JPS604339A - Stereo demodulating circuit - Google Patents

Stereo demodulating circuit

Info

Publication number
JPS604339A
JPS604339A JP11355783A JP11355783A JPS604339A JP S604339 A JPS604339 A JP S604339A JP 11355783 A JP11355783 A JP 11355783A JP 11355783 A JP11355783 A JP 11355783A JP S604339 A JPS604339 A JP S604339A
Authority
JP
Japan
Prior art keywords
signal
beat
stereo
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11355783A
Other languages
Japanese (ja)
Other versions
JPS6321374B2 (en
Inventor
Kanji Tanaka
寛次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP11355783A priority Critical patent/JPS604339A/en
Publication of JPS604339A publication Critical patent/JPS604339A/en
Publication of JPS6321374B2 publication Critical patent/JPS6321374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • H04H20/46Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95
    • H04H20/47Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for stereophonic broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Noise Elimination (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

PURPOSE:To eliminate a beat noise with a simple constitution by using a specially generated signal to cancel beat signals having phases opposite to each other which are included in the output signal of a subsignal decoder. CONSTITUTION:In the first output terminal of a subsignal decoder 7, a beat B between beat 114KHz included in a composite signal and higher harmonic 114KHz in a square wave signal of 38KHz is generated together with a demodulated stereo subsignal. A beat-B having a phase opposite to that of the beat B obtained in the first output terminal is generated in the third output terminal of the decoder 7. Consequently, the switch of a compensating circuit 21 is turned on to eliminate the heat surely with resistances 19 and 20 whose values are determined in accordance with a beat frequency whose elimination is required. In this case, control in ''on'' and ''off'' of the switch 23 of the compensating circuit 21 is executed by using a control signal which is generated by processing a signal equal to the 38KHz square wave switching signal used in the decoder.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 FMステレオ受信機において、受信局の周波数に近接し
た隣接局の′電波が存在すると、両局の信号間でビート
が発生し、そのうち受信局のIF(中間周波)帯域に入
る周波数を有するビートは、前記FM受信機の各段を通
過し、FM検波段で検波された後ステレオ復調段に印加
される。しかして、ステレオ復調段において38KH2
の矩形波スイッチング信号を用いて復調を行うと、前記
ビートと前記38 K llzの矩形波スイッチング信
号の高周波(特に114I(H7信号)との間でビート
が生1:、耳障りなビート雑音が生じるという欠点を有
していた。
Detailed description of the invention (a) Industrial application field In an FM stereo receiver, when there is a radio wave from an adjacent station close to the frequency of the receiving station, a beat occurs between the signals of both stations, and the Beats having a frequency that falls within the IF (intermediate frequency) band of the station pass through each stage of the FM receiver, are detected by the FM detection stage, and then applied to the stereo demodulation stage. Therefore, in the stereo demodulation stage, 38KH2
When demodulating is performed using the square wave switching signal of 38K llz, a beat is generated between the beat and the high frequency (especially 114I (H7 signal)) of the 38K llz square wave switching signal, and a harsh beat noise is generated. It had the following drawback.

ビート雑音の発生を防止する方法として、ステレオ復職
回路の入力端に、検波出力信号中に含まれるビートの周
波数を共振周波数とするLC共振回路を接続し、前記検
波出力信号中に含まれるビートを除去するものがある。
As a method for preventing the generation of beat noise, an LC resonant circuit whose resonant frequency is the frequency of the beat contained in the detected output signal is connected to the input end of the stereo restoration circuit, and the beat noise contained in the detected output signal is There is something to remove.

しかしながら、その様な方法は、前記LC共振回路によ
りステレオサブ信号の位相が狂わされ、分離度が極端に
悪化するという欠点や、IC(集積回路)化に不向きで
あり、かつ調整を必要とするという欠点を有する為、あ
まり好ましい方法ではなかった。
However, such a method has the disadvantage that the phase of the stereo sub-signal is shifted by the LC resonant circuit, resulting in extremely poor separation, and is unsuitable for integration into an IC (integrated circuit), and requires adjustment. This method was not very desirable because it had the following drawbacks.

また、第1図に示す如く、ステレオ復調回路(1)で左
右ステレオ信号を復調するに際し、ビート雑音を防止す
る為、38Kt(z矩形波スイッチング信号中の高調波
をあらかじめ除去したスイッチング信号囚を作成し、該
スイッチング信号をスイッチング信号発生回路(2)か
らステレオ復調回路(1)に印加して復調を行う方法も
提案されている。この方法に依れば、ビート雑音の原因
となる一方の信号があらかじめ除去されているので、ビ
ートが生じ様が無く、ビート雑音を十分に除去出来る。
In addition, as shown in Fig. 1, when demodulating the left and right stereo signals in the stereo demodulation circuit (1), in order to prevent beat noise, a switching signal carrier of 38Kt (Z square wave switching signal with harmonics removed in advance) is used. A method has also been proposed in which the switching signal is generated and demodulated by applying the switching signal from the switching signal generation circuit (2) to the stereo demodulation circuit (1). Since the signal has been removed in advance, there is no chance of beats occurring, and beat noise can be sufficiently removed.

