JPS6042629A - Multicomponent force and moment measuring body - Google Patents

Multicomponent force and moment measuring body

Info

Publication number
JPS6042629A
JPS6042629A JP59153929A JP15392984A JPS6042629A JP S6042629 A JPS6042629 A JP S6042629A JP 59153929 A JP59153929 A JP 59153929A JP 15392984 A JP15392984 A JP 15392984A JP S6042629 A JPS6042629 A JP S6042629A
Authority
JP
Japan
Prior art keywords
measuring body
force
strain gauges
moment
peripheral line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59153929A
Other languages
Japanese (ja)
Inventor
ハーラルト、フリツツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens Schuckertwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schuckertwerke AG, Siemens AG filed Critical Siemens Schuckertwerke AG
Publication of JPS6042629A publication Critical patent/JPS6042629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は抵抗線ひずみゲージを用いた多次元の力およ
び多次元のモーメントを測定する測定体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a measuring body for measuring multidimensional forces and multidimensional moments using resistance wire strain gauges.

〔従来技術とその問題点〕[Prior art and its problems]

この種の測定体は例えばドイツ特許公告第252979
6号、第2727704号や定期刊行誌「エレクトロエ
ックス」第17巻第27号、 1982年12月、第1
1頁の記事「産業ロボット用触覚」により公知である。
Measuring bodies of this type are known, for example, from German Patent Publication No. 252,979.
6, No. 2727704 and periodical magazine "Electro-X" Vol. 17, No. 27, December 1982, No. 1
It is known from the article "Tactile sense for industrial robots" on page 1.

しかし、これらの公知の測定体では三次元座標の各方向
に作用する力やモーメントを方向選択性を備えた多数の
センサを用いて分析する方式であり、必要な精度を得る
には放射状あるいはかご状の極めて高価な構造としなけ
ればならず、またひずみゲージのコストも高い。
However, in these known measurement bodies, the force and moment acting in each direction of three-dimensional coordinates are analyzed using a large number of sensors with direction selectivity. This requires an extremely expensive structure, and the cost of the strain gauge is also high.

〔発明の目的〕[Purpose of the invention]

この発明は製造コストが低くしかも小形な測定体を提供
することを目的とする。
An object of the present invention is to provide a measuring body that is small in size and has low manufacturing cost.

〔発明の要点〕[Key points of the invention]

この発明は、ひずみゲージを、長さおよび横方向の力な
らびにモーメントを所定位置で受ける受容体と一体化し
た測定体上に、該ゲージを対にした半ブリ、ジ回路によ
り前記力とモーメントとが(5) 一義的に測定される感受性が得られるよう測定体内の応
力方向に対し所定の位置に方向を定めて、かつ前記半ブ
リ、ジ回路の検出値から前記力およびモーメントを算出
するのに充分な数の等式が得られる個数装着し、ひずみ
ゲージの各一端を並列に接続し他端をアクセス可能に分
離して測定体を構成することにより達成される。
In this invention, a strain gauge is mounted on a measurement body that is integrated with a receptor that receives longitudinal and lateral forces and moments at a predetermined position, and the strain gauges are mounted on a measurement body that receives the forces and moments by means of a pair of half-circuits and di-circuits. (5) Set the direction at a predetermined position with respect to the stress direction within the measuring body so that a uniquely measured sensitivity can be obtained, and calculate the force and moment from the detected values of the half-branch and di-circuit. This is achieved by attaching a sufficient number of strain gauges to obtain a sufficient number of equations, and constructing a measuring body by connecting one end of each strain gauge in parallel and separating the other end so that it can be accessed.

この発明では、測定体に作用する力を、1個の一体化さ
れた測定ばね体上に装着された成分選択的感受性を備え
たひずみゲージにより、三次元6座軸方向の成分に分解
する。しかし各ひずみゲージに他方向成分が混入するこ
とはいずれKせよ避けることができないので、前記の一
体化された測定ばね体上のひずみゲージの配置と向きと
を選定するだけでは不充分な結果しか得られない。した
がってこの発明は、力の成分分解精度を測定体の機械的
構造により向上させるのに較べて安価な電子式方法によ
り同等の効果を得るようにするものである。
In this invention, the force acting on the measuring body is resolved into three-dimensional hexaaxial components by a strain gauge with component-selective sensitivity mounted on one integrated measuring spring body. However, it is unavoidable that components in other directions will be mixed into each strain gauge, so simply selecting the placement and orientation of the strain gauges on the integrated measurement spring body described above will yield insufficient results. I can't get it. Therefore, the present invention aims to achieve the same effect by using an electronic method which is cheaper than improving the precision of force component decomposition by using the mechanical structure of the measuring body.

