JPS6042594A - Heat exchanger with fins - Google Patents

Heat exchanger with fins

Info

Publication number
JPS6042594A
JPS6042594A JP14965383A JP14965383A JPS6042594A JP S6042594 A JPS6042594 A JP S6042594A JP 14965383 A JP14965383 A JP 14965383A JP 14965383 A JP14965383 A JP 14965383A JP S6042594 A JPS6042594 A JP S6042594A
Authority
JP
Japan
Prior art keywords
fin
fins
heat transfer
temperature
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14965383A
Other languages
Japanese (ja)
Inventor
Seiichi Konaka
小仲 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14965383A priority Critical patent/JPS6042594A/en
Publication of JPS6042594A publication Critical patent/JPS6042594A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a heat exchanger utilizing the expansion effect of heat transfer surfaces at its maximum, by fitting fins of different specifications to each part of a heat transfer pipe, making allowable surface temperature at the uppermost limit. CONSTITUTION:The highest surface temperature ''te'' in a fin 25 has its practical limit by the properties and concentration of a heating medium fluid and mixed substance used for a heat exchanger, and the optimum temperature can be calculated from the experiential data in the past. Fins 20, 21, and 22 are respectively fitted to the parts 17, 18, and 19 of a unit heat transfer pipe 1' which has a length L1. The fin 20 is made of thick plate in order to keep its surface temperature below the limit value, and the number of fins is small in order to make the sectional area of flow paths small and to hold down the cost for fin material in low price. In regard to the fins 21 and 22, thickness and the number of plates are determined by the temperature in the fluid at the inlet port which has been cooled down during transmission, and the fins must be designed so that the required amount of heat can be secured by the fins 20, 21, and 22 as a whole. The parts ''l17'' and ''m18'' of a heat transfer pipe 1' are made of bare pipe, while the fin 23 is fitted to the part ''n19'' so that its surface temperature is to be below the limit value, based on the temperature in the inlet air which has been cooled down while it was passing through the bare pipe parts ''l17'' and ''m18''.

Description

【発明の詳細な説明】 熱交換器の気体側伝熱面や、低流速の液体側伝熱面なと
、低い熱伝達率をもつ伝熱面では金属性のフィン(Oれ
)をつけて伝熱量を増す所謂フィン(ひれ)伺熱交換装
置とすることが一般である。
[Detailed description of the invention] Metallic fins (O-holes) are attached to heat transfer surfaces with low heat transfer coefficients, such as the gas side heat transfer surface of a heat exchanger and the liquid side heat transfer surface with a low flow rate. It is common to use a so-called fin heat exchange device that increases the amount of heat transfer.

フィン(=1冷却壁の場合、フィンの温度は、その根元
から先の方に、その距離に比例して、より高iJAとな
ることは当然であり、それに接触する流体の物性又は、
その混在物質の物性、a度等によって、裸伝熱壁面とフ
ィンイ4伝熱面及び。
In the case of a fin (=1 cooling wall), it is natural that the temperature of the fin becomes higher iJA in proportion to the distance from its root to the tip, and the physical properties of the fluid in contact with it or
Depending on the physical properties of the mixed materials, degrees, etc., there will be a bare heat transfer wall surface and a fin 4 heat transfer surface.

そのフィン表面の夫々温度差による微妙な汚れの付着程
度差が生じ、フィン先端の高温部が成る温度を越えた場
合、その部より発達したスケール及び、汚れにより、操
業に支障を来すに至る。
Subtle differences in the degree of dirt adhesion occur due to temperature differences on each fin surface, and if the temperature exceeds the temperature at the high temperature part of the fin tip, scale and dirt develop from that part, causing problems in operation. .

