JPS6043390B2 - Low-temperature purification method for hydrocarbon decomposition products - Google Patents

Low-temperature purification method for hydrocarbon decomposition products

Info

Publication number
JPS6043390B2
JPS6043390B2 JP55183763A JP18376380A JPS6043390B2 JP S6043390 B2 JPS6043390 B2 JP S6043390B2 JP 55183763 A JP55183763 A JP 55183763A JP 18376380 A JP18376380 A JP 18376380A JP S6043390 B2 JPS6043390 B2 JP S6043390B2
Authority
JP
Japan
Prior art keywords
methane
hydrogen
ethylene
gas
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55183763A
Other languages
Japanese (ja)
Other versions
JPS57108192A (en
Inventor
政隆 平出
輿哉 斎藤
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP55183763A priority Critical patent/JPS6043390B2/en
Publication of JPS57108192A publication Critical patent/JPS57108192A/en
Publication of JPS6043390B2 publication Critical patent/JPS6043390B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

【発明の詳細な説明】 本発明は、炭化水素分解物の低温精製法に関し、さらに
詳しくは、石油、天然ガス等を原料として、例えば熱分
解によりエチレン等を製造するプラントにおける炭化水
素分解物の低温精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-temperature refining method for hydrocarbon decomposition products, and more specifically to a method for refining hydrocarbon decomposition products in a plant that produces ethylene, etc., by thermal decomposition using petroleum, natural gas, etc. as raw materials. Concerning low temperature purification methods.

炭化水素熱分解物から水素、メタン等の副生軽質留分、
エチレン等の特定重質留分およびエタン等の副生重質留
分とを分離する方法、ならびに副生水素と副生エタンを
分離精製する方法は従来から種々提案され、実用に供さ
れているが、エチレン等の特定留分が副生軽質留分に同
伴されるのを防止し、エチレン等の得率増加を図ること
は、運転コストの低減および省エネルギーの観点から非
常に重要なことである。
By-product light fractions such as hydrogen and methane from hydrocarbon pyrolysis products,
Various methods for separating specific heavy fractions such as ethylene and by-product heavy fractions such as ethane, and methods for separating and refining by-product hydrogen and by-product ethane have been proposed and put into practical use. However, it is very important to prevent specific fractions such as ethylene from being entrained in by-product light fractions and to increase the yield of ethylene, etc. from the viewpoint of reducing operating costs and saving energy. .

従来の炭化水素分解物、例えば水素、メタン、エチレン
、エタン、その他重質成分を含む炭化水素熱分解物ガス
の分離精製設備の典型的な系統図を第1図に示す。
FIG. 1 shows a typical system diagram of a conventional separation and purification facility for hydrocarbon decomposition products, such as hydrogen, methane, ethylene, ethane, and other hydrocarbon pyrolysis product gases containing heavy components.