上記の目標に従い、測定体を一端が固定された(6) 中空シリンダで構成するのが合目的である。そして該シ
リンダの自由端に力受容カップをおおいかぶせて剛に固
着する。該力受容カップのふちを中空シリンダの有効長
の中央寄り約3分の1才でかぶさる長さとI−1この位
置を横方向の力受界面とする。該力受界面ならびにこれ
に平行な少なくとももう一つの切断面がそれぞれシリン
ダ表面と交わる切り口に相当する中空シリンダ周縁線上
に少なくとも7個のひずみゲージを前記力受容部内に設
定したXY座標軸を基準にして次のように位置と向きと
を定めてはり着ける。各2個をシリンダ軸とそれに直角
な向きとにそれぞれ径方向の対向対をなすように、また
少なくとももう2個をシリンダ軸方向と45°互いに異
なる向きに傾けてそれぞれ配置する。ひずみゲージを上
記のように装着すると、空間的に互いに直交する力の3
成分ならびにモーメントの3成分を測定できる。またこ
れより少ない数の成分だけを沖1定する場合には、ひず
みゲージの数も上記より少なくてよい。
In accordance with the above objectives, it is expedient to construct the measuring body as a (6) hollow cylinder which is fixed at one end. Then, the free end of the cylinder is covered with a force receiving cup and rigidly fixed. The length of the force receiving cup that covers the edge of the hollow cylinder at about one-third of the center of the effective length of the hollow cylinder is defined as I-1.This position is defined as the force receiving surface in the lateral direction. At least seven strain gauges are set in the force receiving part on the circumference line of the hollow cylinder corresponding to the cut where the force receiving interface and at least another cut plane parallel thereto intersect with the cylinder surface, respectively, with reference to the XY coordinate axes. Determine the position and orientation as shown below and attach. Two of each are arranged so as to form radially opposed pairs in the direction of the cylinder axis and a direction perpendicular thereto, and at least two of them are arranged so as to be inclined in directions different from each other by 45 degrees with respect to the direction of the cylinder axis. When the strain gauge is installed as described above, three forces that are spatially orthogonal to each other are generated.
Three components, component and moment, can be measured. Further, if only a smaller number of components are to be constant, the number of strain gauges may be smaller than the above.

この発明の実施例では、力受界面により決定された第1
の周縁線上に該周縁線向きに2個のひずみゲージが径方
向に対向対をなして配置される。
In an embodiment of the invention, the first
Two strain gauges are arranged on the peripheral line of the strain gauge in a radially opposed pair in the direction of the peripheral line.

これらと同じ方位角で2個のひずみゲージが軸方向向き
lこ、また1対のυずみゲージがシリンダ軸方向と45
°互いに異なる向きに傾いてmlの周縁線から一定の距
離を置いたもう1本の周#&線上に配置される。さらに
第1の周縁線の反対側のさらにもう1本の周縁縁上に1
対のひずみゲージがシリンダ軸方向と45°同じ向きに
傾いて、かつ最初の傾いた1対と同じ方位角で配置さi
する。
At the same azimuth angle, two strain gauges are oriented in the axial direction, and a pair of υ strain gauges are oriented in the axial direction of the cylinder.
° It is placed on another circumferential #& line at a certain distance from the circumferential line of ml, tilted in different directions from each other. 1 on yet another peripheral edge on the opposite side of the first peripheral line.
A pair of strain gauges is tilted in the same direction as the cylinder axis by 45 degrees and placed at the same azimuth as the first tilted pair.
do.