しかしながら、この方法は、高周波を除去したスイッチ
ング信号(イ)を作成する為に、複雑な回路を必要とし
、かつステレオ復調回路として、3情動作型の特殊なス
テレオ復調回路を必要とするので、あまり一般的でない
However, this method requires a complicated circuit in order to create a switching signal (a) from which high frequencies are removed, and also requires a special stereo demodulation circuit of three-way operation type as a stereo demodulation circuit. Not very common.

更に、第2図に示す如く、ステレオ復調回路(1)にお
いて普通の38I(Hz矩形波スイッチング信号を発生
するスイッチング信号発生回路(3)を用いて左右ステ
レオ信号の復調を行うとともに、補助復調回路(4)を
準備し、該補助復調回路(4)において前記38I(H
z矩形波スイッチング信号と調波関係にある矩形波スイ
ッチング信号を発生するスイッチング信号発生回路(5
)を用いてビートの復調を行い、両復調回路(1)及び
(4)の出力信号同志を加算してビートの除去を行う方
法も提案されている。しかしながら、この方法も、格別
の補助復調回路(4)を必要とし、回路が複雑になると
いう欠点を有していた。
Furthermore, as shown in FIG. 2, in the stereo demodulation circuit (1), the left and right stereo signals are demodulated using a switching signal generation circuit (3) that generates an ordinary 38I (Hz square wave switching signal), and an auxiliary demodulation circuit is also used. (4), and in the auxiliary demodulation circuit (4), the 38I(H
A switching signal generation circuit (5
) has been proposed to perform beat demodulation using the demodulation circuits (1) and (4), and add the output signals of both demodulation circuits (1) and (4) to remove the beats. However, this method also requires a special auxiliary demodulation circuit (4) and has the disadvantage of complicating the circuit.

(ハ)発明の目的 本発明は、上述の点に鑑み成されたもので、■C化が容
易でかつ簡単な構成のステレオ復調回路により、ビート
雑音を除去せんとするものである。
(c) Purpose of the Invention The present invention has been made in view of the above-mentioned points, and aims to remove beat noise using a stereo demodulation circuit that can be easily converted into C and has a simple configuration.

に)発明の構成 本発明に係るステレオ復調回路は、検波されたステレオ
コンポジット信号から左右のステレオ信号を分離発生さ
せる復調部と、38I(Hzの矩形波スイッチング信号
を発生させる手段と、前記38KHzの矩形波スイッチ
ング信号の奇数倍の周波数を有する矩形波信号を発生さ
せる手段と、前記矩形波スイッチング信号と前記矩形波
信号とから別の矩形波信号を発生させる手段と、前記別
の矩形波信号を用いて左右ステレオ信号の分離度を部分
的に低下させる手段とによって構成される。
B) Structure of the Invention The stereo demodulation circuit according to the present invention includes: a demodulation section that separates and generates left and right stereo signals from a detected stereo composite signal; a means for generating a 38I (Hz) rectangular wave switching signal; means for generating a rectangular wave signal having a frequency that is an odd multiple of the rectangular wave switching signal; means for generating another rectangular wave signal from the rectangular wave switching signal and the rectangular wave signal; and means for partially reducing the degree of separation between left and right stereo signals.

