JPS6042597A - Energy-saving operation controlling device for cooling tower - Google Patents

Energy-saving operation controlling device for cooling tower

Info

Publication number
JPS6042597A
JPS6042597A JP15050883A JP15050883A JPS6042597A JP S6042597 A JPS6042597 A JP S6042597A JP 15050883 A JP15050883 A JP 15050883A JP 15050883 A JP15050883 A JP 15050883A JP S6042597 A JPS6042597 A JP S6042597A
Authority
JP
Japan
Prior art keywords
cooling tower
water temperature
cooling
air volume
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15050883A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
惇 高橋
Tokio Okonogi
小此木 時雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP15050883A priority Critical patent/JPS6042597A/en
Publication of JPS6042597A publication Critical patent/JPS6042597A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To save wasteful energy in the operation of cooling towers and to stabilize operation, by controlling the water temperature at an outlet to be constant, by detecting the water temperature at the inlets and the outlet of a group of cooling towers and the humidity in the atmosphere, and by controlling the number of units to be operated and the rate of air-flow for a group of cooling towers. CONSTITUTION:5 units have fans 4a-4e of constant air-flow rate, while 3 units have fans 5a- 5c of variable air-flow rate, respectively, among cooling towers which are independently operatable. The fans 4 of constant air-flow rate are ON/OFF controlled, and the number of units to be operated is controlled by a controlling signal ''a'' from a micro computer 6. The fans 5 of variable air-flow rate are constituted in such a manner that the rate of air flow can be changed by the change in angles of pitches of blades of fans or the change in the revolving number of a fan motor, for examples. A controlling signal ''b'' to control the draft rate for the cooling towers 3 of variable air-flow rate type is put out of the micro computer 6. While resistance input signals ''c'' are fed into the micro computer 6 from the detecting ends 7 and 8 of thermometers to detect the water temperature at the inlet and the outlet of cooling towers and from the detecting end 9 of a wet and dry-bulb thermometer to detect the atmosphere. The air-flow rate for the cooling units are controlled to make the water temperature at the outlet constant, and the energy consumption can be economically saved in the operation.

Description

【発明の詳細な説明】 本発明は、一つの負荷系統に対して所要の冷却水を供給
するための冷却塔を各々独立運転可能な複数の冷却塔群
に分割した冷却塔設備において。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cooling tower equipment in which a cooling tower for supplying required cooling water to one load system is divided into a plurality of cooling tower groups each capable of operating independently.

その運転動力費を低減すると同時に、出口水温を一定に
制御して安定操業ができるようにマイクロコンピュータ
制御を行う冷却塔の省動力運転制御装置に関する。
The present invention relates to a power-saving operation control device for a cooling tower that performs microcomputer control so as to reduce the operating power cost and at the same time control the outlet water temperature to a constant level for stable operation.

従来より、冷却塔の設計にあたっては統計上の過去最高
外気湿球温度27℃を基準としているが。
Traditionally, cooling tower designs have been based on the statistically highest outdoor wet bulb temperature of 27°C.

従来の冷却塔の冷却ファンは通常は定風量で運転されて
いるので、外気湿球温度が設計外気湿球温度より低い場
合(高くなることはまずない)は。
Conventional cooling tower cooling fans are usually operated at a constant airflow rate, so if the outside air wet bulb temperature is lower than the design outside air wet bulb temperature (it is unlikely to be higher).

実際の冷却塔からの出口水温は設計出口水温より低い水
温になる。従って、この点では運転動力の無駄が生じる
。また、一般に工業用冷却塔などでは冷却水温度は要求
水温どおりに安定して供給されることが望ましく、出口
水温がいかなる条件の変化にもかかわらず一定に制御さ
れるのが望ましい。
The actual outlet water temperature from the cooling tower is lower than the designed outlet water temperature. Therefore, in this point, operating power is wasted. Furthermore, in general, in industrial cooling towers, etc., it is desirable that the cooling water temperature be stably supplied as required water temperature, and it is desirable that the outlet water temperature be controlled to be constant regardless of any changes in conditions.