この発明は、上記の問題を解決し、しかも、フィン効果
を夫々その周囲雰囲気に合わせて最適に発揮せしめた無
駄のないコンパクト、フィノイ、j熱交換装置を提供す
るものである。即ち、装置内流路途中の伝熱壁又は、フ
ィンの表面と、それに接する熱媒流体又は5それに混在
する物質の物性又は、濃度に応じて夫々部分の熱交換壁
の(4加フインを相異せしめるか、又は、熱交換壁を裸
壁とフィン付壁の混成構成となし、熱交換装置内の各伝
熱壁及び、フィンの表面温度の過高に起因するスケール
及び、汚れを未然とししかも、許容表面温度を」二限と
した夫々部分に応じて相違したフィンを伺加し伝熱面拡
大効果を最大限に利用した熱交換装置を提atするもの
である。
The present invention solves the above problems and provides a lean, compact, finoy, and j heat exchanger that optimally exhibits the fin effect in accordance with its surrounding atmosphere. That is, depending on the physical properties or concentrations of the heat transfer wall or fin surface in the middle of the flow path in the device, the heating medium fluid in contact with it, or the substance mixed therein, Alternatively, the heat exchange wall can be made of a combination of bare walls and finned walls to prevent scale and dirt caused by excessive surface temperatures of the heat transfer walls and fins in the heat exchange device. Furthermore, the present invention proposes a heat exchange device that maximizes the effect of enlarging the heat transfer surface by adding different fins to each part with a two-limited allowable surface temperature.

具体例について説明する。A specific example will be explained.

圧縮機中間冷却器又は、後部冷却器の従来構成の1例を
第1図及び、第2図に示し、Tの圧縮空気をtb lま
で冷却する中間冷却器と仮定する。
An example of a conventional configuration of a compressor intercooler or aftercooler is shown in FIGS. 1 and 2, and is assumed to be an intercooler that cools compressed air of T to tbl.

Tの高温空気は9より入口室7内に入り管座14に気密
取付された多管lの管口3に流入する。
The high-temperature air T enters the inlet chamber 7 from 9 and flows into the pipe port 3 of the multi-pipe l airtightly attached to the pipe seat 14.

管1の内部には拡大伝熱面としてフィン2が取付けられ
ている。管外室5の冷却水により冷却され、管出口4よ
り出口室8内に集合され、10より温度1./になって
排出される。6は胴、・12 。
Fins 2 are attached to the inside of the tube 1 as an enlarged heat transfer surface. The water is cooled by the cooling water in the extra-tubular chamber 5, collected in the outlet chamber 8 from the tube outlet 4, and has a temperature of 1. / is discharged. 6 is the torso, ・12.

、13は夫々冷却水人、出口、11は流路仕切である。, 13 are cooling water pipes and outlets, and 11 is a flow path partition.

16は管板間隔長り、15は管1のフィン取付部長さL
lを示す。
16 is the length of the tube plate interval, and 15 is the length L of the fin attachment part of the tube 1.
Indicates l.

第6図はフィンの表面温度分布の説明図でありフィン2
5.管内表面26.フィン郷の高さW、フィ/の厚さを
2 Ybとし、その表面温度分布曲線を29で示す。
Figure 6 is an explanatory diagram of the surface temperature distribution of the fin, and is an illustration of the surface temperature distribution of the fin 2.
5. Inner pipe surface 26. The height W of the fin layer and the thickness of the fin layer are 2 Yb, and its surface temperature distribution curve is shown by 29.

フィン先端と根元の表面温度を夫々ta、 tl、 +
圧縮空気温度Tとの温度差を夫々θa、θ、とし、フィ
ン効率をグとした時、その″平均温度差はグθ、。
The surface temperatures at the tip and root of the fin are ta, tl, +, respectively.
When the temperature difference from the compressed air temperature T is θa and θ, respectively, and the fin efficiency is g, the average temperature difference is g θ.