匝)実施例 第3図は、本発明の一実施例を示す回路ブロック図で、
(6)はI”M検波回路、(7)は該FM検波回路(6
)の出力コンポジット信号中のステレオサブ信号(T、
−’R)を復調する為のサブ信号デコーダ、(8)は前
記コンポジット信号中のステレオ和信号(L−I−R)
を増幅する相信号回路、(2)は位相比較器θ0)と、
ローパスフィルタ(11)と、228KHzの発振周波
数で発振するVCO(電圧制御発振器)02と、分周器
03)と、該第1分周器(131の出力信号を1に分周
する第2分周器(+41とによって構成され、前記コン
ポジット信号中のステレオパイロット信号(P)と位相
の合った信号を発生させるPLL回路、(15)は前記
第1分周器(13)の出力である38KHz矩形波スイ
ッチング信号を用いて前記サブ信号デコーダ(力で復調
されたステレオサブ信号(L−R)と前記和信号回路(
8)から得られるステレオ和信号(L+R)を加算して
第1出力端子(+6)にステレオ左信号(L)を発生さ
せる第1加算回路、0′71は復調された逆相のステレ
オザブ信号(R−L)とステレオ和信号(L+11 )
とを加算して第2出力端子0樽にステレオ右信号(団を
発生させる第2加算回路、<1’Jは前記サブ信号デコ
ーダ(力の第1v′力端と前記第1加算回路05)との
間に挿入された第1出力抵抗、(20)は前記サブ信号
デコーダ(7)の第2出力端と前記第2加算回路(17
)との間に挿入された第2出力抵抗、す)は前記第1及
び第2加算回路(+5)及び(+7)の入力端間に挿入
されたレベル調整抵抗(22)とスイッチ(23+とか
ら成る補償回路、C・0は前記VCO(]2の出力を1
に分周して114I(Hzの矩形波信号を発生する第3
分周器、及び(2ωは前記第1及び第3分周器(13)
及び(24)の出力信号を用いて、前記補償回路(ロ)
のスイッチ(23)を制御する為の制御信号を発生させ
る制御信号発生回路である。
匝) Embodiment FIG. 3 is a circuit block diagram showing an embodiment of the present invention.
(6) is the I''M detection circuit, and (7) is the FM detection circuit (6).
) in the output composite signal (T,
-'R), and (8) is the stereo sum signal (L-I-R) in the composite signal.
(2) is a phase comparator θ0),
A low-pass filter (11), a VCO (voltage controlled oscillator) 02 that oscillates at an oscillation frequency of 228 KHz, a frequency divider 03), and a second divider that divides the output signal of the first frequency divider (131 to 1). A PLL circuit (15) is composed of a frequency divider (+41) and generates a signal in phase with the stereo pilot signal (P) in the composite signal. The sub-signal decoder (stereo sub-signal (L-R) demodulated by power) and the sum signal circuit (
0'71 is a first addition circuit that adds the stereo sum signal (L+R) obtained from 8) to generate a stereo left signal (L) at the first output terminal (+6); R-L) and stereo sum signal (L+11)
A second adder circuit that adds the stereo right signal (group) to the second output terminal 0 barrel, <1'J is the sub-signal decoder (the 1V' power end of the power and the first adder circuit 05). A first output resistor (20) inserted between the second output terminal of the sub-signal decoder (7) and the second adder circuit (17)
) is inserted between the level adjustment resistor (22) and the switch (23+) inserted between the input terminals of the first and second adder circuits (+5) and (+7). The compensation circuit C.0 consists of the output of the VCO (]2
The third frequency divider divides the frequency into 114I (Hz) and generates a square wave signal.
a frequency divider, and (2ω is the first and third frequency divider (13)
Using the output signal of (24), the compensation circuit (b)
This is a control signal generation circuit that generates a control signal for controlling the switch (23).

次に動作を説明する。FM検波回路(6)の出力端に得
られろコンポジット信号中の19I(Hzのステレオパ
イロット信号は、位相比較器00)において第2分周器
θ荀の出力端に得られる19KHzの矩形波信号と位相
比較され、位相差に応じた信号が前記位相比較器(10
)の出力端に樽られる。そして、前記位相差に応じた信
号は、ローパスフィルタ01)を介してVCO(+21
に印加されるので、前記VCOQ2が制御され、その出
力発振周波数(228KHz)は、コンポジット信号中
の−19KHzステレオパイロツト信号に同期したもの
となる。前記VCOHの出力信号は、第1分周器(I3
)で1に分周され、38KHzの矩形波信号となり、該
矩形波信号がサブ信号デコーダ(力に印加されてステレ
オサブ信号の復調が行なわれる。前記サブ信号デコーダ
(力の第1出力端には、復調されたステレオサブ信号(
L−R)とともに、コンポジット信号中に含まれるビー
ト(+ 14 Kl(z近傍)と前記38KHzの矩形
波信号中の高調波(114KI(z)とのビート(B)
が発生する。また、前記サブ信号デコーダ(7)の第2
出力端には、前記ステレオサブ信号(L−R)と逆相の
ステレオサブ信号(R−L)とともに、前記第1出力端
に得られるビートと逆相のビート(−B)が発生する。
Next, the operation will be explained. 19I (Hz stereo pilot signal in the composite signal obtained at the output end of the FM detection circuit (6) is a 19KHz square wave signal obtained at the output end of the second frequency divider θX) and a signal corresponding to the phase difference is sent to the phase comparator (10
) at the output end of the barrel. Then, the signal corresponding to the phase difference is passed through the low-pass filter 01) to the VCO (+21
, the VCOQ2 is controlled and its output oscillation frequency (228KHz) is synchronized with the -19KHz stereo pilot signal in the composite signal. The output signal of the VCOH is passed through a first frequency divider (I3
) to become a 38KHz square wave signal, which is applied to the sub-signal decoder (power) to demodulate the stereo sub-signal. is the demodulated stereo sub signal (
L-R) as well as the beat (B) between the beat (+14 Kl (near z)) included in the composite signal and the harmonic (114 Kl (z)) in the 38 KHz square wave signal.
occurs. Further, the second sub-signal decoder (7)
At the output terminal, a stereo sub-signal (R-L) having a phase opposite to that of the stereo sub-signal (L-R) and a beat (-B) having a phase opposite to the beat obtained at the first output terminal are generated.

