JPS6042163B2 - Dry ice manufacturing method - Google Patents

Dry ice manufacturing method

Info

Publication number
JPS6042163B2
JPS6042163B2 JP53047320A JP4732078A JPS6042163B2 JP S6042163 B2 JPS6042163 B2 JP S6042163B2 JP 53047320 A JP53047320 A JP 53047320A JP 4732078 A JP4732078 A JP 4732078A JP S6042163 B2 JPS6042163 B2 JP S6042163B2
Authority
JP
Japan
Prior art keywords
dry ice
low
gas
carbon dioxide
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53047320A
Other languages
Japanese (ja)
Other versions
JPS54138892A (en
Inventor
善代 尾野
竜三 足立
好晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP53047320A priority Critical patent/JPS6042163B2/en
Publication of JPS54138892A publication Critical patent/JPS54138892A/en
Publication of JPS6042163B2 publication Critical patent/JPS6042163B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はドライアイスの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing dry ice.

従来、ドライアイスは炭酸ガスの圧縮及び冷却により
得られる液化炭酸ガスを加圧成型機の中へ減圧噴出させ
ることによつて微粒状に固化せしめ た後、これを加圧
成型することによつて製造されていた。この従来法によ
りドライアイスを得るには、炭酸ガスを液化する必要が
あるため、炭酸ガスを3重点圧力5.28に91dab
s以上に圧縮するとともに、圧縮熱を除去するために冷
却する必要があり、通常は炭酸ガスを50〜70に91
daYf■まで圧縮した後冷却する。このためドライア
イス製造に要する理論的エネルギーは製品ドライアイス
当たり、圧縮エネルギー200Kcallk9、冷却エ
ネルギー380Kca11k9程度である(炭酸ガスモ
リエル線図より)。 然しながら、常圧以上3重点圧力
未満の圧力でドライアイスが昇華する温度より低い温度
の沸点を有する低温液化ガスすなわち、大気圧下におけ
る沸点が−196℃の液体窒素、−183℃の液体酸素
又はこれらの混合物又は−161℃の液化天然ガスによ
つて、炭酸ガスを冷却し、液化炭酸ガスを経ないで気体
から固体にするとドライアイス製造に要するエネルギー
は少なくなる。
Conventionally, dry ice is produced by compressing and cooling carbon dioxide gas, ejecting liquefied carbon dioxide gas into a pressure molding machine under reduced pressure, solidifying it into fine particles, and then molding it under pressure. It was manufactured. To obtain dry ice using this conventional method, it is necessary to liquefy carbon dioxide gas, so carbon dioxide gas is heated to a triple point pressure of 5.28 at 91dab.
It is necessary to compress the carbon dioxide gas to a temperature of 50 to 70 s and to cool it to remove the heat of compression.
After compressing to daYf■, it is cooled. Therefore, the theoretical energy required for producing dry ice is about 200 Kcalk9 for compression energy and 380 Kcalk9 for cooling energy per dry ice product (according to the carbon dioxide Mollier diagram). However, low-temperature liquefied gases having a boiling point lower than the temperature at which dry ice sublimes at a pressure above normal pressure and below the triple point pressure, i.e., liquid nitrogen with a boiling point of -196°C under atmospheric pressure, liquid oxygen with a boiling point of -183°C, or If carbon dioxide gas is cooled with a mixture of these or liquefied natural gas at -161°C and converted from gas to solid without passing through liquefied carbon dioxide gas, the energy required to produce dry ice will be reduced.