その平均表面1度をtmで示した。フィン先端に於ける
表面温度1aは1次式の如(双曲線関数で表わされ、フ
ィン要素如何によっては、フィン根元温度t、より可成
り高いものとなる。
The average surface degree of 1 degree is indicated by tm. The surface temperature 1a at the fin tip is expressed as a linear equation (a hyperbolic function), and depending on the fin element, it can be considerably higher than the fin root temperature t.

dはフィンの熱伝達率 λはフィンの熱伝導率 圧縮空気中に混在した微量、微少の油分や微じんは当然
その部に付着し、いわゆる汚れ係数として熱伝達効果を
疎害し、汚れ薄層の熱伝導は。
d is the heat transfer coefficient of the fins λ is the thermal conductivity of the fins Small amounts of oil and fine dust mixed in the compressed air naturally adhere to the parts, and as a so-called dirt coefficient, they impair the heat transfer effect and create a thin layer of dirt. The heat conduction is.

金属フィンより格段、に悪いので、その最表面は局部的
に前記峠より高温となり、その部の空気温度Tに近付き
、操業時間の長期化と共に、その最悪条件部分である流
入部付近のフィン先端を起点として炭化スケールを醸成
し、順次スケール量及び、付着範囲を拡大し、その熱交
換装置の機能低下トラブルの原因となるのは当然である
It is much worse than metal fins, so its outermost surface locally becomes hotter than the above-mentioned mountain pass, approaching the air temperature T in that area, and as the operation time becomes longer, the fin tip near the inflow part, which is the worst condition part. It is natural that carbonized scale is created starting from this, and the amount of scale and the area of adhesion are gradually expanded, which causes troubles such as functional deterioration of the heat exchange device.

上記したフィンの最高表面温度1eは、その熱媒流体及
び、混在物質の物性、a度により実用的限界があり、括
−的には決定し得ないが、従来の経験を基として、比較
値として算出することは容品である。
The maximum surface temperature 1e of the fin mentioned above has a practical limit depending on the physical properties of the heating medium fluid and mixed substances, and degrees a, and cannot be determined comprehensively, but based on conventional experience, a comparative value Calculating it as a container is an item.

この発明は、上記トラブルを解決すると共に。This invention solves the above-mentioned troubles.

その伝熱壁及び、フィンの夫々部分的雰囲気に応じて、
最適なフィン効果を発揮せしめる如くしたものである。
Depending on the partial atmosphere of the heat transfer wall and fin,
It is designed to exhibit the optimum fin effect.

この発明の原理説明図を第3図、第4図、第5図及び、
第6図に示す。
The principle explanatory diagrams of this invention are shown in Fig. 3, Fig. 4, Fig. 5, and
It is shown in FIG.

一上述した従来の熱交換器の伝熱管の代りに第3図、第
4図、又は第5図に示した構成のフイン付憧を嵌入換し
た場合を引例説明する。
First, a case where a finned pipe having the structure shown in FIG. 3, FIG. 4, or FIG. 5 is inserted in place of the heat transfer tube of the conventional heat exchanger described above will be explained with reference to the following.

単位伝熱管1′のフィン付部長L1を1例として3区割
し7?、m、nとし、夫々17,18.19と付番する
。17.18.19の部分のフィンを夫々20 、21
 。
As an example, the finned length L1 of the unit heat exchanger tube 1' is divided into three sections and 7? , m, and n, and are numbered 17, 18.19, respectively. 17. The fins in the 18. and 19 parts are 20 and 21, respectively.
.

22とし、フィン20は、板厚を厚(シ、フィン効率を
高くなし、その表面温度を、前述の限界値以下となるよ
うにする。
22, the fin 20 has a thick plate thickness, high fin efficiency, and a surface temperature below the above-mentioned limit value.

流路断面積の過少及び、フィン材料費過高を防ぐため枚
数を少くする。フィン21及び22は、夫々過渡的に冷
却された流入部流体温度をベースとして、フィン加と同
趣旨により板厚1枚数を算出し、フィン20,21.2
2全体として所要の熱交換量を確保する如くしたもので
ある。
Reduce the number of fins to prevent the cross-sectional area of the flow path from becoming too small and the cost of fin materials to rise too high. For the fins 21 and 22, the number of fins 20, 21.2 is calculated by calculating the number of fins 20, 21.
2. It is designed to ensure the required amount of heat exchange as a whole.