この設備は、供給物処理工程1、脱メタン塔工程3およ
び水素、メタン分離精製工程2から構成される。エチレ
ンをより軽質の水素、メタンから分離するためには通常
、高圧、低温の操作条件が要求される。上記供給物処理
工程1では、コンプレッサー等で圧縮高圧化された水素
、メタン、エチレン、エタン、さらに重質留分を含む分
解ガスFをライン8、9、10および・11を介して順
次、熱交換器E−1、E−2、E−3およびE−4に通
し、ライン4、5、6および7を通る冷媒により逐次、
冷却、低温化する。上記低温化によつて逐次生成した大
部分のエチレンを含む凝縮液は、凝縮器D−1、D−2
、D−フ3およびD−4でガスと分離され、それぞれラ
イン12、13、14および15を通り、脱メタン塔工
程3に送られる。一方、最終段の凝縮器D一4で分離さ
れた水素、メタンを主成分とするガスは、ライン16を
介して水素、メタン分離精製工5程2に送られる。脱メ
タン塔工程3は、前記供給物処理工程1から供給される
凝縮液を脱メタン塔T−1に受け入れ、前記凝縮液成分
であるエチレン、エタン等の重質留分中に残存する水素
、メタン等の軽質留分を最終的にエチレン以上の重質留
分から分離精製するものである。
This equipment consists of a feed treatment step 1, a demethanizer step 3, and a hydrogen and methane separation and purification step 2. Separation of ethylene from lighter hydrogen and methane typically requires high pressure, low temperature operating conditions. In the feed processing step 1, cracked gas F containing hydrogen, methane, ethylene, ethane, and heavy fractions compressed and pressurized by a compressor or the like is sequentially heated through lines 8, 9, 10, and 11. sequentially with refrigerant passing through exchangers E-1, E-2, E-3 and E-4 and through lines 4, 5, 6 and 7;
Cool, lower temperature. The condensate containing most of ethylene successively generated by the above temperature reduction is transferred to condensers D-1 and D-2.
, D-3 and D-4, and are sent to the demethanizer step 3 through lines 12, 13, 14 and 15, respectively. On the other hand, the gas containing hydrogen and methane as main components separated in the final stage condenser D14 is sent to hydrogen and methane separation and purification step 5 step 2 via line 16. The demethanizer step 3 receives the condensate supplied from the feed treatment step 1 into the demethanizer T-1, and removes hydrogen remaining in heavy fractions such as ethylene and ethane, which are components of the condensate. Light fractions such as methane are ultimately separated and purified from heavy fractions containing ethylene and higher.

脱メタン塔T−1は、塔本体30と、コンデンサー31
、還流ドラム32および還流ポンプ33からなる還流系
統と、りボイラ34とを備えている。脱メタン塔T−1
の塔頂からは残存水素、メタンを含む留分が抜き出され
、一方、塔底からはエチレンおよびエタン等の重質留分
Eが抜き出される。次に、水素、メタン分離精製工程2
は、前記供給物処理工程1から供給される、主として水
素、メタンから構成される混合ガスをジュ−ルートムソ
ン効果を利用して水素とメタンとに分離精製するもので
ある。
The demethanizer tower T-1 includes a tower body 30 and a condenser 31.
, a reflux system consisting of a reflux drum 32 and a reflux pump 33, and a reboiler 34. Demethanizer tower T-1
A fraction containing residual hydrogen and methane is extracted from the top of the column, while a heavy fraction E such as ethylene and ethane is extracted from the bottom of the column. Next, hydrogen and methane separation and purification step 2
This process separates and refines the mixed gas mainly composed of hydrogen and methane supplied from the feed processing step 1 into hydrogen and methane using the Joule-Thompson effect.

供給混合ガスは、ライン16から順次、第1段冷却器E
−5、第1段分離ドラムD一5、第2段冷却器E−6お
よび第2段分離ドラムD−6を通つて精製され、最終的
にライン21および22か7らそれぞれ高圧および低圧
メタンガスが、ならびにライン23から精製水素ガスが
取り出される。冷却器E−5およびE−6に使用される
冷媒は、分離ドラムD−5およびD−6からの凝縮メタ
ン液を膨張弁24および25により断熱膨張させて得ら
れる低温流体(ライン21,22)と精製水素ガス(ラ
イン23)が用いられる。上記三工程からなる従来の分
解ガス精製方法においては、供給分解ガス中のエチレン
は、脱メタン塔工程3の脱メタン精留塔T−1の塔底か
ら分離されて抜き出されるが、一部のエチレンは、供給
物処理工程1の凝縮ドラムD−4から分離される水素、
メタン混合ガス、および脱メタン塔工程3の分離ドラム
32からのメタンガス中に同伴されて損失となる。
The supplied mixed gas is sequentially supplied from the line 16 to the first stage cooler E.
-5, purified through the first stage separation drum D-5, second stage cooler E-6 and second stage separation drum D-6, and finally high pressure and low pressure methane gas from lines 21 and 22 or 7, respectively. In addition, purified hydrogen gas is taken out from line 23. The refrigerant used in coolers E-5 and E-6 is a low-temperature fluid (lines 21, 22 ) and purified hydrogen gas (line 23) are used. In the conventional cracked gas purification method consisting of the above three steps, ethylene in the supplied cracked gas is separated and extracted from the bottom of the demethanizer rectification column T-1 in the demethanizer step 3, but some of ethylene is separated from the hydrogen separated from condensation drum D-4 of feed processing step 1,
It is entrained in the methane mixed gas and the methane gas from the separation drum 32 of the demethanizer step 3, resulting in a loss.