また冷却源にな“る低温液化ガスが有する冷熱は、エネ
ルギー有効利用の面から、また極低温のエネルギーであ
るため、価値が非常に高い。また冷熱は、液化天然ガス
とともに大量に輸入されているが、その利用は現在のと
ころ、空気分離、食品冷凍など一部の利用に限られてお
り、大部分が海水と熱交換されて捨て去られている。そ
こで本発明は製造に要するエネルギーが少なくかつ簡単
な熱交換器で液化天然ガスの冷熱を利用したり、また液
化天然ガスの冷熱を利用して有効に製造される液体窒素
、液体酸素又はこれらの混合物の冷熱を有効に利用し得
るドライアイスの製造方法を提供するにある。即ち、本
発明は、ドライアイス製造において、炭酸ガスを常圧以
上3重点圧力未満の圧力で、液体窒素、液体酸素又はこ
れらの混合物又は液化天然ガスの低温液化ガス中に吹き
こむことにより、これらの低温液化ガスと炭酸ガスを直
接接触させ、炭酸ガスを冷却、固化し、次いで低温液化
ガスを気化させて分離することを特徴とし、さらに第2
発明においては、この分離に当たつて、低温液化ガスを
含むドライアイスに炭酸ガスを通気することによりドラ
イアイスに含まれる低温液化ガスを気化させ、その冷熱
によりさらにドライアイスを生成させることを特徴とす
る。本発明によれば常圧の場合はドライアイス製造に要
する理論的な必要エネルギーは冷却のためのエネルギー
だけで良く、製品ドライアイス当り160Kca1Ik
9で従来法に比べると大幅に減少できる。また本発明は
炭酸ガスを低温液化ガス中に3重点圧力未満の圧力て吹
き込むので炭酸ガスを高圧に圧縮する必要がなく、装置
が高圧にならないため危険性が低く高圧用の圧縮機を必
要とせす、装置全体が低圧で運転できるのでコンパクト
にすることができる。また炭酸ガスと低温液化ガスをの
接触は低温液化ガス中に炭酸ガスを吹きこむこ.とによ
つているため、熱交換器を使用する場合に比べて熱交換
速度が速い等の利点を有する。また本発明は液化天然ガ
スの冷熱を利用したり、液化天然ガスの冷熱を利用して
有利に製造される液体窒素、液体酸素の冷熱を有効に利
用することが可!能である。この場合低温液化ガス中に
炭酸ガスを吹き込むことによつて生成する低温液化ガス
のガス化物、すなわち窒素、酸素、又はこれらの混合物
又は天然ガス中の炭酸ガス含有量は、これらの液化ガス
が炭酸ガスと不溶であり、また分子間化っ合物などのよ
うなドライアイス以外の物質を生成しないという特徴が
あるので、液化ガスとドライアイスの単独の蒸気圧比に
応じた混合割合となる。実測によれば、蒸気圧からの計
算値に近い6ppmあるいはそれ以下であつて少量であ
るため、これらのガス化物はそれぞれの用途に支障なく
使用できる。本発明の方法によつて得られた微粒状のド
ライアイスは、従来法による微粒状のものと同等で加圧
成型が可能である。
In addition, the cold energy contained in low-temperature liquefied gas, which serves as a cooling source, is extremely valuable from the standpoint of efficient energy use and because it is extremely low-temperature energy.Furthermore, cold energy is imported in large quantities along with liquefied natural gas. However, its use is currently limited to some uses such as air separation and food freezing, and most of it is discarded after exchanging heat with seawater.The present invention therefore reduces the energy required for production. It is possible to utilize the cold energy of liquefied natural gas with a small and simple heat exchanger, or to effectively utilize the cold energy of liquid nitrogen, liquid oxygen, or a mixture thereof that is effectively produced using the cold energy of liquefied natural gas. The purpose of the present invention is to provide a method for producing dry ice.That is, in producing dry ice, carbon dioxide is mixed with liquid nitrogen, liquid oxygen, a mixture thereof, or liquefied natural gas at a pressure of normal pressure or higher and lower than the triple point pressure. The method is characterized by directly contacting the low-temperature liquefied gas and carbon dioxide gas by blowing into the low-temperature liquefied gas, cooling and solidifying the carbon dioxide gas, and then vaporizing and separating the low-temperature liquefied gas.
The invention is characterized in that in this separation, the low-temperature liquefied gas contained in the dry ice is vaporized by passing carbon dioxide gas through the dry ice containing the low-temperature liquefied gas, and the cold heat is used to further generate dry ice. shall be. According to the present invention, in the case of normal pressure, the theoretically necessary energy required for producing dry ice is only the energy for cooling, which is 160Kcal/Ik per dry ice product.
9, which can be significantly reduced compared to the conventional method. In addition, since the present invention blows carbon dioxide gas into low-temperature liquefied gas at a pressure lower than the triple point pressure, there is no need to compress carbon dioxide gas to high pressure, and the equipment does not become under high pressure, so the danger is low and a high-pressure compressor is not required. Since the entire device can be operated at low pressure, it can be made compact. Also, to bring carbon dioxide gas into contact with low-temperature liquefied gas, carbon dioxide gas is blown into the low-temperature liquefied gas. Therefore, it has advantages such as a faster heat exchange rate than when using a heat exchanger. Furthermore, the present invention makes it possible to utilize the cold energy of liquefied natural gas, or to effectively utilize the cold energy of liquid nitrogen and liquid oxygen, which are advantageously produced using the cold energy of liquefied natural gas! It is Noh. In this case, the carbon dioxide content in the gasified product of the low-temperature liquefied gas, i.e., nitrogen, oxygen, or a mixture thereof, or natural gas, which is produced by blowing carbon dioxide into the low-temperature liquefied gas, is Since it is insoluble in gas and does not produce substances other than dry ice, such as intermolecular compounds, the mixing ratio depends on the individual vapor pressure ratio of liquefied gas and dry ice. According to actual measurements, the amount is 6 ppm or less, which is close to the value calculated from the vapor pressure, and is a small amount, so these gasified products can be used for various purposes without any problems. The fine-grained dry ice obtained by the method of the present invention is equivalent to the fine-grained dry ice obtained by the conventional method, and can be press-molded.

