JPS6043611B2 - Multi-core cable manufacturing method - Google Patents

Multi-core cable manufacturing method

Info

Publication number
JPS6043611B2
JPS6043611B2 JP12619279A JP12619279A JPS6043611B2 JP S6043611 B2 JPS6043611 B2 JP S6043611B2 JP 12619279 A JP12619279 A JP 12619279A JP 12619279 A JP12619279 A JP 12619279A JP S6043611 B2 JPS6043611 B2 JP S6043611B2
Authority
JP
Japan
Prior art keywords
cable
vulcanization
core
tape
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12619279A
Other languages
Japanese (ja)
Other versions
JPS5650008A (en
Inventor
忠男 橘
良和 四ツ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP12619279A priority Critical patent/JPS6043611B2/en
Publication of JPS5650008A publication Critical patent/JPS5650008A/en
Publication of JPS6043611B2 publication Critical patent/JPS6043611B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 本発明は、常圧下で加熱し、加硫する多心ケーブルの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multi-core cable by heating and vulcanizing under normal pressure.

熔融塩等の加熱媒体を満した加硫浴槽を用いて、ゴム
、プラスチックを常圧下で加熱し加硫する加硫ケーブル
の製造方法は公知である。
A method for manufacturing a vulcanized cable is known in which rubber or plastic is heated and vulcanized under normal pressure using a vulcanizing bath filled with a heating medium such as molten salt.

その場合に用いられる加硫浴槽は、高圧水蒸気を加熱媒
体とする加硫装置のように耐圧構造とする必要がなく、
しかも押出機と気密に直結する必要もないので極めて簡
単な構造のもので済む。しカルながら、シュート等を介
在させたケーブル撚線コアの外側に未加硫のゴム、プラ
スチックからなるシースを押出被覆し、次いで該シース
を上記の常圧加硫法により加硫したとき、ケーブル内の
気体の膨脹あるいは介在に含まれている水分、揮発性有
機物質等の気化等によりケーブル内圧が上昇してケーブ
ル外圧より高くなり、このためシースが膨脹し、所定外
径の寸法に仕上り難い欠点がある。さらには又、加硫時
において、シースの加硫に必要な熱量がシース以外の介
在あるいはケーブル線心 \に奪われるため、シースの
均一加硫あるいは加硫効率の点での難点もある。 本発
明は上記に鑑み、所定寸法の多心ケーブルを常圧加硫法
で製造し得ると共にシースの均一加硫が成し得、かつ加
硫効率の良い製造方法を提案するものであり、ケーブル
集合コアの外側に、加硫温度で加熱してもガスを発生せ
ず、かつ断熱性を有するテープを施し、次いで減圧下で
未加硫ゴム、プラスチックからなる外層を施した後、該
外層を常圧下で加熱し、加硫することを特徴とするもの
である。
The vulcanization bath used in this case does not need to have a pressure-resistant structure unlike vulcanization equipment that uses high-pressure steam as the heating medium.
Moreover, since there is no need for direct connection to the extruder in an airtight manner, an extremely simple structure is sufficient. However, when a sheath made of unvulcanized rubber or plastic is extruded and coated on the outside of the cable stranded core with a chute etc., and then the sheath is vulcanized by the above-mentioned atmospheric pressure vulcanization method, the cable Due to the expansion of the gas inside the cable or the vaporization of moisture, volatile organic substances, etc. contained in the cable, the internal pressure of the cable increases and becomes higher than the cable external pressure, which causes the sheath to expand and makes it difficult to finish the cable to the specified outer diameter. There are drawbacks. Furthermore, during vulcanization, the amount of heat required to vulcanize the sheath is absorbed by an intervening object other than the sheath or by the cable core, which poses a problem in terms of uniform vulcanization of the sheath or vulcanization efficiency. In view of the above, the present invention proposes a manufacturing method that can manufacture a multi-core cable of a predetermined size by an atmospheric pressure vulcanization method, can achieve uniform vulcanization of the sheath, and has high vulcanization efficiency. A tape that does not generate gas even when heated to the vulcanization temperature and has heat insulating properties is applied to the outside of the collective core, and then an outer layer made of unvulcanized rubber or plastic is applied under reduced pressure. It is characterized by being heated and vulcanized under normal pressure.