またこの発明の異なる実施例では、力受界面により決定
された周縁線上に該周縁線向きに2個のひずみゲージが
径方向に対向対をなして配置される。また同じ周縁線上
の前記の2個から90’方位角をすらせた位置に1個の
ひずみゲージが軸方向向きに、そして2個が軸方向と4
5°互いに異なる向きに傾きかつ重ね合わされてそれぞ
れ配置される。そしてもう1本の異なる周縁線上に90
’方位角を互いにずらせて軸方向向きならびに周縁線向
きに%1111!Iのひずみゲージがそれぞれ装着され
る。
In a different embodiment of the present invention, two strain gauges are arranged in pairs facing each other in the radial direction on the peripheral line determined by the force-receiving surface and facing the peripheral line. Also, on the same peripheral line, at a position 90' azimuth away from the above two strain gauges, there is one strain gauge oriented in the axial direction, and two strain gauges in the axial direction and 4
They are arranged so as to be tilted in different directions by 5° and overlapped with each other. and 90 on another different peripheral line.
'%1111 in the axial direction and in the circumferential direction with the azimuths shifted from each other! I strain gauges are attached to each.

この発明の目的に従い、ひずみゲージにこれと同数の一
端が並列接続された高抵抗を組み合わせて、1組の′r
t源の両端子間に並列接続可能な各1個のひずみゲージ
と固定抵抗の直列回路群を構成するのが合目的である。
In accordance with the purpose of this invention, a set of 'r
It is expedient to construct a series circuit of a strain gauge and a fixed resistor, each of which can be connected in parallel between the two terminals of the t-source.

そして各ひずみゲージと固定抵抗との接続点を外部に引
き出す。
Then, connect points between each strain gauge and fixed resistor to the outside.

−上記と異なる回路構成においては、固定抵抗を一端が
並列接続された電源群に置き換える。該電源群の並列接
続された端部はひずみゲージ群の並列接続された端部に
直接接続される。
- In a circuit configuration different from the above, the fixed resistor is replaced by a power supply group with one end connected in parallel. The parallel connected ends of the power supply group are directly connected to the parallel connected ends of the strain gauge group.

上記のひずみゲージ回路構成をさらに変形し℃電源群を
一端が並列接続された2組の電源に集約し、該電源をス
イッチ機構を介してそれぞれ2個のひずみゲージに接続
可能にすると有利である。
It is advantageous to further modify the strain gauge circuit configuration described above to consolidate the °C power supply group into two sets of power supplies whose ends are connected in parallel, and to make it possible to connect each power supply to two strain gauges via a switch mechanism. .

この回路構成においては選択された2個のひすみゲージ
につき電源を入れ換えて2回づつ測定することが可能で
あり、その結果、接触抵抗のばらつきに起因する誤差を
平均化する補完効果が得られる。
With this circuit configuration, it is possible to measure the two selected strain gauges twice by switching the power supply, and as a result, a complementary effect can be obtained that averages out errors caused by variations in contact resistance. .

〔発明の実施例〕[Embodiments of the invention]

(9) 次にこの発明を実施例の図を参照してさらに詳細に説明
する。
(9) Next, the present invention will be explained in more detail with reference to figures of embodiments.

第1図に空間的に互いに直交する三次元の力成分P1*
P2+P3ならびにモーメント成分M、、M、、M、を
示す。また各モーメント成分は図中矢印で示すように、
各座標軸に対してそれぞれ右まわりとすも公知の測定体
、あるいはこの発明にかかわる測定体においても上記の
各成分と異なった向きのカももちろん測定できるが、そ
の場合にもその力は上記の各次元方向の成分に分解され
る。
In Figure 1, three-dimensional force components P1* are spatially orthogonal to each other.
P2+P3 and the moment components M,,M,,M,are shown. In addition, each moment component is as shown by the arrow in the figure.
Of course, it is also possible to measure forces in directions different from the above components using a known measuring body or a measuring body according to the present invention, but in that case, the force will be the same as above. It is decomposed into components in each dimension direction.

第1図に示した力やモーメントは、第28図ないしgg
d図に示すようにシリンダ状の測定体をゆがめる作用を
する。tiE2a図はシリンダZがその軸方向に作用す
る圧力P1によって輻むとともに太くなる模様を示す。
The forces and moments shown in Figure 1 are shown in Figure 28 or gg.
As shown in Figure d, it acts to distort the cylindrical measuring object. The tiE2a diagram shows a pattern in which the cylinder Z becomes convergent and thicker due to the pressure P1 acting in its axial direction.