従来のエチレン分離精製設備における上記損失の一例を
示せば第1表のようであり、相当量のエチレンが損失し
ていることが分る。本発明の目的は、上記従来の炭化水
素分解物の分離精製方法において、エチレン等の特定留
分が副生水素、メタン等の軽質留分に同伴されて損失二
することを極力防止し、エチレン等の得率増加を図るこ
とにある。
An example of the loss in conventional ethylene separation and purification equipment is shown in Table 1, which shows that a considerable amount of ethylene is lost. The purpose of the present invention is to prevent, as much as possible, loss of specific fractions such as ethylene from being entrained with light fractions such as by-product hydrogen and methane in the conventional separation and purification method of hydrocarbon decomposition products, and to The aim is to increase the profit margin of

上記目的を達成するため、本発明は、炭化水素分解物を
軽質留分と重質留分とに分離する供給物処理工程、該供
給物処理工程で得られた軽質留分から水素およびメタン
を分離する工程、ならびに前記供給物処理工程で得られ
た重質留分からエチレンその他の特定留分を分離する工
程を含む炭化水素分解物の低温精製法において、前記供
給物処理工程の少くとも一部を精留工程とし、前記水素
およびメタンの分離精製工程で得られた凝縮液を上記精
留工程の還流液として用いることを特徴とする。
In order to achieve the above objects, the present invention provides a feed treatment process for separating hydrocarbon decomposition products into a light fraction and a heavy fraction, and a separation of hydrogen and methane from the light fraction obtained in the feed treatment process. A method for low-temperature refining of hydrocarbon decomposition products, which comprises a step of separating ethylene and other specific fractions from the heavy fraction obtained in the feed treatment step, at least a part of the feed treatment step. The method is characterized in that the method is a rectification step, and the condensate obtained in the hydrogen and methane separation and purification step is used as the reflux liquid in the rectification step.

上記エチレンその他の分離精製工程の塔頂ガスは、膨張
手段を介して可能な限り液化し、前記水素およびメタン
の分離精製工程の熱交換手段の冷却用冷媒として用いる
ことが好ましい。
It is preferable that the overhead gas from the ethylene and other separation and purification process is liquefied as much as possible through an expansion means and used as a cooling refrigerant for the heat exchange means in the hydrogen and methane separation and purification process.

以下、本発明は第2図の装置系統図によりさらに詳しく
説明する。
Hereinafter, the present invention will be explained in more detail with reference to the system diagram of the apparatus shown in FIG.

第2図は、本発明の一実施例を示すエチレン等の精製設
備の装置系統図である。
FIG. 2 is an equipment system diagram of equipment for refining ethylene, etc., showing one embodiment of the present invention.

第1図に示した装置系統と同一または相当部分は同一符
号で示してある。図において、この設備は、第1図と同
様に供給物処理工程1、脱メタン塔工程3および水素メ
タン分離精製工程2から構成されるが、この実施例にお
いては、供給物処理工程1の最終段階での気液分離ドラ
ム(第1図のD−4に相当)が精留塔(T−2)で代替
され、水素、メタン分離精製工程2での主としてメタン
から構成される凝縮液の一部が供給物処理工程1の精留
塔T−2の還流液として供給され、また脱メタン塔工程
3の脱メタン精留塔T−1の塔頂ガスが水素、メタン分
離精製工程2ての水素、メタン混合ガス冷却器E−5の
冷媒として供給される点で異なつている。以下、本実施
例を工程順に詳細に説明する。
Components that are the same as or correspond to the system shown in FIG. 1 are designated by the same reference numerals. In the figure, this equipment is composed of a feed treatment step 1, a demethanizer step 3, and a hydrogen methane separation and purification step 2, as in FIG. The gas-liquid separation drum (corresponding to D-4 in Figure 1) in the step 2 is replaced by a rectification column (T-2), and one of the condensates mainly composed of methane is The top gas of the demethanizer rectifier T-1 of the demethanizer step 3 is supplied as a reflux liquid to the rectifier T-2 of the feed treatment step 1, and the top gas of the demethanizer rectifier T-1 of the demethanizer step 3 is hydrogen. The difference is that it is supplied as a refrigerant to the hydrogen/methane mixed gas cooler E-5. Hereinafter, this example will be described in detail in the order of steps.