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

図において、1は加硫ゴムで絶縁被覆された線心3条
を撚合わせた、各線心間に介在を有するケーブル集合コ
アであり、該ケーブル集合コアの外側には、後記するシ
ース加硫時の熱による介在の熱溶融あるいは、介在中に
含まれる水分、揮発性物質等の気化を防止するために加
硫温度て溶融することなく、かつ断熱効果のあるテープ
11が巻回もしくは縦沿え等の手段により設けられてい
る。該テープ11としては例えばポリエステル、ナイロ
ン等の不織布や発泡体あるいはエンボス加工等により空
気層を設けたプラスチックテープが用いられる他、加硫
温度でも水分を発生しない程度に十分に乾燥した紙テー
プあるいは木綿等の布テープが用いられる。上記テープ
11が施されたケーブル集合コア1は、ゴム押出成型用
クロスヘッド2のニップル21に気密に螺着したシール
管22を通過してニップル21に連続供給され、シール
管22はケーブル集合コア1の外径より僅かに大きい内
径を有する長尺(たとえば30c1n)の管であり、そ
の内壁面には独立気泡を内泡する発泡ポリウレタンが内
張(図示せず)されている。このためケーブル集合コア
1の表面とシール管22の内面との間は気密になつてお
り、更にニップル21内は排気管23と連通する排気ポ
ンプ(図示せず)により連続排気されているので断えず
減圧状態に保たれている。この場合の減圧度は、ケーブ
ル集合コア内に残留した空気が加硫温度に加熱され膨脹
したときてもなお大気圧以下であるような程度とする。
たとえば加硫温度が200′Cである場合、400Tf
0nHg程度又はそれ以下に排気する。一方、クロスヘ
ッド2には、ベント押出機(図示せず)たとえば三葉製
作所製二軸ベント式ゴム押出機(該押出機は、第一段押
出機と第二段押出機との間に真空乾燥室を設けた構造を
有し、第一段押出機から押出されたゴムは真空乾燥室で
細断され、乾燥されて第二段押出機から押出成型される
)から生石灰等の発泡防止剤を配合した未加硫のクロロ
プレンシース配合組成物が充分に乾燥脱気されて供給さ
れ、ニップル21内を通過して減圧下に曝されたケーブ
ル集合コア1上に上記クロロプレンシース配合組成物が
成型被覆され、かくしてクロスヘッド2の出口よりシー
ス層12を有する未加硫のケーブル13が押出される。
ケーブル13は、このあと熔融混合塩、熔融金属、ポリ
アルキレングリコール等の加熱媒体の1種を満した加硫
浴槽3内に該浴槽の側壁に設けた導入口31を潜つて導
入され、加熱媒体中を通過してのち、加硫浴槽3の側壁
に設けた導出口32を潜つて導出される。加硫浴槽3は
導入口31と導出口32を有する各側壁の外側にそれぞ
れの口から流出する加熱媒体を捕集する補助槽33,3
4を備えており、更に各補助槽に捕集した加熱媒体を1
箇所に集め温度調節して加硫浴槽に還流する還流装置(
図示せず)を備えている。又、浴槽内の加熱媒体は浴槽
内に設置したヒーター35によりゴム、プラスチックが
充分加硫する温度たとえば200℃に加熱保持されてい
る。このとき、ケーブル集合コア1の外側に断熱性のテ
ープ11が施こされているため上記加硫の熱がテープ1
1で遮断されケーブル集合コア1側へ逃げることがほと
んどないため加硫浴槽を通過したケーブル13のシース
層は効率よくかつ均一に加硫される。しかも、ケーブル
13の内部は予め脱気されており、かつケーブル集合コ
アー1は上記加硫温度に対して断熱性のあるテープ11
が施こされているため、介在等からガスが発生すること
もない。故に加熱加硫中においてもケーブル13内はは
大気圧と同じか又はそれ以下の圧力下にあるのでシース
12は膨脹することがなく、従つて所定外径のケーブル
が得られる。ケーブル13はこのあと加硫浴槽の下手に
設置した水洗装置4次いでワイパー5等の表面清浄装置
を通過したのち巻取られる。本発明は、上記実施例のみ
に限るものではない。たとえば、加硫装置としては上記
の液状加熱媒体を満した加硫浴槽以外に粒子流動浴槽、
高温の空気や窒素を加熱媒体とする熱気浴槽を用いても
よい。又必要により押出機のクロスヘッドと加硫装置の
間にプリコーターを設置し、未加硫ケーブルの表面にタ
ルク、シリコン油等を塗布したのち以後の工程に移つて
もよい。上記、タルクやシリコン油等の塗布は周知の通
り加熱媒体が未加硫物体の表面に附着して加硫後の性質
を阻害するような場合に加熱媒体の附着を防止する作用
をなすものである。尚、本発明は、上記実施例に示す3
心ケーブルのみならず2心以上の多心ケーブルが所定の
寸法て製造し得る。
In the figure, reference numeral 1 denotes a cable assembly core made by twisting three wire cores insulated with vulcanized rubber and having an interposition between each wire core.A sheath 1, which will be described later, is placed on the outside of the cable assembly core when vulcanized. In order to prevent thermal melting of the intervening material or vaporization of moisture, volatile substances, etc. contained in the intervening material, the tape 11, which does not melt at the vulcanization temperature and has an insulating effect, is wound or stretched vertically. It is provided by means of. As the tape 11, for example, a non-woven fabric or foam material such as polyester or nylon, or a plastic tape with an air layer formed by embossing or the like is used, as well as a paper tape, cotton, etc. that is sufficiently dry to the extent that no moisture is generated even at the vulcanization temperature. cloth tape is used. The cable collecting core 1 coated with the tape 11 is continuously supplied to the nipple 21 through a sealed tube 22 which is hermetically screwed onto the nipple 21 of the crosshead 2 for rubber extrusion molding. The tube is a long tube (for example, 30c1n) having an inner diameter slightly larger than the outer diameter of the tube, and its inner wall surface is lined with polyurethane foam (not shown) containing closed cells. Therefore, the space between the surface of the cable collecting core 1 and the inner surface of the seal tube 22 is airtight, and the inside of the nipple 21 is continuously evacuated by an exhaust pump (not shown) communicating with the exhaust pipe 23, so that there is no disconnection. It is kept under reduced pressure. In this case, the degree of pressure reduction is such that even when the air remaining in the cable assembly core is heated to the vulcanization temperature and expanded, the pressure remains below atmospheric pressure.
For example, if the vulcanization temperature is 200'C, 400Tf
Evacuate to about 0 nHg or lower. On the other hand, the crosshead 2 is equipped with a vent extruder (not shown), such as a twin-screw vent type rubber extruder manufactured by Mitsuha Seisakusho (this extruder has a vacuum between the first stage extruder and the second stage extruder). The rubber extruded from the first stage extruder is shredded in the vacuum drying room, dried, and then extruded from the second stage extruder). An unvulcanized chloroprene sheath compound composition containing the above is supplied after being sufficiently dried and deaerated, and the above chloroprene sheath compound composition is molded onto the cable assembly core 1 which is passed through the nipple 21 and exposed to reduced pressure. An unvulcanized cable 13 having a sheath layer 12 is thus extruded from the outlet of the crosshead 2.
The cable 13 is then introduced into the vulcanization bath 3 filled with one type of heating medium such as molten mixed salt, molten metal, polyalkylene glycol, etc., through an inlet 31 provided in the side wall of the bath, and the heating medium is After passing through the vulcanization bath 3, it is led out through an outlet 32 provided in the side wall of the vulcanization bath 3. The vulcanization bath 3 has an inlet port 31 and an outlet port 32, and auxiliary tanks 33, 3 are provided on the outside of each side wall to collect the heating medium flowing out from the respective ports.
4, and the heating medium collected in each auxiliary tank is
A reflux device (which collects water at a certain point, adjusts the temperature, and refluxes it back to the vulcanization bath)
(not shown). Further, the heating medium in the bathtub is heated and maintained by a heater 35 installed in the bathtub at a temperature at which rubber and plastics are sufficiently vulcanized, for example, 200.degree. At this time, since the heat insulating tape 11 is applied to the outside of the cable assembly core 1, the heat of the vulcanization is transferred to the tape 1.
Since the sheath layer of the cable 13 that has passed through the vulcanization bath is efficiently and uniformly vulcanized, the cable 13 is blocked by the cable 1 and hardly escapes to the cable collecting core 1 side. Moreover, the inside of the cable 13 is deaerated in advance, and the cable assembly core 1 is covered with a tape 11 which has insulation properties against the above-mentioned vulcanization temperature.
Since this is done, gas will not be generated from interposition etc. Therefore, even during heating and vulcanization, the inside of the cable 13 is under a pressure equal to or lower than atmospheric pressure, so the sheath 12 does not expand, and therefore a cable with a predetermined outer diameter can be obtained. The cable 13 then passes through a water washing device 4 installed below the vulcanization bath, then a surface cleaning device such as a wiper 5, and then is wound up. The present invention is not limited to the above embodiments. For example, in addition to the above-mentioned vulcanization bath filled with the liquid heating medium, the vulcanization equipment may include a particle fluidization bath,
A hot air bath using hot air or nitrogen as a heating medium may also be used. Further, if necessary, a precoater may be installed between the crosshead of the extruder and the vulcanization device to coat the surface of the unvulcanized cable with talc, silicone oil, etc. before proceeding to the subsequent steps. As is well known, the above-mentioned application of talc, silicone oil, etc. serves to prevent the heating medium from adhering to the surface of the unvulcanized object, which would impede its properties after vulcanization. be. Incidentally, the present invention is based on 3 shown in the above embodiments.
Not only core cables but also multi-core cables with two or more cores can be manufactured with predetermined dimensions.