また得られたドライアイスを3重点圧力以上の圧力下で
加温融解させれば、従来法に比べ少ないエネルギーで液
化炭酸を作ることが可能である。) さらに第2発明の
方法に於いては上述のほか次のような効果がある。
Furthermore, by heating and melting the obtained dry ice under a pressure equal to or higher than the triple point pressure, it is possible to produce liquefied carbonic acid with less energy than in conventional methods. ) Furthermore, the method of the second invention has the following effects in addition to the above.

即ち低温液化ガス中に炭酸ガスを吹きこむことにより得
られるドライアイスは、低温液化ガス中に微粒状の固体
として散在するため、低温液化ガスを分離することによ
つてド・ライアイスを得るのであるが、低温液化ガスと
ドライアイスの分離は、濾過、遠心分離等の通常の固液
分離法が適用できる。このように分離されたドライアイ
スは通常多くの低温液化ガスを含んでおり、これ以後の
分離は低温液化ガスを気化させるのが分離の点では最も
良い。しかし、ただ気化させるだけでは、省エネルギー
的見地からも適当でない。そこで第2発明に於いては、
濾過、遠心分離等により分離された低温液化ガスを含む
ドライアイスに、炭酸ガスを通気することにより低温液
化ガスを気化させて分離するとともに、炭酸ガスの一部
または全部をドライアイスとして回収できると共に通気
用の炭酸ガスを予冷として吹き込み用に使用することが
てき、ドライアイス中に含まれる低温液化ガスの冷熱エ
ネルギーおよび低温液化ガスと同じ温度のドライアイス
の昇華温度までの顕熱の有効利用を可能にした。
In other words, dry ice obtained by blowing carbon dioxide gas into low-temperature liquefied gas is scattered as fine solid particles in the low-temperature liquefied gas, so dry ice is obtained by separating the low-temperature liquefied gas. However, ordinary solid-liquid separation methods such as filtration and centrifugation can be applied to separate the low-temperature liquefied gas and dry ice. The dry ice separated in this manner usually contains a large amount of low-temperature liquefied gas, and from the viewpoint of subsequent separation, it is best to vaporize the low-temperature liquefied gas. However, mere vaporization is not appropriate from the standpoint of energy conservation. Therefore, in the second invention,
By passing carbon dioxide gas through dry ice containing low-temperature liquefied gas separated by filtration, centrifugation, etc., the low-temperature liquefied gas can be vaporized and separated, and part or all of the carbon dioxide gas can be recovered as dry ice. Carbon dioxide gas for ventilation can be used as pre-cooling for blowing, making effective use of the cold energy of the low-temperature liquefied gas contained in the dry ice and the sensible heat up to the sublimation temperature of the dry ice, which has the same temperature as the low-temperature liquefied gas. made possible.