第2b図はカ受容力、プにの外縁に作用した横方向から
のカP3によりシリンダZがS字形にゆがめられた状態
を示し、この場合には力受容カップにの外縁が横方向か
らの力受界面を決定し、該受容面はこの図例ではシリン
ダの中央に位置している。また第2c図はシリ(10) ンダZにトルクM2が作用し、このトルクがシリンダZ
に対しては純粋な曲げ力として作用している状態を示す
。そして第2d図はシリンダZのたて軸まわりにトルク
M+が作用してシリンダにねじり応力を発生させている
状態を示す。
Figure 2b shows a state in which the cylinder Z is distorted into an S-shape due to the force receiving force P3 from the lateral direction acting on the outer edge of the force receiving cup. In this case, the outer edge of the force receiving cup is A force receiving surface is determined, which in this illustration is located at the center of the cylinder. Also, in Fig. 2c, torque M2 acts on cylinder (10) cylinder Z, and this torque acts on cylinder Z.
shows a state in which the force acts as a pure bending force. FIG. 2d shows a state in which torque M+ is applied around the longitudinal axis of the cylinder Z to generate torsional stress in the cylinder.

第3a図にシリンダZならびに力の3成分P1ないしP
3を示す。力受容力、プにの外縁面がシリンダ表面に交
わってつくる切り口に相当する周縁線をBとし、さらに
該周縁線Bの両側に等間隔で引いた平行線をそれぞれA
およびCとする。第3b図はこれらの線B、AおよびC
上に配列された8個の抵抗線ひずみゲージlないし8の
配置を示すもので、これら3本の線上のシリンダ表面に
おける位置関係が方位角0°、90°、180°および
270°でそれぞれ示されている。
Figure 3a shows the cylinder Z and the three force components P1 to P.
3 is shown. The force receiving force, the peripheral line corresponding to the cut made by the outer edge surface of the cylinder intersects with the cylinder surface is B, and the parallel lines drawn at equal intervals on both sides of the peripheral line B are A.
and C. Figure 3b shows these lines B, A and C.
This shows the arrangement of eight resistance wire strain gauges 1 to 8 arranged above, and the positional relationships on the cylinder surface on these three lines are shown at azimuth angles of 0°, 90°, 180° and 270°, respectively. has been done.

第3C図に三次元方向の力成分P1ないしP3ならびに
モーメント成分M、ないしM3をもう一度示す。そして
これらの各成分P1.P2.P3ならびにMl。
FIG. 3C shows once again the three-dimensional force components P1 to P3 and the moment components M to M3. And each of these components P1. P2. P3 as well as Ml.

M、 、 M、が抵抗線ひずみゲージに与えるひずみの
正規化値をマトリ、クスの形で次表に掲げる。
The normalized values of strain that M, , and M give to the resistance wire strain gauge are listed in the following table in the form of a matrix.

上表には、各ひずみグージエないし8の各周縁線上の位
置を示すシリンダ表面の方位角と、各ゲージの向きをシ
リンダ軸に対する傾きで示す角度とが示されている。
The above table shows the azimuth angle of the cylinder surface indicating the position on each circumferential line of each strain Gougier to 8, and the angle indicating the orientation of each gauge as an inclination with respect to the cylinder axis.

このマトリ、クス表から、それぞれ2個のひずみゲージ
間で構成され、かつその出力値にできるだけ限定された
数の上記マトリ、クス表で重みづけされた力やモーメン
トの成分だけが含まれるような半ブリツジ回路を探し出
すことができる。このような展開式を次表に示す。
From these matrices and matrix tables, it is possible to determine which strain gauges are configured between two strain gauges, and whose output values include only the force and moment components weighted by a limited number of the above matrices and matrix tables. You can find half-bridge circuits. Such an expansion formula is shown in the table below.

上表の数だけのブリッジ回路出力端値が得られれば、各
座標軸方向の個別成分を算出するのに充分な数の等式が
成立する。上表から得られる計算式を次に示す。
If as many bridge circuit output end values as shown in the above table are obtained, a sufficient number of equations will be established to calculate individual components in each coordinate axis direction. The calculation formula obtained from the above table is shown below.

−3,33・Ca+Cs二+2M、−2P2−2M3P
2=06・(−3,33) +08 c、+c、:+pm ps−M。
-3,33・Ca+Cs2+2M, -2P2-2M3P
2=06・(-3,33) +08 c, +c, :+pm ps-M.