本発明は、この冷却塔運転の無駄を省き且つ山−口水温
を1定に制御して安定操業ができるようにすることを目
的としてなされたものである。この目的を効果的に達成
する冷却塔設備として本発明は、一つの負荷系統に対し
て所要の冷却水を供給するための冷却塔を、各々独立運
転可能な複数の冷却塔群に分割してなる冷却塔設備にお
いて、この冷却塔群のうち少なくとも一基以上を可変風
量機構をもつ冷却塔に構成し、冷却塔群への入口水温検
出端、冷却塔群からの出口水温検出端および外気湿球温
度検出端からの検出信号を入力信号として冷却塔群の台
数制御と該可変風量冷却塔の風量制御を行うためのマイ
クロコンピュータを設置したことを特徴とする冷却塔の
省動力運転制御装置を提供するものである。
The present invention has been made with the object of eliminating waste in the operation of the cooling tower and controlling the Yamaguchi-guchi water temperature to a constant level to enable stable operation. The present invention provides cooling tower equipment that effectively achieves this objective by dividing the cooling tower for supplying the required cooling water to one load system into a plurality of cooling tower groups that can each operate independently. In the cooling tower equipment, at least one of the cooling tower groups is configured as a cooling tower with a variable air volume mechanism, and the inlet water temperature detection end to the cooling tower group, the outlet water temperature detection end from the cooling tower group, and the outside air humidity are configured. A power-saving operation control device for a cooling tower, characterized in that a microcomputer is installed to control the number of cooling towers and the air volume of the variable air volume cooling tower using a detection signal from a bulb temperature detection end as an input signal. This is what we provide.

図面に基づいて本発明を具体的に説明すると。The present invention will be specifically explained based on the drawings.

第1図は本発明装置の機器配置を系統的に示したもので
、冷却水を必要とする一つの負荷系統1に対して、各々
独立運転可能に複数に分割し゛た冷却塔群によってその
冷却水を製造する冷却塔設備を示している。図示の実施
例では8基の独立運転可能な冷却塔に分割した例を示し
ているが、そのうち、 2a〜2eの5基がその冷却塔
送風機として定風量ファン48〜4eをもち、3基が可
変風量ファン5a〜5cをもつ例を示している。この例
に限らず9分割数は2以上、可変風量冷却塔数は1基以
上であればよい。本発明においては、このような冷却塔
群をマイクロコンピュータ6によって台数制御と可変風
量制御を実施する。7,8および9は、この制御のため
の制御信号を得るための入口水温検出端、出口水温検出
端および外気湿球温度検出端をそれぞれ示している。入
口水温検出端7は冷却塔群に入る前の水温を、出口水温
検出端8は冷却塔群から出る冷却水(各冷却塔から出る
冷却水が集合した冷却水)の水温を検出する位置に設置
される。各冷却塔2および3にはそれぞれ冷却水ポンプ
が付設される。
Figure 1 systematically shows the equipment arrangement of the device of the present invention, in which one load system 1 that requires cooling water is cooled by a group of cooling towers divided into a plurality of parts, each of which can operate independently. A cooling tower facility for producing water is shown. The illustrated embodiment shows an example in which the cooling tower is divided into eight independently operable cooling towers, of which five, 2a to 2e, have constant air volume fans 48 to 4e as cooling tower blowers, and three have fixed air volume fans 48 to 4e as cooling tower blowers. An example with variable air volume fans 5a to 5c is shown. The present invention is not limited to this example, and the number of nine divisions may be two or more, and the number of variable airflow cooling towers may be one or more. In the present invention, the microcomputer 6 controls the number of cooling towers and the variable air volume of the cooling tower group. Reference numerals 7, 8, and 9 indicate an inlet water temperature detection end, an outlet water temperature detection end, and an outside air wet bulb temperature detection end for obtaining control signals for this control, respectively. The inlet water temperature detection end 7 is located at a position to detect the water temperature before entering the cooling tower group, and the outlet water temperature detection end 8 is located at a position to detect the water temperature of the cooling water exiting from the cooling tower group (cooling water that is a collection of cooling water exiting from each cooling tower). will be installed. Each cooling tower 2 and 3 is provided with a cooling water pump.