また低温液化ガスを含むドライアイスに炭酸ガスを通気
することで低温液化ガスの分離が間接的熱交換に比べ容
易に、しかも短時間で行うことができる。以下本発明の
実施例を第1図によつて詳細に説明する。
Furthermore, by passing carbon dioxide gas through dry ice containing low-temperature liquefied gas, the low-temperature liquefied gas can be separated more easily and in a shorter time than indirect heat exchange. Embodiments of the present invention will be described in detail below with reference to FIG.

原料炭酸ガスは管1より、予冷用熱交換器2を通り炭酸
ガスを3〜6ppm程度含みドライアイス製造槽3から
送出管4に送出されてくる液化天然ガス、液体窒素、又
は液体酸素の低温液化ガスのガス化物と熱交換し予冷さ
れる。予冷された炭酸ガスは分離室5に送入され、こ)
でドライアイス中に含まれる低温液化ガスと熱交換し、
低温液化ガスを気化させるとともに、送入された炭酸ガ
スの一部は冷却されてドライアイスとなり、残余の炭酸
ガスは管11からドライアイス製造槽3の低温液化ガス
中に送入される。一方低温液化ガスが管11から送入さ
れ、ドライアイス製造槽3の低!温液化ガスの液量が一
定になるよう調整される。低温液化ガス中に送入された
炭酸ガスは冷却され粉末状のドライアイスになり、低温
液化ガスは白濁化する。白濁化した粉末状のドライアイ
スを含む低温液化ガスはバルブ6を開いて分離室5に送
1られ、金網コンベア12によりある程度濾過分離した
後、前記のように管1から原料炭酸ガスが送入され低温
液化ガスとドライアイスの完全な分離が行われる。濾過
により分離された低温液化ガスは低温液化ガス槽7にた
まり、ポンプ8によりドライアイス製造槽3に戻される
。一方、低温液化ガスと分離室5で完全に分離されたド
ライアイスは、ドライアイス貯蔵室9に送られ、ロータ
リーバルブ10により順次ドライアイスが取り出される
。次に上記実施例に基づく更に具体的な実施例を示す。
The raw material carbon dioxide passes from the pipe 1 through the pre-cooling heat exchanger 2, contains about 3 to 6 ppm of carbon dioxide, and is sent from the dry ice production tank 3 to the delivery pipe 4, which is a low-temperature liquid natural gas, liquid nitrogen, or liquid oxygen. The liquefied gas is precooled by heat exchange with the gasified product. The pre-cooled carbon dioxide gas is sent to the separation chamber 5, and
exchanges heat with the low-temperature liquefied gas contained in the dry ice,
While the low-temperature liquefied gas is vaporized, a portion of the introduced carbon dioxide gas is cooled and becomes dry ice, and the remaining carbon dioxide gas is sent from the pipe 11 into the low-temperature liquefied gas in the dry ice production tank 3. On the other hand, low-temperature liquefied gas is sent from the pipe 11 to the dry ice manufacturing tank 3. The amount of hot liquefied gas is adjusted to be constant. The carbon dioxide gas introduced into the low-temperature liquefied gas is cooled and becomes powdered dry ice, and the low-temperature liquefied gas becomes cloudy. The low-temperature liquefied gas containing cloudy powdered dry ice is sent to the separation chamber 5 by opening the valve 6, and after being filtered and separated to some extent by the wire mesh conveyor 12, the raw material carbon dioxide is sent from the pipe 1 as described above. complete separation of low-temperature liquefied gas and dry ice. The low-temperature liquefied gas separated by filtration is collected in the low-temperature liquefied gas tank 7 and returned to the dry ice production tank 3 by the pump 8. On the other hand, the dry ice completely separated from the low-temperature liquefied gas in the separation chamber 5 is sent to the dry ice storage chamber 9, and the dry ice is sequentially taken out by the rotary valve 10. Next, a more specific example based on the above example will be shown.