Ml = −C5−04 M2: C7 M3−C6・(−1,66) Cr’C+=−1,3Pt−P2+0.7Ma 1.3
P1+P2−0.7M3=−2,6P1p、 =c2・
(−0,385)−CtΦ(−0,385)Ps″C5 第4図にこの発明の異なる実施例として、シリンダZ上
の周縁線BおよびC上にはり着けられた7個のひずみゲ
ージの配列状態を示す。この図にも周縁線Aが描かれて
いるが、この実施例ではこの線上にひずみゲージは装着
されない。前例同様に各ゲージに1から7の通し番号を
つけて、それぞれが受けるひずみのマトリ、クスを次表
に掲げる。
Ml = -C5-04 M2: C7 M3-C6・(-1,66) Cr'C+=-1,3Pt-P2+0.7Ma 1.3
P1+P2-0.7M3=-2,6P1p, =c2・
(-0,385)-CtΦ(-0,385)Ps''C5 FIG. 4 shows a different embodiment of the present invention, in which seven strain gauges are pasted on peripheral lines B and C on cylinder Z. The arrangement state is shown.Although a peripheral line A is also drawn in this figure, strain gauges are not mounted on this line in this example.As in the previous example, each gauge is given a serial number from 1 to 7, and each gauge is The following table lists the strain matrices and rice cakes.

上表から前例と同様に等式が成立して下記の解が得られ
る。各等式の左側の括弧内の項は各半プリ、ジ回路を構
成するひずみゲージの組み合わせ(14) 番号である。
From the table above, the equation holds true as in the previous example, and the following solution is obtained. The term in parentheses on the left side of each equation is the number of strain gauge combinations (14) that make up each half-pre, di-circuit.

(4−5)=2Mt (1−3) = 0.6M3 (1−6) −(1−3)=0.3P2(4−3) −
(1−2)+(2−4)=2.5P1(1−2) −(
4−3) −2I’+−M1=1.5M2(2−7)+
2M2ニーP3 #1fJ5図に各ひずみグージエないし8の各一端を並
列につなぎ、他の一端にそれぞれ固定抵抗R1ないしR
8を直列接続するとともに、ブリ、ジ回路を構成するた
めlこゲージと固定抵抗との各接続点に1ないし8の通
し番号をつけて外部に引き出して、各接続点間のブリ、
ジ電圧を電圧計で測定可能とした結線図を示す。
(4-5) = 2Mt (1-3) = 0.6M3 (1-6) - (1-3) = 0.3P2 (4-3) -
(1-2)+(2-4)=2.5P1(1-2)-(
4-3) -2I'+-M1=1.5M2(2-7)+
2M2 Knee P3 #1fJ5 Connect one end of each strain Gougier to 8 in parallel, and connect fixed resistors R1 to R to the other end, respectively.
8 are connected in series, and in order to configure a bridge circuit, serial numbers 1 to 8 are attached to each connection point between the l gauge and the fixed resistor, and the wires are connected externally.
This shows a wiring diagram that allows the voltage to be measured with a voltmeter.

測定、計算ならびに結果の評価は、適正にプログラムさ
れたマイクロプロセ、すな用いて実行可能である。
Measurements, calculations and evaluation of results can be carried out using properly programmed microprocessors.

この第5図の回路において、固定抵抗R1ないしR8を
それぞれ定電流電源に置き換えても、同様な回路が構成
される。その場合には図中の電源Usは不要となるので
、各定電流電源の一端を互いに並列にして、各ひずみゲ
ージの互いに並列接続された一端に直接接続する。
In the circuit shown in FIG. 5, a similar circuit can be constructed even if each of the fixed resistors R1 to R8 is replaced with a constant current power supply. In that case, the power supply Us shown in the figure becomes unnecessary, so one end of each constant current power supply is connected in parallel with each other and directly connected to one end of each strain gauge that is connected in parallel with each other.

上記の回路構成をさらに変形した実施例を第6図に示す
。ここでは前記の個別の定電流電源を、その一端が並列
接続された2組の電源Q1. Q2に集約し、該各電源
のもう一方の自由端を各ひずみグージエないし8の各自
由端の任意の1対にそれぞれ接触させる。才た該接触を
切り換えたときの接触抵抗ならびに接触電圧を平均化す
るために、各1対のひずみゲージにつき図中破線で示す
ように定電流電源を入れ換えて2回ずつ測定することも
可能である。
FIG. 6 shows an embodiment in which the above circuit configuration is further modified. Here, the individual constant current power supplies described above are connected to two sets of power supplies Q1. Q2, and the other free end of each power source is brought into contact with any pair of free ends of each strain Gougier to 8, respectively. In order to average the contact resistance and contact voltage when switching the contacts, it is also possible to measure each pair of strain gauges twice by switching the constant current power supply as shown by the broken line in the figure. be.