以上詳述の如く、本発明の多心ケーブルの製造方法によ
れば、所定寸法の多心ケーブルを製造し得ると共に、加
硫効率が良くかつシースの均一加硫が成し得る。またさ
らには、ケーブル集合コアの外側に断熱効果のあるテー
プを用いているため、ケーブル線心間のの介在はポリエ
ステル樹脂等の耐熱性の高融点樹脂はもちろんのこと、
加硫温度以下の溶点を有するポリエチレン、ポリプロピ
レン等の介在あるいはその他適宜介在までも巾広く使用
出来ることができる利点も有する。
As described in detail above, according to the method for manufacturing a multi-core cable of the present invention, a multi-core cable of a predetermined size can be manufactured, and the vulcanization efficiency is high and the sheath can be uniformly vulcanized. Furthermore, since a tape with a heat insulating effect is used on the outside of the cable assembly core, the interposition between the cable cores is made of heat-resistant high melting point resin such as polyester resin, etc.
It also has the advantage that polyethylene, polypropylene, etc. having a melting point below the vulcanization temperature can be used, or even other suitable materials can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の多心ケーブルの製造方法の1実施例を説明
するための説明図である。
The figure is an explanatory view for explaining one embodiment of the method for manufacturing a multi-core cable of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブル集合コアの外側に、加硫温度で加熱しても
ガスを発生せずかつ断熱性を有するテープを施し、次い
で、減圧下で未加硫ゴム、プラスチックからなる外層を
施した後、連続して該外層を常圧下で加熱、加硫し、横
断面外形が略円形のケーブルとすることを特徴とする多
心ケーブルの製造方法。
1. A tape is applied to the outside of the cable assembly core that does not generate gas even when heated at vulcanization temperature and has heat insulating properties. Next, an outer layer made of unvulcanized rubber or plastic is applied under reduced pressure, and then continuous A method for manufacturing a multi-core cable, characterized in that the outer layer is heated and vulcanized under normal pressure to form a cable having a substantially circular cross-sectional outline.
JP12619279A 1979-09-28 1979-09-28 Multi-core cable manufacturing method Expired JPS6043611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12619279A JPS6043611B2 (en) 1979-09-28 1979-09-28 Multi-core cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12619279A JPS6043611B2 (en) 1979-09-28 1979-09-28 Multi-core cable manufacturing method