本発明は、上述のザブ信号デコーダ(7)の出力信号中
に含まれる互いに逆相のビート(B)及び(−B)を、
特別に作成された信号を用いてキャンセルする点を特徴
とする。
The present invention provides beats (B) and (-B) of mutually opposite phase contained in the output signal of the above-mentioned sub signal decoder (7),
It is characterized by using a specially created signal for cancellation.

114 Kl(z近傍のビートをキャンセルする為に、
第1及び第2出力抵抗00及び(20+と、補償回路(
財)とが配置される。前記補償回路(ロ)のスイッチ(
23)が遮断されている場合は、サブ信号デコーダ(7
)の出力信号はそれぞれ第1及び第2出力抵抗(1翅及
び(2αを介して第1及び第2加算回路(15)及び(
171に印加され、通潜のステレオ復調回路と同様、和
信号回路(8)からの和信号(L十R)と加算され、第
1出力端子(16)にステレオ左信号(L+が、第2出
力端子(1→にステレオ右信号(旬がそれぞれ得られる
。補償回路(財)のスイッチ(23)を導通させると、
第1出力抵抗(1!l及びレベル調整抵抗(22)を介
して、前記サブ信号デコーダ(7)の第1出力端に得ら
れる出力信号が、第2加算回路a7)に印加され、第2
出力抵抗(イ)及びレベル調整抵抗(2りを介し・て、
前記ザブ信号≠コーダ(7)の第2出力端に得ら゛れる
出力信号が、第1加算回路05)に印加される。サブ信
号デコーダ(力の一方の出力端側から他方の出力端側へ
印加されるキャンセル信号のレベルは、第1及び第2出
力抵抗α9及び(20)とレベル調整抵抗(2りとの値
を定め、それらの比を所定値とすることにより設定され
る。一般に第3高調波のレベルは、基本波の1 第5高
調波の3ゝ レベルは、基本波の1となる。すなわち、第n高調波の
レベルは、基本波の1となるので、除去の必要のあるビ
ートの周波数に応じて前記各抵抗の値を定めそれらの比
を設定すれば、確実なビートの除去が達成される。第3
図の実施例においては、114KH2のビートの除去の
側圧ついて説明しているので、その場合は前記キャンセ
ル信号のレベルが1になる4様に、各抵抗の値を設定す
ればよい。
114 Kl (to cancel the beat near z,
The first and second output resistors 00 and (20+) and the compensation circuit (
goods) will be placed. The switch of the compensation circuit (b) (
23) is blocked, the sub signal decoder (7
The output signals of ) are transmitted through the first and second output resistors (1 and (2α), respectively, to the first and second adder circuits (15) and (
171, and is added to the sum signal (L+R) from the sum signal circuit (8), similar to the through-submerged stereo demodulation circuit, and the stereo left signal (L+ is applied to the second output terminal (16)). A stereo right signal (respectively) can be obtained from the output terminal (1→). When the switch (23) of the compensation circuit is made conductive,
The output signal obtained at the first output terminal of the sub-signal decoder (7) is applied to the second adder circuit a7) via the first output resistor (1!l) and the level adjustment resistor (22), and the second
Output resistance (A) and level adjustment resistance (via 2)
The output signal obtained at the second output terminal of the coder (7) is applied to the first adder circuit 05). The level of the cancellation signal applied from one output end of the sub-signal decoder (force) to the other output end is determined by the values of the first and second output resistors α9 and (20) and the level adjustment resistor (two). Generally, the level of the third harmonic is 1 of the fundamental wave, and the level of the 5th harmonic is 1 of the fundamental wave.In other words, the level of the 3rd harmonic is 1 of the fundamental wave. Since the harmonic level is equal to 1 of the fundamental wave, reliable beat removal can be achieved by determining the values of each of the resistors and setting their ratio according to the frequency of the beat that needs to be removed. Third
In the embodiment shown in the figure, the side pressure for removing the beat of 114 KH2 is explained, so in that case, the value of each resistor may be set in four ways such that the level of the cancel signal becomes 1.