〔発明の効果〕〔Effect of the invention〕

この発明は比較的簡単な構造の測定体上にひずみゲージ
をその位置と向きとを適切に定めて装着し、これらのひ
ずみゲージを対にして組み合わせた半ブリ、ジ回路力)
ら得られた多数の測定値を適切に電子的に演算処理して
各測定値に含まれた異成分を消去するので、力およびモ
ーメントの三次元各成分だけが分解測定される。したが
って測定体の機械的構成により上記効果を得る方式に比
較して安価で、しかも小屋な測定体が提供される。
In this invention, strain gauges are mounted on a measurement body having a relatively simple structure with their positions and orientations appropriately determined, and these strain gauges are combined in pairs to generate half-circuit and dicircuit forces.
Since the large number of measured values obtained from the 3-dimensional method is appropriately electronically processed to eliminate different components contained in each measured value, only the three-dimensional components of force and moment are resolved and measured. Therefore, compared to the method of obtaining the above effect through the mechanical configuration of the measuring body, a measuring body that is cheaper and more compact can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三次元の各座標軸方向の力ならびにモーメント
の各成分を例示する図、第28ないし第2d図は上記の
各成分がシリンダ状測定体に作用してこれをそれぞれゆ
がめている状態を示す図である。第3mないし第3C図
はこの発明による測定体実施例のたて断面とひずみゲー
ジの配置と向きとを示す図、第4図は異なる実施例にお
けるひずみゲージの配置と向きとを示す図、また第5図
と第6図はひずみゲージの回路構成について互いに異な
る二つの実施例をそれぞれ示す接続図である。 A、B、Cニジリンダ表面の周縁線、K:力受容力、プ
、Z:測定体シリンダ、1〜8:抵抗線ひずみゲージ、
R,−R,:固定抵抗、Qt 、 Q2 :電源。 (17)
Figure 1 is a diagram illustrating each component of force and moment in each three-dimensional coordinate axis direction, and Figures 28 to 2d illustrate states in which each of the above components acts on a cylindrical measuring body and distorts it. FIG. Figures 3m to 3C are views showing the vertical cross section and the arrangement and orientation of the strain gauges of the embodiment of the measuring body according to the present invention, and Figure 4 is a view showing the arrangement and orientation of the strain gauges in a different embodiment. FIGS. 5 and 6 are connection diagrams respectively showing two different embodiments of the circuit configuration of the strain gauge. A, B, C peripheral line of the cylinder surface, K: force receiving force, Z: measuring body cylinder, 1 to 8: resistance wire strain gauge,
R, -R,: fixed resistance, Qt, Q2: power supply. (17)

Claims (1)