実施例1 ドライアイス製造槽3で大気圧下の液体窒素10′中に
600fの炭酸ガスを50fImjn1圧力0.2k9
1dて送入したところ、液体窒素は微粒状のドライアイ
スにより白濁化した。
Example 1 In a dry ice production tank 3, 600f of carbon dioxide gas was added to liquid nitrogen 10' under atmospheric pressure at a pressure of 50fImjn1 and a pressure of 0.2k9.
When the liquid nitrogen was fed for 1 day, the liquid nitrogen became cloudy due to fine particles of dry ice.

この白濁化した微粒状のドライアイスを含む液体窒素を
200メッシュの金網コンベア12により濾過及び液体
窒素の気化によつて固液分離を行つたところ、950y
(収率81%)の微粒状ドライアイスが得られた。この
微粒状ドライアイスを加圧成型したところ、比重が市販
のドライアイスと同じ1.5のものが得られた。一方こ
のとき使用した液体窒素、すなわち気化した液体窒素量
は4.7k9であり、ドライアイス単位置当りの使用量
は液体窒素4.9k91k9(ドライアイス)、エネル
ギーに換算する375Kca11kg(ドライアイス)
であつた。理論的な必要エネルギー160Kca11k
9(ドライアイス)に比べて134%多くなり、従来法
による理論的な冷却のための必要エネルギー380Kc
a11k9(ドライアイス)とほS゛同じになつたが、
この原因は保冷が充分でないためのヒートロスによるも
のと思われる。しかし従来法にはこのエネルギーの他、
ガスの圧縮エネルギー200Kca11kg(ドライア
イス)が必要で、この分の削減ができた。実施例2 ドライアイス製造槽3で大気圧下の液体窒素10e中に
600eの炭酸ガスを50′Iminl圧力0.2kg
1dで投入したところ、液体窒素は微粒状のドライアイ
スにより白濁化した。
When this cloudy liquid nitrogen containing fine particles of dry ice was filtered through a 200-mesh wire mesh conveyor 12 and solid-liquid separation was performed by vaporizing the liquid nitrogen, the result was 950y.
(yield: 81%) of fine granular dry ice was obtained. When this fine-grained dry ice was pressure-molded, ice with a specific gravity of 1.5, which is the same as commercially available dry ice, was obtained. On the other hand, the amount of liquid nitrogen used at this time, that is, the amount of vaporized liquid nitrogen, was 4.7k9, and the amount of liquid nitrogen used per single dry ice position was 4.9k91k9 (dry ice), which was converted into energy 375Kca11kg (dry ice)
It was hot. Theoretical required energy 160Kca11k
134% more than 9 (dry ice), and the theoretical energy required for cooling using the conventional method is 380 Kc.
It was almost the same as a11k9 (dry ice), but
This seems to be due to heat loss due to insufficient cold storage. However, in addition to this energy, the conventional method uses
Gas compression energy of 200 Kca and 11 kg (dry ice) was required, which was reduced by this amount. Example 2 In a dry ice manufacturing tank 3, 600e of carbon dioxide gas was added to 10e of liquid nitrogen under atmospheric pressure at a pressure of 50'Iminl and 0.2kg.
When the liquid nitrogen was added at 1 d, the liquid nitrogen became cloudy due to fine particles of dry ice.