補償回路(財)のスイッチ(23)の遮断及び導通の制
御は、サブ信号デコーダ(力で用いられる38KHz矩
形波スイッチング信号と等しい信号を加工することによ
って作成される制御信号を用いて行なわれる。第4図は
、第3図の制御信号発生回路(ハ)の−例な示すもので
、(26)は114KIlz正相信号が印加される第1
入力端子、(27)はl]4KH2逆相信号が印加され
る第2入力端子、(2唱138KIIZ正相信号が印加
される第3入力端子、(29)は38Ktlz逆相信号
が印加される第4入力端子、(30)は前記114KH
z正相信号と38KIIZ正相信号とを乗算する第1乗
算回路、C31)は前記114KHz正相信号と38K
Hz逆相信号とを乗算する第2乗算回路、θ力は前記1
14KHz逆相信号と前記38KI(z逆相信号とを乗
算する第3乗算回路、(331は前記114 K11z
逆相信号と前記38Kl(Z正相信号とを乗算する第4
乗算回路、Gaは前記第1及び第3乗算回路C1)及び
0力の出力信号の加算出力が得られる第1出力端子及び
C35+は前記第2及び第4乗算回路C31)及びC3
3)の出力信号の加算出力が得られる第2出力端子であ
る。
The control of shutoff and conduction of the switch (23) of the compensation circuit is performed using a control signal created by processing a signal equivalent to the 38 KHz square wave switching signal used in the sub-signal decoder. FIG. 4 shows an example of the control signal generation circuit (c) in FIG.
The input terminal (27) is the second input terminal to which the 4KH2 negative-phase signal is applied, the third input terminal to which the 2-channel 138KIIZ positive-phase signal is applied, (29) is the 38Ktlz negative-phase signal to which it is applied. The fourth input terminal (30) is the 114KH
The first multiplier circuit C31) that multiplies the Z positive phase signal and the 38 KIIZ positive phase signal multiplies the 114 KHz positive phase signal and the 38 KIIZ positive phase signal.
The second multiplier circuit multiplies the Hz reverse phase signal, and the θ force is the same as the above 1.
a third multiplier circuit that multiplies the 14KHz negative phase signal and the 38K1z negative phase signal; (331 is the 114K11z negative phase signal;
A fourth step that multiplies the negative phase signal and the 38Kl (Z positive phase signal)
A multiplication circuit, Ga is a first output terminal from which an addition output of the output signal of the first and third multiplication circuits C1) and 0 power is obtained, and C35+ is the second and fourth multiplication circuits C31) and C3.
This is the second output terminal from which the summed output of the output signals of 3) is obtained.

次に第4図の動作を第5図を参照しながら説明する。第
1乗算回路側においては、第1入力端子(26)に印加
される8g5図(イ)の114KH2正相信号と第3入
力端子(28)に印加される第5図(ハ)の38Kll
z正相信号とが乗算され、第5図(ホ)K示す出力信号
が発生する。また、第3乗算回路(3つにおいては、第
2入力端子(5)に印加される第5図(ロ)の114 
KHz逆相信号と第4入力端子t29)に印加される第
5図に)の38 Kt(z逆相信号とが乗算され、第5
図(へ)に示す出力信号が発生する。そして、前記第1
及び第3乗算回路00)及び(13zの出力信号を加算
することにより、第1出力端子(34)に、第5図(ト
)に示す如く1.1− ハイレベル0期間かSとなるデー−ティを有する76K
[Jzの矩形波信号が得られる。一方、第2乗算回路4
31)においては、第1入力端子(26)に印加される
第5図(イ)の114KHz正相信号と第4入力端子翰
に印加される第5図に)の38KHz逆相信号とが乗算
され、第5図(イ)に示す出力信号が発生し、第4乗算
回路l33) においては、第2入力端子(5)に印加
される第5図(ロ)の114KHz正相信号と第3入力
端子(28)に印加される第5図(ハ)の38KHz正
相信号とが乗算され、第5図(1月に示す出力信号が発
生する。そ・して、前記第2及び第4乗算回路01)及
び0(8)の出力信号を加算することにより、第2出力
端子c39に、第5図(ヌ)に示す如く、・・イレペル
I期間が冬となるデユーティを有する76KHzの矩形
波信号が得られる。
Next, the operation shown in FIG. 4 will be explained with reference to FIG. On the first multiplier circuit side, the 8g5 114KH2 positive phase signal in Figure (A) applied to the first input terminal (26) and the 38Kll signal in Figure 5 (C) applied to the third input terminal (28)
z positive phase signal is multiplied, and an output signal shown in FIG. 5(e)K is generated. In addition, in the third multiplier circuit (in the case of three multiplication circuits, 114 in FIG. 5 (b) applied to the second input terminal (5)
The KHz negative phase signal is multiplied by the 38 Kt (z negative phase signal in FIG. 5) applied to the fourth input terminal t29), and the fifth
The output signal shown in figure (f) is generated. And the first
By adding the output signals of the and third multiplier circuits 00) and (13z), the first output terminal (34) receives data that becomes 1.1-high level 0 period or S as shown in FIG. -76K with tee
[A square wave signal of Jz is obtained. On the other hand, the second multiplication circuit 4
31), the 114 KHz positive phase signal of FIG. 5 (A) applied to the first input terminal (26) is multiplied by the 38 KHz negative phase signal of FIG. 5 (A) applied to the fourth input terminal (26). The output signal shown in FIG. 5(a) is generated, and in the fourth multiplier circuit 133), the 114 KHz positive phase signal of FIG. 5(b) applied to the second input terminal (5) and the third The signal is multiplied by the 38 KHz positive-phase signal shown in FIG. 5 (c) applied to the input terminal (28), and the output signal shown in FIG. By adding the output signals of the multiplier circuits 01) and 0(8), the second output terminal c39 receives a 76KHz rectangle with a duty such that the Irepel I period is winter, as shown in FIG. wave signal is obtained.