第5図は/ 17及びm 18部を裸管とし、その部を
流過した過渡的に冷却器の流入空気をベースとして、n
19部に対し、そのフィンnをその表面温度を前述限界
値以下として付設した例を示した。
Figure 5 shows / 17 and m 18 sections are bare pipes, and based on the transient inflow air of the cooler that has passed through those sections, n
An example is shown in which the fin n is attached to the 19th part with its surface temperature being below the above-mentioned limit value.

又、圧縮空気中に混在する水蒸気濃度及び1その露点温
度は、上述した上限の限界温度と共にフィンにとって見
過すことのできないものである。伝熱面表面の微少な結
露は、飛躍的に熱伝達を増大せしめ又、前述した伝熱壁
面の汚れにも一般に好影響を及ぼすものであるが、空気
中の亜硫酸濃・度等腐蝕性雰囲気の醸成の可能性もある
Further, the concentration of water vapor mixed in the compressed air and its dew point temperature, as well as the above-mentioned upper limit temperature, cannot be overlooked by the fins. A small amount of condensation on the surface of the heat transfer surface dramatically increases heat transfer, and generally has a positive effect on the dirt on the heat transfer wall surface mentioned above. There is also the possibility of fostering

濡れ膜厚の成長は逆に熱移動抵抗を増大する。Growth in wet film thickness conversely increases heat transfer resistance.

従って水滴、水膜の成長防止が必要となる。以上の如く
熱交換流路中の温度変化に起因する条件に従ってフィン
要素を相違せしめ、その拡大伝熱面効果を適正にする趣
旨である。即ち、フィンの形状1寸法、材質、最小フィ
ン間隙等フィン要素を合理的に選定する如くしたもので
ある。
Therefore, it is necessary to prevent the growth of water droplets and water films. As described above, the purpose is to make the fin elements different according to the conditions caused by the temperature change in the heat exchange channel, and to optimize the enlarged heat transfer surface effect. That is, the fin elements such as the shape and dimensions of the fin, the material, the minimum fin gap, etc. are selected rationally.

上述した例は管内フィンの場合を例示したが。The above-mentioned example illustrates the case of an inner tube fin.

この発明趣旨は、フィンの管内、外付膜に関係なく、フ
ィン付伝熱壁による熱交換装置全般を包含するものであ
る。
The gist of the invention encompasses all heat exchange devices using finned heat transfer walls, regardless of whether the fins are inside a tube or are attached to an external membrane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来使用されている圧縮機中間冷却器の断面
図、第2図は、その伝熱管断面図、第3図はこの発明の
単位伝熱管のフィン区割図。 第4図は第3図の区割部分に付したフィンの断面図5第
、5図は第4図と異なる構成としたフィン断面図、第6
図はフィンの表面温度分布説明図を夫々示す。 1・・・伝熱管 2・・・従来のフィン1′・・・この
発明の単位伝熱管のフィン区割図17 、18 、19
 ・・・夫々1区割範囲 J、m、n加、 21 、2
2・・・夫々1区割範囲 17.18.19にイ・jし
たフィン 羽・・・区割19に付したフィン 25・・・フィン断面 26・・・フィン根元壁n・・
・フィン高さ 田・・・フィン厚の1//2四・・・フ
ィン表面温度分布 特許出願人 小 仲 清 −
FIG. 1 is a sectional view of a conventionally used compressor intercooler, FIG. 2 is a sectional view of its heat exchanger tubes, and FIG. 3 is a fin division diagram of the unit heat exchanger tube of the present invention. Figure 4 is a cross-sectional view of the fin attached to the divided portion of Figure 3. Figure 5 is a cross-sectional view of the fin with a different configuration from Figure 4.
The figures each show an explanatory diagram of the surface temperature distribution of the fins. DESCRIPTION OF SYMBOLS 1... Heat exchanger tube 2... Conventional fin 1'... Fin division diagram of the unit heat exchanger tube of this invention 17, 18, 19
...1 division range each J, m, n addition, 21, 2
2... Fin blades attached to division 17, 18, and 19 respectively... Fin 25 attached to division 19... Fin cross section 26... Fin root wall n...
・Fin height: 1/2 of fin thickness: Fin surface temperature distribution patent applicant: Kiyoshi Konaka −