Publications (2)

Publication Number Publication Date
JPS5650008A JPS5650008A (en) 1981-05-07
JPS6043611B2 true JPS6043611B2 (en) 1985-09-28

Family

ID=14928969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12619279A Expired JPS6043611B2 (en) 1979-09-28 1979-09-28 Multi-core cable manufacturing method

Country Status (1)

Country Link
JP (1) JPS6043611B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461514A (en) * 1987-08-31 1989-03-08 Ibiden Co Ltd Production of carbon yarn having high strength and high modulus of elasticity

Also Published As

Publication number Publication date
JPS5650008A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
US2708289A (en) Method of preparing pressure sensitive organosiloxane sheet material
US3941528A (en) Apparatus for moulding heat-expandable thermo-plastics material
CN106515043B (en) Permanent magnet motor magnetic pole protects coating moulding process and process equipment
US3513228A (en) Method of continuously curing rubber or plastic coated conductor
WO2017166955A1 (en) Vacuum bag pressure moulding assembly, vacuum bag pressure moulding method, and fibre composite material
CA1182966A (en) Tree resistant power cable
GB2172542A (en) Moulds
CN104290234A (en) Production method of heat insulation pipeline
JPS6043611B2 (en) Multi-core cable manufacturing method
US4952360A (en) Method of making microwave-heatable hair curlers
CN109659094A (en) Low pressure silanes crosslinked cable is cooled and shaped technique
US3846528A (en) Method of continuous vulcanization in the presence of helium or hydrogen
US3901633A (en) Apparatus for continuously vulcanizing materials in the presence of hydrogen or helium
CN212826371U (en) Novel vulcanization device for silica gel production
JPS5935381A (en) Method of producing thermally shrinkable sleeve for bonding electric cable and device therefor
US5137672A (en) Method for producing hose having low permeability
US4564353A (en) Continuous vulcanization and/or cross-linking apparatus
CN113352652A (en) Forming method of fan blade and dehumidifying method in forming process
JP2009226760A (en) Microwave irradiation vulcanizing method and apparatus
JPH07276499A (en) Method and apparatus for producing heat-shrinkable tube
JPS6137132Y2 (en)
JPS6016322B2 (en) Continuous extrusion vulcanization equipment for rubber or plastic molded products
JP2999562B2 (en) Method and apparatus for manufacturing rubber hose
CN218238239U (en) Online dehumidification and drying device for cable insulation wire cores
RU2768789C1 (en) Method of making an insulated wire or cable