しかして、前記第1もしくは第2出力端子0イ)もしく
は0勺に得られる信号の一方を、補償回路ゆのスイッチ
(23)の制御に用いれば、114KHz近傍のビート
に起因する妨害を除去することが出来る。
Therefore, if one of the signals obtained at the first or second output terminal 0 or 0 is used to control the compensation circuit switch (23), interference caused by beats around 114 kHz can be removed. I can do it.

その場合、前記スイッチ器がローレベル化)で導通する
形式のものであるならば、第4図の第1出力端子(34
)に得られる信号が制御用に使用され、前記スイッチ0
31がハイレベルσ−Dで導通する形式のものであるな
らば、第4図の第2出力端子05)に得られる信号が制
御用に使用される。
In that case, if the switch is of a type that conducts when the switch is set to low level, the first output terminal (34
) is used for control, and the signal obtained at switch 0
If 31 is of the type that conducts at high level σ-D, the signal obtained at the second output terminal 05) in FIG. 4 is used for control.

第6図は、第4図のブロック図の具体回路例を示すもの
で、第1乃至第4乗算回路(30)乃至(3りを、第1
乃至第6トランジスタ(3G)乃至(41)から成る二
重平衡型差動増幅回路で構成したものである。第1トラ
ンジスタ(3t3)のベースには、38KITZ正相信
号が、第2トランジスタ(37)のベースには、38K
Hz逆相信号がそれぞれ印加される。また、第3及び第
6トランジスタ(剋及び(41)の共通ベースには、1
14KHz正相信号が、第4及び第5トランジスタク悄
及び(40の共通ベースには、114Kl(z逆相信号
がそれぞれ印加される。その為、第1出力端子(4zに
は、第5爾(ト)に示す出力信号が、第2出力端子(4
階には、第5図(ヌ)に示す出力信号がそれぞれ得られ
る。
FIG. 6 shows a specific circuit example of the block diagram in FIG.
It is constructed of a double-balanced differential amplifier circuit consisting of sixth to sixth transistors (3G) to (41). The 38KITZ positive phase signal is applied to the base of the first transistor (3t3), and the 38KITZ positive phase signal is applied to the base of the second transistor (37).
Hz reverse phase signals are respectively applied. In addition, the common base of the third and sixth transistors (41)
A 14KHz positive phase signal is applied to the common base of the fourth and fifth transistors (40), and a 114K1 (114K1) negative phase signal is applied to the common base of the fourth and fifth transistors (40, respectively. The output signal shown in (g) is output from the second output terminal (4
The output signals shown in FIG. 5 (N) are obtained on each floor.