供給物処理工程1において、予めコンプレッサー等に依
り圧縮高圧化された水素、メタン、エチレン、エタン、
さらに重質留分を含む混合ガスFは冷媒に依り逐次、冷
却低温され、第1図の場合と同様に生成する凝縮液は逐
次、ガスから分離され−るが、その最終工程の熱交換器
E−4で最終冷却された混合分解ガスは、精留塔T−2
の塔底に導入され、水素、メタン分離精製工程2からの
主としてメタンから構成される凝縮液(D−5)を還流
液として精留塔T−2の塔頂に導入することにより、精
留塔内部で分解ガスとメタン液とが向流気液接触し、そ
の精留効果により精留塔塔頂から留出する水素、メタン
混合ガス中に同伴されるエチレン留分の割合が減少する
。なお、26は還流ポンプを示す。上記精留塔T−2と
しては、棚段塔、充填塔など精留手段として用いられる
ものであればいずれも使用可能である。次に供給物処理
工程1の精留塔T−2の凝縮液はライン15Aを介して
脱メタン塔工程3の脱メタン精留塔T−1に供給され、
コンデンサー31、リボイラー3牡還流ドラム32、還
流ポンプ33からなる構成設備の精留効果により、供給
凝縮液に含まれる水素、メタンがエチレン留分から分離
され、エチレンおよびエタン等の重量留分Eは精留塔T
−1の塔底から抜き出され、一方、主としてメタンから
なる塔頂ガス(以下、即CHiガスと称す)は、コンデ
ンサー31および還流ドラム32を経由し、さらに膨張
器40を経て水素、メタン分離精製工程2の冷却器E−
5に冷媒として供給され、その冷熱を回収した後、ライ
ン21から排出される。
In the feed processing step 1, hydrogen, methane, ethylene, ethane,
Furthermore, the mixed gas F containing the heavy fraction is successively cooled to a low temperature by a refrigerant, and the condensate produced is successively separated from the gas in the same way as in the case of Fig. The mixed cracked gas finally cooled in E-4 is sent to rectification column T-2.
The condensate (D-5) mainly composed of methane from the hydrogen and methane separation and purification step 2 is introduced into the top of the rectification column T-2 as a reflux liquid. The cracked gas and the methane liquid come into countercurrent gas-liquid contact inside the column, and due to the rectification effect, the proportion of the ethylene fraction entrained in the hydrogen and methane mixed gas distilled from the top of the rectification column is reduced. Note that 26 indicates a reflux pump. As the rectifying column T-2, any column used as a rectifying means, such as a tray column or a packed column, can be used. The condensate from the rectification column T-2 of the feed treatment step 1 is then fed to the demethanization rectification column T-1 of the demethanizer step 3 via line 15A;
Due to the rectifying effect of the condenser 31, the reboiler 3 reflux drum 32, and the reflux pump 33, hydrogen and methane contained in the supplied condensate are separated from the ethylene fraction, and the heavy fraction E such as ethylene and ethane is purified. Tower T
On the other hand, the top gas (hereinafter simply referred to as CHi gas) mainly consisting of methane passes through a condenser 31 and a reflux drum 32, and further passes through an expander 40 to separate hydrogen and methane. Cooler E- of purification process 2
5 as a refrigerant, and after recovering its cooling energy, it is discharged from line 21.