各々の定風量冷却塔2の定風量ファー、ン4はオン・オ
フ制御がなされのものであり、マイクロコンピュータ6
からの制御信号(無電圧接点信号a)により、その稼動
台数を制御する。こp場合、定風量ファン4が停止する
冷却塔2であってもその冷却水ポンプはそのまま稼動し
2強制通風なしの状態で循環冷却水を塔内に噴霧すると
いう冷却塔運転となる。一方、可変風量冷却塔3の可変
風量ファン5は1例えば翼(羽根)ピンチ角度を変える
ことによって、あるいはファンモータの回転数を変える
ことによって通風量を自由に変えられるように構成する
。すなわち1図示しないが、制御盤によってファンの羽
根ピツチ角を自由に変化できるように構成するか、可変
電源周波数機構を・もつトランジスタインバータを採用
してファンモータの回転数を自由に変えられるように構
成する。
The constant air volume fan 4 of each constant air volume cooling tower 2 is controlled on and off by a microcomputer 6.
The number of operating units is controlled by a control signal (non-voltage contact signal a) from. In this case, even in the cooling tower 2 where the constant air volume fan 4 is stopped, the cooling water pump continues to operate and the cooling tower operates in such a way that circulating cooling water is sprayed into the tower without forced ventilation. On the other hand, the variable air volume fan 5 of the variable air volume cooling tower 3 is configured so that the air volume can be freely changed by, for example, changing the pinch angle of the blades or by changing the rotation speed of the fan motor. In other words, 1. Although not shown in the figure, the fan blade pitch angle can be freely changed using a control panel, or a transistor inverter with a variable power supply frequency mechanism can be used to freely change the rotation speed of the fan motor. Configure.

この制御盤やトランジスタインバータに制御信号を出力
することによって可変風量冷却塔3の通風風量を自動遠
隔制御できることになる。この制御信号(第1図中にお
いてbで示す4〜20+nAの制御信号)は本発明にお
いてはマイクロコンピュータ6から出力される。他方、
このマイクロコンピュータ6へは、前記の入口水温検出
端7.出口水温検出端8および外気湿球温度検出端9か
らの抵抗入力信号Cが導入される。
By outputting a control signal to this control panel or transistor inverter, the ventilation air volume of the variable air volume cooling tower 3 can be automatically and remotely controlled. This control signal (a control signal of 4 to 20+nA indicated by b in FIG. 1) is output from the microcomputer 6 in the present invention. On the other hand,
The microcomputer 6 is connected to the inlet water temperature detection terminal 7. A resistance input signal C from an outlet water temperature detection terminal 8 and an outside air wet bulb temperature detection terminal 9 is introduced.

第2〜5図に、この制御の一連の演算フローの例を示す
が、その制御手順の概要を説明すると。
FIGS. 2 to 5 show examples of a series of calculation flows for this control, and the outline of the control procedure will be explained below.

以下のとおりである。It is as follows.

■、設計外気湿球温度・・fl 設計入口水温・・tll 設計出口水温・・、髄 水空気比・・ (、L/G) から、近似式を用いてその状態に対応するエンタルピー
をめ、冷却の推進力(Ka−V/L)の理論値をめる。
■, Design outside air wet bulb temperature...fl Design inlet water temperature...tll Design outlet water temperature..., spinal water air ratio... (, L/G) From the equation, find the enthalpy corresponding to the state using an approximate formula, Calculate the theoretical value of the cooling driving force (Ka-V/L).

■、実験式(第2図のフロー参照)から設計条件におけ
る冷却の推進力をめ、理論値と計画値の修正係数(安全
率)をめる。
② Determine the cooling driving force under the design conditions from the experimental formula (see the flowchart in Figure 2), and calculate the correction coefficient (safety factor) between the theoretical value and the planned value.

■、可変風量冷却塔3の全台数をタイマTlで設定した
時間間隔で順次起動する。この場合2羽根角制御のさい
には羽根角度をO゛で、また可変電源周波数を採用した
さいには起動最低回転数で起動させることにより、起動
電流の低減を図るようにする。
(2) All the variable air volume cooling towers 3 are sequentially activated at time intervals set by the timer Tl. In this case, in the case of two-blade angle control, the blade angle is set to O, and in the case of adopting variable power supply frequency, the starting current is started by starting at the minimum starting rotation speed.