この白濁化した微粒状のドライアイスを含む液体窒素を
200メッシュの金網コンベア12により濾過して得た
液体窒素を含むドライアイス1950yに、金網コンベ
ア12の下方から炭酸ガス600eを50eIminで
送入した。この結果、ドライアイス中に含まれる液体窒
素1000yを分離するとともに、液体窒素と炭酸ガス
の熱交換により、液体窒素1000y分の冷熱の20%
がドライアイスとして回収できた。金網コンベア12に
よる濾過後の乾燥時間は12分てあつた。回収冷熱の割
合が少ないのは保冷が充分でないためのヒートロスによ
るものと思われる。また第1図のような工程のほかに第
2図にようにドライアイス製造槽と低温液化ガスとドラ
イアイスの分離室を同一にすることも可能てある。
Carbon dioxide gas 600e was fed from below the wire mesh conveyor 12 at 50 eImin into the dry ice 1950y containing liquid nitrogen obtained by filtering this cloudy liquid nitrogen containing fine particles of dry ice through a 200 mesh wire mesh conveyor 12. . As a result, 1,000 y of liquid nitrogen contained in the dry ice is separated, and by heat exchange between liquid nitrogen and carbon dioxide, 20% of the cold heat for 1,000 y of liquid nitrogen is removed.
was recovered as dry ice. The drying time after filtration using the wire mesh conveyor 12 was 12 minutes. The low proportion of recovered cold energy is thought to be due to heat loss due to insufficient cold storage. In addition to the process shown in FIG. 1, it is also possible to make the dry ice production tank and the separation chamber for low-temperature liquefied gas and dry ice the same as shown in FIG. 2.

第2図において23,24はドライアイス製造槽である
が、一方のドライアイス製造槽23には低温液化ガスが
他方のドライアイス製造槽24には低温液化ガスを含ん
だドライアイスが後述の工程で入つているとする。熱交
換器22により予冷された炭酸ガスは管21をへて、ド
ライアイス製造槽24中の低温液化ガスを含んだドライ
アイス中に送入される。このときバルブ27,28,3
4はa開で、バルブ26,29,30,31,32,3
3,35は閉である。ドライアイス製造槽24に送入さ
れた炭酸ガスはドライアイス中に含まれる低温液化ガス
と熱交換器し、低温液化ガスは気化し、炭酸ガスの一部
はドライアイスとなり、残り7は予冷されドライアイス
製造槽23中の低温液化ガス中に送入される。
In FIG. 2, reference numerals 23 and 24 are dry ice production tanks. One dry ice production tank 23 is filled with low-temperature liquefied gas, and the other dry ice production tank 24 is filled with dry ice containing low-temperature liquefied gas, which will be used in the process described later. Suppose that it is contained in The carbon dioxide gas precooled by the heat exchanger 22 passes through the pipe 21 and is fed into dry ice containing low-temperature liquefied gas in the dry ice production tank 24. At this time, valves 27, 28, 3
4 is a open, valves 26, 29, 30, 31, 32, 3
3 and 35 are closed. The carbon dioxide gas sent to the dry ice production tank 24 undergoes a heat exchange with the low temperature liquefied gas contained in the dry ice, the low temperature liquefied gas is vaporized, a part of the carbon dioxide gas becomes dry ice, and the remaining 7 is precooled. It is sent into the low temperature liquefied gas in the dry ice production tank 23.