供給物処理工程1の最終段の精留塔T−2で分離された
水素、メタン混合ガスは、ライン16Aから水素、メ.
タン分離精製工程2に供給され、第1段冷却器E−5に
より冷却低温化され、該低温化により凝縮したメタンは
第1段分離ドラムD−5でガスから分離され、前述のよ
うにポンプ26を介して供給物処理工程1の精留塔T−
2に還流液として供給される。
The hydrogen and methane mixed gas separated in the rectification column T-2 at the final stage of the feed processing step 1 is supplied to the hydrogen and methane mixture from line 16A.
The methane is supplied to the methane separation and purification step 2, cooled to a low temperature by the first stage cooler E-5, and the condensed methane is separated from the gas by the first stage separation drum D-5, and pumped as described above. Rectification column T- of feed treatment step 1 via 26
2 as a reflux liquid.

分離ドラムD−5からのガスは第2段冷却器E−6によ
りさらに冷却低温化され、該低温化によりガス中の殆ん
どのメタンが凝縮し、第2段分離ドラムD−6により水
素を主成分とするガスから分離され、さらに膨張器25
を通り、ジュ−ルートムソン効果により低圧、低温化さ
れ(以下、このガスをLPCH4ガスと称する)、冷媒
として冷却器E−6、続いてE−5に供給され、その冷
熱が回収された後、ライン22から排出され、例えば燃
料として用いられる。一方、第2段分離ドラムD−6の
塔頂から抜き出された精製水素ガスは冷却器E−6、続
いてE−5に冷媒として供給され、その冷熱を回収され
た後、ライン23から副製品として排出される。なお、
冷却器E−5による水素、メタン混合ガスの冷却は、主
として脱メタン塔工程3からの即Clllガスにより冷
却される。上記実施例においては、供給物処理工程1の
最終分離手段を精留塔T−2とし、水素、メタン分離精
製工程2からの凝縮メタン液の一部を還流液″として精
留塔T−2に供給することにより、水素メタン分離精製
工程2から分離、排出される精製水素ガスおよびメタン
ガス(LPCH4)中に同伴されるエチレン留分を減少
させ、エチレン得率をより増加させ、またこれにより運
転コストの低減、および省エネルギー化を図ることがで
きる。
The gas from the separation drum D-5 is further cooled to a lower temperature by the second stage cooler E-6, and most of the methane in the gas is condensed by the lower temperature, and hydrogen is removed by the second stage separation drum D-6. It is separated from the main component gas, and further expander 25
The gas is lowered in pressure and temperature due to the Joule-Thompson effect (hereinafter, this gas is referred to as LPCH4 gas), and is supplied as a refrigerant to cooler E-6 and then to E-5, where its cold heat is recovered. , line 22 and used as fuel, for example. On the other hand, the purified hydrogen gas extracted from the top of the second stage separation drum D-6 is supplied as a refrigerant to the cooler E-6 and then to the cooler E-5, and after recovering its cold energy, it is sent from the line 23. It is discharged as a by-product. In addition,
The hydrogen and methane mixed gas is cooled by the cooler E-5 mainly by the immediate Clll gas from the demethanizer step 3. In the above embodiment, the final separation means of the feed processing step 1 is the rectification column T-2, and a part of the condensed methane liquid from the hydrogen and methane separation and purification step 2 is used as the reflux liquid in the rectification column T-2. By supplying the hydrogen to methane separation and purification step 2, the ethylene fraction entrained in the purified hydrogen gas and methane gas (LPCH4) separated and discharged from the hydrogen methane separation and purification step 2 is reduced, and the ethylene yield is further increased. It is possible to reduce costs and save energy.

また、水素メタン分離精製工程2からの凝縮メタン液を
精留塔T−2に還流液として戻すために、同工程の冷却
器E−5での冷媒とした脱メタン塔工程3からのメタン
を主成分とする塔頂ガス(HP)CH4ガス)を供給す
ることにより、塔頂ガスの有効利用を図るとともに、水
素、メタン混合ガスの冷却を可能にする。上記実施例に
よるエチレン分離精製設備の運転データの一例を第2表
に示す。
In addition, in order to return the condensed methane liquid from the hydrogen methane separation and purification step 2 to the rectification column T-2 as a reflux liquid, the methane from the demethanizer step 3 was used as a refrigerant in the cooler E-5 of the same step. By supplying the column overhead gas (HP), which is the main component (CH4 gas), it is possible to effectively utilize the column overhead gas and to cool the hydrogen and methane mixed gas. An example of operational data of the ethylene separation and purification equipment according to the above embodiment is shown in Table 2.