■、制御用マイクロコンピュータは^u to / M
anua lの切替スイッチを監視する。
■、The control microcomputer is ^u to / M
Monitor the annual changeover switch.

■I、Autoの場合(全自動運転) (a)、外気湿球温度と入口水温を各々10回サンプリ
ングし、各々の最高、最低値を除外し、残りの8個のデ
ータで平均外気湿球温度、平均入口水温とする。
■In the case of I, Auto (fully automatic operation) (a), Sample the outside air wet bulb temperature and the inlet water temperature 10 times each, exclude the highest and lowest values of each, and use the remaining 8 data to calculate the average outside air wet bulb temperature. Temperature, average inlet water temperature.

(b)、設計出口水温になるように0−100%冷却塔
(定風量冷却塔2)を台数制御した時の最適停止台数を
演算する。タイマT2の設定時間の間隔で0−100%
の冷却塔2の冷却塔ファン4を順次起動させ、起動電流
の低減を図る。
(b) Calculate the optimal number of 0-100% cooling towers (constant air flow cooling tower 2) to be stopped when the number is controlled so that the design outlet water temperature is reached. 0-100% at the time interval set by timer T2
The cooling tower fans 4 of the cooling towers 2 are sequentially started to reduce the starting current.

(C)、出口水温を10回サンプリングし、最高、最低
値を除外し、残りの8個のデータで平均出口水温とする
(C) Sample the outlet water temperature 10 times, exclude the highest and lowest values, and use the remaining 8 data as the average outlet water temperature.

(d)、平均出口水温と、目標値である設計出口水温と
の偏差から、PI動作でフィードバック制御して、目標
出口水温になるように可変風量冷却塔3のファン5の羽
根角または回転数を制御する。
(d) Based on the deviation between the average outlet water temperature and the target value, which is the design outlet water temperature, feedback control is performed using PI operation to adjust the blade angle or rotation speed of the fan 5 of the variable air volume cooling tower 3 so that the target outlet water temperature is achieved. control.

(e)、もし2羽根角または回転数が最大羽根角または
最高回転数の8割以上になる場合には2羽根角または回
転数を最小羽根角または最低回転数になるように指令す
ると同時に、定風量冷却塔2の運転台数を1台増加させ
て、前記(C1以降のフィードバンク制御を行う。
(e) If the two-blade angle or rotational speed is 80% or more of the maximum blade angle or maximum rotational speed, at the same time command the two-blade angle or rotational speed to be the minimum blade angle or the minimum rotational speed, The number of operating constant air volume cooling towers 2 is increased by one, and the feed bank control after C1 is performed.

(f)、もし1羽根角または回転指令が最小羽根角また
は最低回転数になったら1羽根角または回転数を最大羽
根角または最高回転数になるように指令すると同時に、
定風量冷却塔2の運転台数を1台減少させて、前記(C
1以降のフィードハック制御を行う。
(f) If one blade angle or rotation command becomes the minimum blade angle or minimum rotation speed, at the same time command the one blade angle or rotation speed to become the maximum blade angle or maximum rotation speed,
By reducing the number of operating constant air volume cooling towers 2 by one, the above (C
Performs feed hack control from 1 onwards.

(g)、指令の羽根角または回転数が、8割以下であれ
ば9羽根可変ピンチ機構またはトランジズタインバータ
に指令して、タイマT3の設定時間間隔で、前記(C)
以降のフィードバンク制御を行う。
(g) If the commanded blade angle or rotation speed is 80% or less, a command is sent to the 9-blade variable pinch mechanism or the transistor inverter, and the above (C) is performed at the time interval set by timer T3.
Performs subsequent feed bank control.

(h)、タイマT5で設定した時間が経ると、前記■に
戻る。
(h) After the time set by the timer T5 has passed, the process returns to step (2) above.

