Adjustment oil chamber, 16 ... G valve mechanism, 17...
...Guide surface, 18... Valve seat, 19...
-Ball, 20...flow path, 21...throttle section.

Claims (1)

【特許請求の範囲】 1 荷重スプリングの付勢バネ力に抗し軸前後方向の異
なる油圧作用力にて一方向に移動する制御ピストンがシ
リンダ内を入・出力2油室に区分する弁座と協働する流
路開閉弁部を構成し、入力油圧が前記付勢バネ力にて定
まる折点油圧値以上になると該弁部の開閉作動により出
力油圧の上昇率を低下せしめる方式のプロポーシヨニン
グバルブにおいて、小径端面が入力油室に臨む段付ピス
トンを前記シリンダ内の制御ピストン移動方向側を略同
心に配設すると共に、該段付ピストンの他端大径端面の
臨む調整油室を形成し、これら2ピストン間にスパン伸
長方向のバネ力を付勢する前記荷重スプリングを張設し
、更に一定減速度にて流路を閉じるGバルブ機構を介し
て前記入力油室と調整油室を接続し、調整油室の封入油
圧値の増大に略比例して段付ピストンが荷重スプリング
を圧縮し、前記折点油圧値を増大せしめるように構成し
たことを特徴とする減速度感知式プロポーシヨニングバ
ルブ。 2 段付ピストン小径部と制御ピストン一端部のいずれ
か一方に一端開放シリンダを形成してこれら2ピストン
を水密的に滑合せしめたことを特徴とする特許請求の範
囲1に記載した減速度感知式プロポーシヨニングバルブ
。 3 段付ピストンを調整油室側に押圧する荷重の調整ス
プリングを設けたことを特徴とする特許請求の範囲1又
は2に記載した減速度感知式プロポーシヨニングバルブ
。 4 段付ピストンが制御ピストン一端部の貫通滑合する
筒状第1部と、荷重スプリングを抱持する一端開放筒状
第2部の独立2部材に分割されていることを特徴とする
特許請求の範囲2又は3に記載した減速度感知式プロポ
ーシヨニングバルブ。
[Claims] 1. A control piston that moves in one direction with different hydraulic forces in the longitudinal direction of the shaft against the biasing spring force of a load spring has a valve seat that divides the inside of the cylinder into two oil chambers, an input oil chamber and an output oil chamber. Proportioning is a method in which a cooperating flow passage opening/closing valve part is configured, and when the input oil pressure exceeds a corner oil pressure value determined by the urging spring force, the rate of increase in output oil pressure is reduced by opening/closing the valve part. In the valve, a stepped piston with a small diameter end face facing an input oil chamber is arranged approximately concentrically with the control piston moving direction side in the cylinder, and an adjustment oil chamber is formed with the other end of the stepped piston facing the large diameter end face. The load spring that applies a spring force in the span extension direction is tensioned between these two pistons, and the input oil chamber and the adjustment oil chamber are connected via a G valve mechanism that closes the flow path at a constant deceleration. A deceleration-sensing proportion characterized in that the stepped piston compresses the load spring substantially in proportion to an increase in the oil pressure value sealed in the adjustment oil chamber, thereby increasing the corner oil pressure value. ning valve. 2. The deceleration sensing device according to claim 1, characterized in that a cylinder with one end open is formed in either the small diameter portion of the stepped piston or the one end portion of the control piston, and these two pistons are slid together in a watertight manner. Type proportioning valve. 3. The deceleration sensing type proportioning valve according to claim 1 or 2, further comprising a load adjustment spring that presses the stepped piston toward the adjustment oil chamber. 4. A patent claim characterized in that the stepped piston is divided into two independent members: a cylindrical first part that slides through one end of the control piston, and a second cylindrical part that is open at one end and holds a load spring. Deceleration sensing type proportioning valve described in range 2 or 3.
JP52126246A 1977-10-20 1977-10-20 Deceleration sensing proportioning valve Expired JPS6044173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52126246A JPS6044173B2 (en) 1977-10-20 1977-10-20 Deceleration sensing proportioning valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52126246A JPS6044173B2 (en) 1977-10-20 1977-10-20 Deceleration sensing proportioning valve

Publications (2)

Publication Number Publication Date
JPS5459568A JPS5459568A (en) 1979-05-14
JPS6044173B2 true JPS6044173B2 (en) 1985-10-02

Family

ID=14930407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52126246A Expired JPS6044173B2 (en) 1977-10-20 1977-10-20 Deceleration sensing proportioning valve

Country Status (1)

Country Link
JP (1) JPS6044173B2 (en)

Also Published As

Publication number Publication date
JPS5459568A (en) 1979-05-14

Similar Documents

Publication Publication Date Title
JPH0134814B2 (en)
JPH0562099B2 (en)
US6089676A (en) Hydraulic brake apparatus for a vehicle
US4253707A (en) Brake pressure control device
US4462641A (en) Deceleration sensing valve assembly for vehicle brake
US4286504A (en) Drum brake actuating device
US4116493A (en) Brake pressure control valve
US5487271A (en) Brake-booster with hydraulic reaction and adjustable kick
GB1601990A (en) Brake control system
US3790228A (en) Brake pressure modulator
GB1563758A (en) Hydraulic brake control assembly
JPS6044173B2 (en) Deceleration sensing proportioning valve
US4070067A (en) Fluid pressure control device
US4194792A (en) Deceleration sensing type proportioning valve
US3768876A (en) Proportioning valve with load sensing blend back
US4159855A (en) Load sensing proportioning valve
US4786116A (en) Trailer control valve device for the trailer brakes of a tractor-trailer vehicle
US4331364A (en) Hydraulic pressure control valve
US4325582A (en) Hydraulic pressure control valve assembly for automotive hydraulic brake system
US4125291A (en) Hydraulic brake pressure control apparatus for use with a vehicle
US4036535A (en) Braking fluid pressure control device
US3954307A (en) Load sensing proportioning valve including inertia responsive element
US4560208A (en) Brake pressure control unit of deceleration-responsive type
GB2032553A (en) Deceleration responsive brake control valves
US3720447A (en) Hydraulic anti-lock brake control system