第1表および第2表の結果を比較すれば明らかなように
、本発明の分離精製設備を採用することにより、エチレ
ンの損失量が従来よりも126gI′/年減少し、エチ
レン得率の増加に大きく寄与していることが分かる。
As is clear from comparing the results in Tables 1 and 2, by adopting the separation and purification equipment of the present invention, the amount of ethylene loss was reduced by 126 gI'/year compared to the conventional method, and the ethylene yield increased. It can be seen that it contributes significantly to

上記実施例では、主としてエチレン以上の留分(主にエ
チレン)と水素、メタンの軽質留分の分離精製について
述べたが、本発明はこれらに限定されるものではなく、
他の分解物、例えばエタン、プロパン、プロピレン等の
留分から水素、メタン軽質留分を分離精製する場合など
にも応用することができる。
In the above embodiment, the separation and purification of a fraction of ethylene or higher (mainly ethylene) and light fractions of hydrogen and methane was described, but the present invention is not limited to these.
It can also be applied to the separation and purification of hydrogen and methane light fractions from other decomposition products, such as ethane, propane, and propylene fractions.

以上、本発明によれば、炭化水素分解物の供給処理工程
の一部に精留工程を組み入れ、該精留工程の還流液とし
て水素、メタン分離精製工程から得られた凝縮液を用い
ることにより、脱メタン工程における精留塔の必要還流
比を小さくすることができ、換言すれば、脱メタン塔工
程の精留効果を高め、塔底から得られるエチレン等の特
定留分の得率を上げることができる。
As described above, according to the present invention, a rectification step is incorporated into a part of the hydrocarbon decomposition product supply treatment step, and the condensate obtained from the hydrogen and methane separation and purification step is used as the reflux liquid of the rectification step. , the required reflux ratio of the rectification column in the demethanization process can be reduced, in other words, the rectification effect of the demethanization process can be enhanced, and the yield of specific fractions such as ethylene obtained from the bottom of the column can be increased. be able to.

また得率が一定の場合には、脱メタン塔の段数を従来よ
りも少なくすることができ、またコンデンサ等の設備も
小型化することができる。
Furthermore, when the yield is constant, the number of stages in the demethanizer can be reduced compared to conventional methods, and equipment such as condensers can also be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ従来技術および本発明
の実施例を示すエチレン等を含む炭化水素分解ガスの精
製設備の系統図である。 1・・・・・・供給物処理工程、2・・・・・・水素、
メタン分離精製工程、3・・・・・・脱メタン塔工程、
E−1,E一2,E−3,E−4・・・・・・分解ガス
の冷却用熱交換器、D−1,D−2,D−3,D−4・
・・・・・気液分離ドラム、T−1・・・・・・脱メタ
ン精留塔、T−2・・・・精留塔。
FIG. 1 and FIG. 2 are system diagrams of a purification facility for hydrocarbon cracked gas containing ethylene and the like, showing the prior art and the embodiment of the present invention, respectively. 1...Feed treatment step, 2...Hydrogen,
Methane separation and purification step, 3... demethanizer step,
E-1, E-2, E-3, E-4... Heat exchanger for cooling cracked gas, D-1, D-2, D-3, D-4.
... Gas-liquid separation drum, T-1 ... Demethanization rectification column, T-2 ... Rectification column.