第7図(イ)及び(ロ)は、それぞれサブ信号デコーダ
(7)の出力端に得られるステレオ和信号を、また第7
図(ハ)及びに)は、それぞれ第1及び第2加算回路(
15)及び(17)の入力端におけるステレオ和信号を
示すものである。第7図(イ)及び(ロ)に示す如く、
サブ信号デコーダ(力の出力端のステレオ和信号は、3
8KHzスイッチング信号のエンベロープとして表わす
ことが出来る。しかして、補償回路(財)のスイッチ鄭
)として、・・イレベル■で導通する形式のものを使用
し、前記スイッチ(23)の制御信号として第5図(ヌ
)に示される信号を用いたとすれば、第1加算回路(I
5)の入力端に得られる信号は、第7図(ハ)に示す如
く、スイッチ(ハ)が導通すると、部分的に混合されて
分離度が低下し、38KHzの第3高調波の含まれない
肩の落ちた階段状の波形となる。同様に、第2加算回路
07)の入力端に得られる信号も、第7図ト)に示す如
く、階段状の波形となる。尚、第7図(ハ)及びに)の
信号のエンベロープは、前記スイッチ(23)の制御に
より変化せず、ステレオ差信号(L−R)及び(R−L
)も前記スイッチt23)の制御により影響を受けない
7(a) and 7(b) respectively show the stereo sum signal obtained at the output end of the sub-signal decoder (7) and the 7th
Figures (c) and 2) respectively show the first and second adder circuits (
15) and (17) at the input end. As shown in Figure 7 (a) and (b),
Sub signal decoder (the stereo sum signal at the power output end is 3
It can be expressed as an envelope of an 8KHz switching signal. Therefore, as the switch of the compensation circuit (23), a type that conducts at level 2 is used, and as the control signal for the switch (23), the signal shown in Figure 5 (2) is used. Then, the first addition circuit (I
As shown in Figure 7 (C), the signal obtained at the input terminal of 5) is partially mixed when the switch (C) is turned on, reducing the degree of separation and containing the third harmonic of 38 KHz. The result is a step-like waveform with no shoulders. Similarly, the signal obtained at the input terminal of the second adder circuit 07) also has a stepped waveform, as shown in FIG. Note that the envelopes of the signals in FIGS.
) is also not affected by the control of the switch t23).

上述の説明から明らかな如く、サブ信号デコーダ(力か
ら第1及び第2加算回路(15)及び07)に印加され
る復調されたステレオサブ信号(T、−R)及び(R−
T、)中には、ビートが含まれていないので、前記ステ
レオサブ信号(L−1’()及び(R−L)とステレオ
和信号(T、+R)が第1及び第2加算回路05)及び
(1ηでそれぞれ加算された結果、第1及び第2出力端
子(16)及び(+81に得られる左右ステレオ信号(
L+及び(8)中にも、ビートが含まれない。
As is clear from the above description, the demodulated stereo sub-signals (T, -R) and (R-
Since no beats are included in T, ), the stereo sub-signals (L-1'() and (R-L) and the stereo sum signal (T, +R) are sent to the first and second adder circuits 05 ) and (1η), the left and right stereo signals obtained at the first and second output terminals (16) and (+81) are
Beats are not included in L+ and (8) either.

尚、第3図の実施例においては、復調されたステレオサ
ブ信号からビートを除去する場合について説明したが、
補償回路り)を第1及び第2出力端子α6)及び(国の
間に挿入し、左右ステレオ信号ff、)及び(R)から
ビートを除去してもよい。また、実施例においては、3
8I(Hzスイッチング信号の第3高調波である1 1
4 K+lZの矩形波信号を用いて、入力信号中の11
4 K)lz近傍のビートに起因するビートの除去を行
う場合を説明したが、38KHzスイッチング信号の第
n次の高調波周波数の矩形波信号を用いて、入力信号中
の前記第n次の高調波周波数近傍のビートに′起因する
ビートの除去を、・全く同様に行うことが出来、それら
を組合せて補償回路を作成すれば、ビートの除去効果は
一層上昇する。
In the embodiment shown in FIG. 3, the case where beats are removed from the demodulated stereo sub-signal has been explained.
A compensation circuit 1) may be inserted between the first and second output terminals α6) and (R) to remove beats from the left and right stereo signals ff, ) and (R). In addition, in the example, 3
8I (1 1 which is the third harmonic of the Hz switching signal)
11 in the input signal using a square wave signal of 4 K+lZ
4 K) The case of removing beats caused by beats in the vicinity of lz has been described, but using a square wave signal of the nth harmonic frequency of a 38 KHz switching signal, the nth harmonic in the input signal can be removed. Beats caused by beats near the wave frequency can be removed in exactly the same way, and if they are combined to create a compensation circuit, the beat removal effect will be further improved.