【特許請求の範囲】 1)ひずみゲージを用いて多成分力および多成分モーメ
ントを測定する測定体であって、長さおよび横方向の力
ならびにモーメントを所定位置で受ける受容体と一体化
された測定体上に、該ゲージを対にした半ブリ、ジ回路
により前記力とモーメントとが一義的に測定できる感受
性が得られるよう、ひずみゲージが測定体内の応力方向
に対し所定の位置に方向を定めかつ前記半ブリツジ回路
の検出値から前記力およびモーメントを算出するのに充
分な数の等式が得られる個数装着され、ひずみゲージの
各一端が並列に接続され他端がアクセス可能に分離され
たことを特徴とする多成分力およびモーメント測定体。 2、特許請求の範囲第1項記載の測定体において、測定
体が3成分力および3個のモーメント測定のため一端が
固定され他端がそれにかぶせられた力受容カップに剛に
結合された中空シリンダであり、核カップのふちが中空
シリンダの有効長の中央寄りほぼ3分の1に位置する横
方向力の受容面を決定し、該力受各面とそれに平行な少
なくとももう一つの切断面とがシリンダ表面に形成する
切り口に相当する中空シリンダの周縁線上に少なくとも
7個のひずみゲージが、内2対はシリンダ軸とそれに直
角な向きとにそれぞれ径方向の対向対をなして、また少
なくとももう2個はシリンダ軸方向と45°互いに異な
る向きに傾げてそれぞれ装着されたことを特徴とする多
成分力およびモーメント測定体。 3)特許請求の範囲第2項記載の測定体において、力受
各面により決定される第1の周縁線上には該前記2個の
ひずみゲージ(317)と同一方位角に軸方向向きに2
個のひずみゲージ(4,8)と、それらから90’方位
角をずらせて軸方向と45°互いに異なる向きに傾いた
1対のひずみゲージ(2゜6)とが装着され、さらに第
1の周縁線の反対側に位置するもう1本の周縁線上には
軸方向と45゜同じ向きに傾いたもう1対のひずみゲー
ジ(l。 5)が傾いた1対のひずみゲージ(2,6)と同じ方位
角にそれぞれ装着されたことを特徴とする多成分力およ
びモーメント測定体。 4)特許請求の範囲第2項記載の測定体において、力受
容部が決定する周縁線上には該周縁線向きに2個のひず
みゲージ(1* a )が径方向の対向対をなして装着
され、また該周縁線上にはこれらから90°方位角をず
らせて軸方向向きの1個のひずみゲージ(2)と、軸方
向と45°互いに異なる向きに傾いた2個のひずみゲー
ジ(4,5)とが装着され、さらにもう1本の異なる周
縁線上には互いに900方位角をずらせて軸方向向とな
らびに該周縁線向きに各1個のひずみゲージ(7と6)
がそれぞれ装着されたことを特徴とする多成分力および
モーメント測定体。 5)特許請求の範囲第1項ないし第4項のいずれかに記
載の測定体において、ひずみゲージが、一端を互いに並
列接続されたこれと同数の高抵抗によって、各1個のひ
ずみゲージと固定抵抗とからなり両者の相互接続店が外
部に引き出されて1対の電源端子間に並列接続可部な直
列回路の呆合体に取りまとめられたことを特徴とする多
成分力およびモーメント測定体。 6)特許請求の範囲第5項紀載の測定体において、固定
抵抗が一端が互いに並列接続された電源群によって置き
換えられ、かつ該電源群の互いに並列接続された端部が
ひずみゲージ群の互いに並列接続された端部に接続され
ることを1%徴とする多成分力およびモーメント測定体
。 7)特許請求の範囲第6項記載の測定体において、多数
の電源群のかわりに一端が互いに並列接続されかつひず
みゲージを2個づつ切り換え可能な電源が備えられたこ
とを特徴とする多成分力およびモーメント測定体。
[Claims] 1) A measuring body for measuring multi-component forces and moments using strain gauges, which is integrated with a receptor that receives longitudinal and lateral forces and moments at predetermined positions. The strain gauge is oriented at a predetermined position with respect to the stress direction inside the measuring body so that the sensitivity that allows the force and moment to be uniquely measured is obtained by a half-bridge circuit that pairs the gauges on the measuring body. A sufficient number of equations can be obtained to calculate the force and moment from the detected values of the half-bridge circuit. A multi-component force and moment measurement body characterized by: 2. The measuring body according to claim 1, wherein the measuring body is a hollow body rigidly connected to a force-receiving cup having one end fixed and the other end placed over it for the purpose of measuring three component forces and three moments. a cylinder, the rim of the core cup defining a lateral force receiving surface located approximately one-third of the effective length of the hollow cylinder toward the center, and each force receiving surface and at least one other cutting surface parallel thereto; and at least seven strain gauges on the peripheral edge of the hollow cylinder corresponding to the cut formed on the cylinder surface, two pairs of which are radially opposed pairs on the cylinder axis and in a direction perpendicular thereto, and at least The other two are multi-component force and moment measuring bodies, characterized in that they are mounted tilted in different directions by 45 degrees with respect to the cylinder axis direction. 3) In the measuring body according to claim 2, on the first peripheral line determined by each force receiving surface, there are two axially extending lines at the same azimuthal angle as the two strain gauges (317).
strain gauges (4, 8), and a pair of strain gauges (2°6) which are 90' azimuth shifted from them and tilted in directions different from each other by 45° with respect to the axial direction. On the other peripheral line located on the opposite side of the peripheral line, there is another pair of strain gauges (l. 5) tilted in the same direction as the axial direction by 45°; and a pair of tilted strain gauges (2, 6). A multi-component force and moment measuring body characterized in that the body is mounted at the same azimuth angle as the body. 4) In the measuring body according to claim 2, two strain gauges (1*a) are mounted on the peripheral line determined by the force receiving part in a radially opposed pair in the direction of the peripheral line. In addition, on the peripheral line, there is one strain gauge (2) oriented in the axial direction with an azimuth angle of 90° shifted from these, and two strain gauges (4, 4, 5) are mounted, and one strain gauge (7 and 6) is mounted on another different peripheral line, shifted by 900 azimuth angle from each other, in the axial direction and in the direction of the peripheral line.
A multi-component force and moment measuring body characterized in that each of the following is attached. 5) In the measuring body according to any one of claims 1 to 4, each strain gauge is fixed to one strain gauge by the same number of high resistors whose one ends are connected in parallel to each other. 1. A multi-component force and moment measuring device comprising a resistor, the interconnection of which is brought out to the outside, and combined into a series circuit connectable in parallel between a pair of power supply terminals. 6) In the measuring body described in claim 5, the fixed resistor is replaced by a power supply group whose ends are connected in parallel to each other, and the mutually connected ends of the power supply group are connected to each other of the strain gauge groups. Multi-component force and moment measuring body with 1% sign connected to parallel connected ends. 7) A multi-component measuring body according to claim 6, characterized in that instead of a large number of power supply groups, power supplies are provided whose ends are connected in parallel to each other and which are capable of switching two strain gauges at a time. Force and moment measuring body.
JP59153929A 1983-07-27 1984-07-24 Multicomponent force and moment measuring body Pending JPS6042629A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327141.0 1983-07-27
DE3327141 1983-07-27