Claims (1)

【特許請求の範囲】 1 炭化水素分解物を軽質留分と重質留分とに分離する
供給物処理工程、該供給物処理工程で得られた軽質留分
から水素およびメタンを分離する工程、ならびに前記供
給物処理工程で得られた重質留分からエチレンその他特
定留分を分離する工程を含む炭化水素分解物の低温精製
法において、前記供給物処理工程の少くとも一部を精留
工程とし、前記水素およびメタンの分離精製工程で得ら
れた凝縮液を上記精留工程の還流液として用いることを
特徴とする炭化水素分解物の低温精製法。 2 前記エチレンその他の分離精製工程の塔頂ガスを、
前記水素およびメタンの分離精製工程の冷却用冷媒とし
て用いることを特徴とする特許請求の範囲第1項の炭化
水素分解物の低温精製法。
[Claims] 1. A feed treatment step for separating a hydrocarbon decomposition product into a light fraction and a heavy fraction, a step for separating hydrogen and methane from the light fraction obtained in the feed treatment step, and In a method for low-temperature purification of hydrocarbon decomposition products, which includes a step of separating ethylene and other specific fractions from the heavy fraction obtained in the feed treatment step, at least a part of the feed treatment step is a rectification step; A method for low-temperature purification of hydrocarbon decomposition products, characterized in that the condensate obtained in the hydrogen and methane separation and purification step is used as the reflux liquid in the rectification step. 2. The overhead gas from the ethylene and other separation and purification process,
2. The low-temperature purification method for hydrocarbon decomposition products according to claim 1, which is used as a cooling refrigerant in the hydrogen and methane separation and purification step.
JP55183763A 1980-12-26 1980-12-26 Low-temperature purification method for hydrocarbon decomposition products Expired JPS6043390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55183763A JPS6043390B2 (en) 1980-12-26 1980-12-26 Low-temperature purification method for hydrocarbon decomposition products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55183763A JPS6043390B2 (en) 1980-12-26 1980-12-26 Low-temperature purification method for hydrocarbon decomposition products

Publications (2)

Publication Number Publication Date
JPS57108192A JPS57108192A (en) 1982-07-06
JPS6043390B2 true JPS6043390B2 (en) 1985-09-27

Family

ID=16141539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55183763A Expired JPS6043390B2 (en) 1980-12-26 1980-12-26 Low-temperature purification method for hydrocarbon decomposition products

Country Status (1)

Country Link
JP (1) JPS6043390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106523A (en) * 1984-10-31 1986-05-24 Mitsui Eng & Shipbuild Co Ltd Purification of cracked hydrocarbon
JP7089101B2 (en) * 2021-09-27 2022-06-21 住友化学株式会社 Hydrogen production method and production system

Also Published As

Publication number Publication date
JPS57108192A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
US4592766A (en) Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
USRE33408E (en) Process for LPG recovery
US2603310A (en) Method of and apparatus for separating the constituents of hydrocarbon gases
US7152430B1 (en) Method of separating CO2 from hydrocarbon gas
US4507133A (en) Process for LPG recovery
CA1250220A (en) Process for the separation of a c in2 xx hydrocarbon fraction from natural gas
US4456461A (en) Separation of low boiling constituents from a mixed gas
JP3724840B2 (en) Olefin recovery from hydrocarbon streams.
US3213631A (en) Separated from a gas mixture on a refrigeration medium
US4143521A (en) Process for the production of ethylene
JPS5817191A (en) Recovery of condensible hydrocarbon from natural gas
JPS58195778A (en) Manufacture of carbon monoxide
JP2869357B2 (en) Ethylene recovery method
EP0068587B1 (en) Process to remove nitrogen from natural gas
US4444577A (en) Cryogenic gas processing
JPH02503348A (en) How to recover helium from natural gas streams
US2180435A (en) Method of separating the constituents of gaseous mixtures
US3740962A (en) Process of and apparatus for the recovery of helium from a natural gas stream
KR20120026607A (en) Hydrocarbon gas processing
JP5793139B2 (en) Hydrocarbon gas treatment
US2769321A (en) Separation of ethylene from a gaseous mixture
US4496381A (en) Apparatus and method for recovering light hydrocarbons from hydrogen containing gases
US3320754A (en) Demethanization in ethylene recovery with condensed methane used as reflux and heat exchange medium
CA1250222A (en) Process for the separation of c in2 xx or c in3 xx hydrocarbons from a pressurized hydrocarbon stream
US6318119B1 (en) High-pressure gas fractionating process and system