■U、 Manual (手動運転) ial、0−100%冷却塔2の冷却塔ファン4を手動
で順次起動してもらい、前記+01以降のフィードバン
ク制御を行う。
■U, Manual (manual operation) ial, 0-100% The cooling tower fans 4 of the cooling tower 2 are manually started sequentially, and the feed bank control from +01 onwards is performed.

以上のようにして1本拠明によると、出口水温が一定に
なるように、定風量冷却塔の冷却ファンの発停制御によ
る台数制御と可変風量冷却塔の風量制御が最も省エネル
ギー的に実施できることになる。以上の制御動作の特徴
的な事項を要約すると次のとおりである。
As described above, according to 1 Motobu, controlling the number of cooling fans by controlling the on/off of cooling fans in a constant air volume cooling tower and controlling the air volume in a variable air volume cooling tower can be implemented in the most energy-saving way so that the outlet water temperature remains constant. Become. The characteristics of the above control operation are summarized as follows.

(11,Auto、Manualの切替スイッチにより
全自動と手動の選択ができるようにし1手動ではo −
io。
(11, Auto and Manual selector switch allows you to select between fully automatic and manual.
io.

%冷却塔2の冷却ファン4の運転または停止を指令した
後、出口水温が一定になるように可変風量冷却塔3をマ
イクロコンピュータ6の演算によりフィードバック制御
する。そして、全自動では。
% After commanding the operation or stop of the cooling fan 4 of the cooling tower 2, the variable air volume cooling tower 3 is feedback-controlled by the calculation of the microcomputer 6 so that the outlet water temperature is constant. And fully automatic.

0−−100%冷却塔2の最適停止台数をマイクロコン
ピュータ6が演算して運転台数分を順次起動させ、出口
水温が一定になるように可変風量冷却塔3を制御する。
The microcomputer 6 calculates the optimum number of 0--100% cooling towers 2 to be stopped, sequentially starts the number of operating units, and controls the variable air volume cooling tower 3 so that the outlet water temperature is constant.

(2)、出口水温の制御は、PI動作により数値制御す
る。そのさい、(a)可変風量冷却塔のファンの最大羽
根角度または最高回転数の80%で定風量冷却塔2の運
転台数を1台増加し、(b)最小羽根角度または最低回
転数で定風量冷却塔2の運転台数を1台減少させる。こ
の時、(a)の場合は同時に最小羽根角度または最低回
転数を指令し、山)の場合は最大羽根角度または最高回
転数を指令して1台減少させ、出口水温が設計出口水温
より上昇するのを防止する。
(2) The outlet water temperature is controlled numerically by PI operation. At that time, (a) increase the number of constant air volume cooling towers 2 by one at 80% of the maximum blade angle or maximum rotation speed of the variable air volume cooling tower fan, and (b) increase the number of constant air flow cooling towers 2 by one at the minimum blade angle or minimum rotation speed. The number of operating air volume cooling towers 2 is reduced by one. At this time, in case (a), simultaneously command the minimum blade angle or minimum rotation speed, and in case of peak), command the maximum blade angle or maximum rotation speed to decrease by one unit, and the outlet water temperature will rise above the design outlet water temperature. prevent

(3)、可変風量制御を可変電源周波数による回転数制
御によって行う場合には、冷却塔本体の固有振動範囲で
ある15〜20hzを飛び越す指令を出してプロペラフ
ァンの回転数を制御するようにする。
(3) When variable air volume control is performed by controlling the rotation speed using a variable power supply frequency, the rotation speed of the propeller fan is controlled by issuing a command that jumps over the natural vibration range of 15 to 20 hz of the cooling tower body. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却塔省動力制御装置の機器配置系統
図、第2〜5図は本発明制御装置の一連の演算フロー図
である。 1・・冷却水を必要とする負荷、2・・定風量冷却塔、
3・・オン・オフ制御される定風量ファン、4・・可変
風量冷却塔、5・・可変風量制御されるファン、6・・
マイクロコンピュータ、7・・入口水温検出端、8・・
出口水温検出端、9・・外気湿球温度検出端。
FIG. 1 is an equipment layout system diagram of the cooling tower power saving control device of the present invention, and FIGS. 2 to 5 are a series of calculation flow diagrams of the control device of the present invention. 1. Load that requires cooling water, 2. Constant air volume cooling tower,
3. Constant air volume fan controlled on/off, 4. Variable air volume cooling tower, 5. Fan controlled with variable air volume, 6.
Microcomputer, 7... Inlet water temperature detection end, 8...
Outlet water temperature detection end, 9... Outside air wet bulb temperature detection end.