Claims (1)

【特許請求の範囲】[Claims] 装置内流路途中の伝熱壁又(′i、フィンの表面温度と
、それに接する熱媒流体又は、その混在物質の物性又は
、a度に応じて、夫々部分の熱交換壁の伺加フィンを相
違せしめるか、又は、熱交換壁を裸壁とフィン付壁の混
成構成となしたフィンイ4熱交換装置
Depending on the surface temperature of the heat transfer wall or fin in the middle of the flow path in the device, the physical properties of the heating medium fluid in contact with it, or its mixed substances, or the temperature of the heat exchange wall in each section, A fin-4 heat exchange device in which the heat exchange walls have a mixed structure of a bare wall and a wall with fins.
JP14965383A 1983-08-18 1983-08-18 Heat exchanger with fins Pending JPS6042594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14965383A JPS6042594A (en) 1983-08-18 1983-08-18 Heat exchanger with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14965383A JPS6042594A (en) 1983-08-18 1983-08-18 Heat exchanger with fins

Publications (1)

Publication Number Publication Date
JPS6042594A true JPS6042594A (en) 1985-03-06

Family

ID=15479921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14965383A Pending JPS6042594A (en) 1983-08-18 1983-08-18 Heat exchanger with fins

Country Status (1)

Country Link
JP (1) JPS6042594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268112A (en) * 1985-09-19 1987-03-28 Isuzu Motors Ltd Heat exchanger for thermal electricity generation
JP2002295992A (en) * 2001-03-28 2002-10-09 Tokyo Radiator Mfg Co Ltd Heat exchanger
DE102008061993A1 (en) 2007-12-13 2009-06-25 Denso Wave Inc. industrial robots
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268112A (en) * 1985-09-19 1987-03-28 Isuzu Motors Ltd Heat exchanger for thermal electricity generation
JP2002295992A (en) * 2001-03-28 2002-10-09 Tokyo Radiator Mfg Co Ltd Heat exchanger
DE102008061993A1 (en) 2007-12-13 2009-06-25 Denso Wave Inc. industrial robots
US7922439B2 (en) 2007-12-13 2011-04-12 Denso Wave Incorporated Industrial robot
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger

Similar Documents

Publication Publication Date Title
Kim et al. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers
Wang et al. Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins
US7882708B2 (en) Flat pipe-shaped heat exchanger
JPH0587752B2 (en)
EP0572510A1 (en) Optimized offset strip fin for use in compact heat exchangers.
JPH04200B2 (en)
SA94150259B1 (en) Slotted tubes for heat exchangers in air conditioning and refrigeration equipment and corresponding exchangers
CN110501377B (en) Checking method for heat exchange fin area in air heat exchanger
JPH09280755A (en) Tubular heat exchanger
EP0221049B1 (en) A heat exchanger
US20030168210A1 (en) Heat exchanger
JPS6042594A (en) Heat exchanger with fins
US3835923A (en) Heat exchanger for fluid media having unequal surface conductances
Kim et al. Evaluation of thermal contact conductance using a new experimental-numerical method in fin-tube heat exchangers
Wang et al. A study of non-redirection louvre fin-and-tube heat exchangers
Kim et al. Air-side performance of louver-finned flat aluminum heat exchangers at a low velocity region
EP0128188B1 (en) Ventilation plant
US20100294474A1 (en) Heat exchanger tube
US4722388A (en) Heat exchanger
Eckels et al. Heat transfer and pressure drop of typical air cooler finned tubes
Cox et al. Methods for evaluating the performances of compact heat transfer surfaces
Zhang et al. Finned tube heat exchanger fouling by particles
US4751964A (en) Heat exchanger, mainly for use with gas heated devices
JPS5916693Y2 (en) Heat exchanger
CN109635505A (en) A kind of serrated fin heat exchanger flowing heat transfer characteristic prediction method