Publications (1)

Publication Number Publication Date
JPS6042629A true JPS6042629A (en) 1985-03-06

Family

ID=6205081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153929A Pending JPS6042629A (en) 1983-07-27 1984-07-24 Multicomponent force and moment measuring body

Country Status (1)

Country Link
JP (1) JPS6042629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280527A (en) * 1985-10-03 1987-04-14 Hitachi Constr Mach Co Ltd Load detecting device
JPS6417446U (en) * 1987-07-21 1989-01-27
JPH01162124A (en) * 1987-11-20 1989-06-26 Seb Sa Calibration of measuring apparatus for force or moment and apparatus pertaining thereto

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280527A (en) * 1985-10-03 1987-04-14 Hitachi Constr Mach Co Ltd Load detecting device
JPS6417446U (en) * 1987-07-21 1989-01-27
JPH01162124A (en) * 1987-11-20 1989-06-26 Seb Sa Calibration of measuring apparatus for force or moment and apparatus pertaining thereto

Similar Documents

Publication Publication Date Title
EP0549807B1 (en) Sensor for force, acceleration and magnetism using piezoelectric devices
EP1688725A1 (en) Multi-axis sensor unit and multi-axis sensor utilizing it
US5035148A (en) Force detector using resistance elements
CN106124113B (en) Novel six-dimensional force and torque sensor
JP3256346B2 (en) Force / acceleration / magnetism sensors using piezoelectric elements
US7121147B2 (en) Force detection device
US7219561B2 (en) Force-detecting device
EP0311695B1 (en) Force and moment detector using resistor
US6269697B1 (en) Angular velocity sensor using piezoelectric element
CN111065882B (en) Anisotropic Magnetoresistive (AMR) angle sensor die with AMR angle sensor
JP2002530755A (en) Structure of sensor and circuit for 3-axis strain gauge position indicating device and force transducer
WO2019009368A1 (en) Strain gauge and multiple axis force sensor
CN104677543A (en) Piezoelectric type six-dimensional force/torque sensor adopting six groups of force-measuring sensitive units
JPS6042629A (en) Multicomponent force and moment measuring body
US4637263A (en) Multi-component force and torque measurement cell with strain gauges
JP6611761B2 (en) Strain gauge and multi-axis force sensor
US11099243B2 (en) Differential magnetic load cells for compact low-hysteresis force and torque measurements
JPH09210690A (en) Angular velocity detecting sensor
WO2021105951A1 (en) Bicycles pedal
JPH07191119A (en) Magnetic field measuring hole probe
JPH0375570A (en) Measuring method of resistance of semiconductor element
JPH0231812B2 (en)
JPH03276072A (en) Signal processing circuit for acceleration detecting device
CN117686737A (en) Acceleration sensor
JPH07159435A (en) Triaxial detecting bridge type acceleration sensor