Claims (1)

【特許請求の範囲】 (l)、一つの負荷系統に対して所要の冷却水を供給す
るためめ冷却塔を、各々独立運転可能な複数の冷却塔群
に分割してなる冷却・塔設備において、この冷却塔群の
うち少なくとも一基以上を可変風量機構をもつ冷却塔に
構成し、冷却塔群への入口水温検出端、冷却塔群からの
出口水温検出端および外気湿球温度検出端からの積出信
号を入力信号として冷却塔群の台数制御と該可変風量冷
却塔の風量制御を行うためのマイクロコンピュータを設
置したことを特徴とする冷却塔の省動力運転制御装置。 (2)、可変風量機構は、冷却塔フ゛アンの翼ピンチ角
を変化させる機構である特許請求の範囲第1項記載の冷
却塔の省動力運転制御装置。 (3)、可変風量機構は、冷却塔ファンの電動モータの
回転数を変化させる機構である特許請求の範囲第1項記
載の冷却塔の省動力運転制御装置。
[Claims] (l) In cooling tower equipment in which a cooling tower is divided into a plurality of cooling tower groups each capable of independently operating in order to supply the required cooling water to one load system. , at least one of the cooling tower groups is configured as a cooling tower with a variable air volume mechanism, and from the inlet water temperature detection end to the cooling tower group, the outlet water temperature detection end from the cooling tower group, and the outside air wet bulb temperature detection end. A power-saving operation control device for a cooling tower, characterized in that a microcomputer is installed for controlling the number of cooling towers in a group and controlling the air volume of the variable air volume cooling tower using the unloading signal as an input signal. (2) The power-saving operation control device for a cooling tower according to claim 1, wherein the variable air volume mechanism is a mechanism that changes the blade pinch angle of the cooling tower fan. (3) The power-saving operation control device for a cooling tower according to claim 1, wherein the variable air volume mechanism is a mechanism that changes the rotation speed of the electric motor of the cooling tower fan.
JP15050883A 1983-08-18 1983-08-18 Energy-saving operation controlling device for cooling tower Pending JPS6042597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15050883A JPS6042597A (en) 1983-08-18 1983-08-18 Energy-saving operation controlling device for cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15050883A JPS6042597A (en) 1983-08-18 1983-08-18 Energy-saving operation controlling device for cooling tower

Publications (1)

Publication Number Publication Date
JPS6042597A true JPS6042597A (en) 1985-03-06

Family

ID=15498394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15050883A Pending JPS6042597A (en) 1983-08-18 1983-08-18 Energy-saving operation controlling device for cooling tower

Country Status (1)

Country Link
JP (1) JPS6042597A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226499A (en) * 1985-07-29 1987-02-04 Kawasaki Steel Corp Control of fan driving device for water cooling device
JP2007333361A (en) * 2006-06-19 2007-12-27 Toyo Netsu Kogyo Kk Energy saving operation method of cooling tower group, and cooling tower group used for same
EP2009384A3 (en) * 2007-06-29 2012-07-04 Hamilton Sundstrand Corporation Control scheme for an evaporator operating at conditions approaching thermodynamic limits
JP2013210178A (en) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd Device and method for control of cooling tower, and heat source system
EP2776771A4 (en) * 2011-10-21 2015-07-22 Prime Datum Inc Direct drive fan system with variable process control
JP2017150679A (en) * 2016-02-22 2017-08-31 株式会社荏原製作所 Heat exchanger
CN107490319A (en) * 2017-07-06 2017-12-19 扬州大学 Cooling tower half adjusts the annual determination method for becoming angle and optimizing operating scheme of blower fan
JP2020041767A (en) * 2018-09-12 2020-03-19 三菱重工サーマルシステムズ株式会社 Control device, heat source system, method for determining the number of start-up fans and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556599A (en) * 1978-10-23 1980-04-25 Sumitomo Chem Co Ltd Cooling tower controller
JPS5860199A (en) * 1981-10-01 1983-04-09 Takasago Thermal Eng Co Lts Controlling method of circulating water temperature in mechanical draft cooling tower