(へ)発明の効果 以上述べた如く、本発明に依れば、IC化が容易で、し
かも簡単な回路構成を有するビート妨害を除去したステ
レオ復調回路が提供出来る。
(f) Effects of the Invention As described above, according to the present invention, it is possible to provide a stereo demodulation circuit that can be easily integrated into an IC, has a simple circuit configuration, and eliminates beat interference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来のビート妨害除去機能を有す
るステレオ復調回路を示す回路ブロック図、第3図は、
本発明の一実施例を示す回路ブロック図、第4図は、そ
の制御信号発生回路の一例を示す回路ブロック図、第5
図(イ)乃至(ヌ)は、第4図の動作を説明する為の波
形図、第6図は、第4図の具体例を示す回路図、及び第
7図(イ)乃至に)は、第3図の動作を説明する為の波
形図である。 主な図番の説明 (7)・・・サブ信号デコーダ (」・・・P T、 
L回路(財)・・・補償回路 (23)・・・スイフチ
 (25)・・・制御信号発生回路 第1図 fJ2図 第4図 n 第5図 第7図
1 and 2 are circuit block diagrams showing a conventional stereo demodulation circuit having a beat interference removal function, and FIG.
FIG. 4 is a circuit block diagram showing one embodiment of the present invention, and FIG. 5 is a circuit block diagram showing an example of the control signal generation circuit.
Figures (A) to (J) are waveform diagrams for explaining the operation of Figure 4, Figure 6 is a circuit diagram showing a specific example of Figure 4, and Figures 7 (A) to (6) are waveform diagrams for explaining the operation of Figure 4. , is a waveform diagram for explaining the operation of FIG. 3. Explanation of main drawing numbers (7)...Sub signal decoder (''...P T,
L circuit (goods)...Compensation circuit (23)...Swift (25)...Control signal generation circuit Fig. 1 fJ2 Fig. 4 n Fig. 5 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (]) ステレオ和信号、ステレオ差信号及びステレオ
パイロット信号を含むステレオコンポジット信号から左
右ステレオ信号を復調するステレオ復調回路において、
前記パイロット信号に同期した38KHzの第1矩形波
信号と該第1矩形波信号の奇数次高調波と等しい周波数
を有する第2矩形波信号とから第3矩形波信号を作成し
、該第3矩形波信号を用いて左右ステレオ信号の分離度
を部分的に低下させ、前記第1矩形波信号の奇数次高調
波と隣接局間ビートとの間で発生するビートを除去する
様例したことを特徴とするステレオ復調回路。
(]) In a stereo demodulation circuit that demodulates left and right stereo signals from a stereo composite signal including a stereo sum signal, a stereo difference signal, and a stereo pilot signal,
A third rectangular wave signal is created from a first rectangular wave signal of 38 KHz synchronized with the pilot signal and a second rectangular wave signal having a frequency equal to an odd harmonic of the first rectangular wave signal, and the third rectangular wave signal is The present invention is characterized in that the degree of separation between the left and right stereo signals is partially reduced using a wave signal, and a beat occurring between an odd harmonic of the first rectangular wave signal and a beat between adjacent stations is removed. Stereo demodulation circuit.
JP11355783A 1983-06-22 1983-06-22 Stereo demodulating circuit Granted JPS604339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11355783A JPS604339A (en) 1983-06-22 1983-06-22 Stereo demodulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11355783A JPS604339A (en) 1983-06-22 1983-06-22 Stereo demodulating circuit

Publications (2)

Publication Number Publication Date
JPS604339A true JPS604339A (en) 1985-01-10
JPS6321374B2 JPS6321374B2 (en) 1988-05-06

Family

ID=14615303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11355783A Granted JPS604339A (en) 1983-06-22 1983-06-22 Stereo demodulating circuit

Country Status (1)

Country Link
JP (1) JPS604339A (en)

Also Published As

Publication number Publication date
JPS6321374B2 (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US4018994A (en) Compatible AM stereophonic receivers
US4814715A (en) Mixer arrangement for suppression of oscillator interference in quadrature demodulators
JPS583424B2 (en) Stereo Fukugo Shingo Hatsuseihouhou Oyobi Souchi
JPH07120987B2 (en) Digital demodulator
US3721766A (en) Frequency multiplying circuit utilizing time gates and switching signals of differing phases
US5521944A (en) Circuit for a demodulator for a radio data signal in a radio receiver
JP3169690B2 (en) Receiver
US4061882A (en) Quadrature multiplying four-channel demodulator
US4069398A (en) Method and apparatus for pilot signal cancellation in an FM multiplex demodulator
US4037165A (en) Synchronous signal generating system with phase-locked loop circuit
US4502148A (en) FM Stereo demodulator for demodulating stereo signals directly from an FM intermediate frequency signal
US4164624A (en) Demodulation circuits of FM stereophonic receivers
US4232189A (en) AM Stereo receivers
JPS5853805B2 (en) Pilot signal removal device
JPH06318921A (en) Circuit device for decoding multiplex signal in stereophonic broadcasting receiver
JPS604339A (en) Stereo demodulating circuit
US5561716A (en) Demodulator
US4932058A (en) Pilot cancellation circuit
JPS6034299B2 (en) Communication method
US4406922A (en) Stereo broadcast system
JPS6259941B2 (en)
JP3640669B2 (en) Circuit device for derivation of sound quality signal depending on sound quality of received multiplexed signal
JPH0318377B2 (en)
EP0293828B1 (en) Circuit device for demodulating DSB modulated signals and method therefor
JPS61146025A (en) Fm stereo receiver