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556599A (en) * 1978-10-23 1980-04-25 Sumitomo Chem Co Ltd Cooling tower controller
JPS5860199A (en) * 1981-10-01 1983-04-09 Takasago Thermal Eng Co Lts Controlling method of circulating water temperature in mechanical draft cooling tower

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226499A (en) * 1985-07-29 1987-02-04 Kawasaki Steel Corp Control of fan driving device for water cooling device
JP2007333361A (en) * 2006-06-19 2007-12-27 Toyo Netsu Kogyo Kk Energy saving operation method of cooling tower group, and cooling tower group used for same
JP4505436B2 (en) * 2006-06-19 2010-07-21 東洋熱工業株式会社 Energy-saving operation method for cooling tower group and cooling tower group used therefor
EP2009384A3 (en) * 2007-06-29 2012-07-04 Hamilton Sundstrand Corporation Control scheme for an evaporator operating at conditions approaching thermodynamic limits
EP2776771A4 (en) * 2011-10-21 2015-07-22 Prime Datum Inc Direct drive fan system with variable process control
US11231729B2 (en) 2011-10-21 2022-01-25 Prime Datum, Inc. Direct-drive fan system with variable process control
JP2013210178A (en) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd Device and method for control of cooling tower, and heat source system
CN104781629A (en) * 2012-11-14 2015-07-15 三菱重工业株式会社 Cooling tower control device, cooling tower control method, and heat source system
CN104781629B (en) * 2012-11-14 2017-03-08 三菱重工业株式会社 Cooling tower control device, cooling tower control method and heat source system
US9957970B2 (en) 2012-11-14 2018-05-01 Mitsubishi Heavy Industries Thermal Systems, Ltd. Device and method of controlling cooling towers, and heat source system
JP2017150679A (en) * 2016-02-22 2017-08-31 株式会社荏原製作所 Heat exchanger
CN107490319A (en) * 2017-07-06 2017-12-19 扬州大学 Cooling tower half adjusts the annual determination method for becoming angle and optimizing operating scheme of blower fan
JP2020041767A (en) * 2018-09-12 2020-03-19 三菱重工サーマルシステムズ株式会社 Control device, heat source system, method for determining the number of start-up fans and program

Similar Documents

Publication Publication Date Title
US6467696B2 (en) Environmental control system
CA1133609A (en) Fan control system for cooling apparatus
EP2309196B1 (en) Ventilation device
JPH0361098B2 (en)
US9017156B2 (en) Air control module
KR890003795B1 (en) Variable air volume air conditioning system
JPS6012532B2 (en) Air conditioner control method
JPS6042597A (en) Energy-saving operation controlling device for cooling tower
US6508303B1 (en) Air supply control device
JP2003116219A (en) System and method for controlling quantity of working power, and computer-readable storage medium recording control program for quantity of working power
CN210089057U (en) Energy-saving type full fresh air conditioning unit control system
JP2971778B2 (en) Dehumidifier regeneration control environment device
JP2877674B2 (en) Air conditioner
JPS6345023B2 (en)
CN207350467U (en) Frequency conversion type thermal compensation can humidifying type terminal central air conditioning indoor unit
CN220648519U (en) Energy-saving fresh air system
JP2881113B2 (en) Dehumidifier on-off type environmental device
JP3118177B2 (en) Dehumidifier on-off type environmental device
JPS5918015A (en) Air conditioner for vehicle
JP2518299B2 (en) Cooling tower fan operation controller
CN218526655U (en) Precise air-conditioning energy-saving equipment for data center machine room
CN216159155U (en) Air conditioner
JPS60221647A (en) Controlling device of air conditioner
JPS6011050A (en) Speed control device for cooling fan of unit cooler
JPH0428949A (en) Operation control device