ここで炭酸ガスはドライアイスとなり、ドライアイス製
造槽23の低温液化ガス中のドライアイスは徐々に増加
し、一方ドライアイス製造槽24のドライアイス中の低
温液化つガスは徐々に減少し、やがてドライアイスのみ
となってバルブ32を開け取り出す。次にバルブ30を
開け、ドライアイス製造槽24に低温液化ガスを送入し
、バルブ26,29,35を開け、バルブ27,28,
30,31,32,33,34を閉にし、炭酸ガスの流
れを前と逆にする。すなわち、炭酸ガスはドライアイス
製造槽23に送られ、ドライアイスとドライアイスに含
まれる低温液化ガスとの分離に行われた後、ドライアイ
ス製造槽24中の低温液化ガス中に送入される。以上の
ようにドライアイス製造槽23,24で交互にドライア
イスの製造と分離を行う。また本例の液体窒素は第3図
に示したような液化天然ガスの冷熱を利用した空気分離
で有利に製造されるものを使用することにより、さらに
経済的なメリットが追加される。
Here, the carbon dioxide becomes dry ice, and the dry ice in the low-temperature liquefied gas in the dry ice production tank 23 gradually increases, while the low-temperature liquefied gas in the dry ice in the dry ice production tank 24 gradually decreases, and eventually When only dry ice remains, open the valve 32 and take it out. Next, open the valve 30, feed the low temperature liquefied gas into the dry ice production tank 24, open the valves 26, 29, 35, and open the valves 27, 28,
30, 31, 32, 33, and 34, and reverse the flow of carbon dioxide gas. That is, the carbon dioxide gas is sent to the dry ice production tank 23, where it is separated from the dry ice and the low temperature liquefied gas contained in the dry ice, and then sent into the low temperature liquefied gas in the dry ice production tank 24. . As described above, dry ice production and separation are performed alternately in the dry ice production tanks 23 and 24. Moreover, by using the liquid nitrogen of this example that is advantageously produced by air separation using the cold energy of liquefied natural gas as shown in FIG. 3, further economical benefits are added.

なお第3図の液化天然ガスの冷熱を利用した空気分離装
置jこおいては原料空気50は空気圧縮機41により圧
縮され、空気熱交換器42により予冷され、高圧蒸留塔
43に送られる。こ)で窒素は塔頂に酸素は塔底に移動
し、塔頂から液体窒素51が取り出される。一方高圧蒸
留塔43の塔底から出る酸素リッチ液は低圧蒸留塔44
に供給され、その塔底から液体酸素52が取り出される
。低圧蒸留塔44の塔底からは酸素リッチ液に含まれて
いた窒素リツチガ2ス49が排出されて空気熱交換器4
2に導かれ、原料空気の予冷に使われる。一方、高圧蒸
留塔の冷却に使われる循環窒素48は循環窒素圧縮機4
6で圧縮され、液化天然ガス47とLNG熱交換器45
において熱交換により液化して高圧蒸留塔43に至り、
こ)で気化して空気熱交換器42を経て前記循環窒素圧
縮機46に至り、一方熱交換器45で液化天然ガス47
は気化して天然ガスとなる。
In the air separation device j shown in FIG. 3 that utilizes the cold energy of liquefied natural gas, raw air 50 is compressed by an air compressor 41, precooled by an air heat exchanger 42, and sent to a high-pressure distillation column 43. In this step, nitrogen moves to the top of the column and oxygen moves to the bottom of the column, and liquid nitrogen 51 is taken out from the top of the column. On the other hand, the oxygen-rich liquid coming out from the bottom of the high pressure distillation column 43 is transferred to the low pressure distillation column 43.
liquid oxygen 52 is taken out from the bottom of the column. Nitrogen-rich gas 49 contained in the oxygen-rich liquid is discharged from the bottom of the low-pressure distillation column 44 and transferred to the air heat exchanger 4.
2 and used to pre-cool the raw air. On the other hand, the circulating nitrogen 48 used for cooling the high-pressure distillation column is supplied to the circulating nitrogen compressor 4.
6, liquefied natural gas 47 and LNG heat exchanger 45
It is liquefied by heat exchange and reaches the high pressure distillation column 43,
The gas is vaporized in the air heat exchanger 42 and reaches the circulating nitrogen compressor 46, while the heat exchanger 45 vaporizes the liquefied natural gas 47.
vaporizes and becomes natural gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた装置の略図、第2図は
別例装置の略図、第3図は液化天然ガスの冷熱を利用し
た空気分離装置の略図である。 1・・・・・・管、2・・・・・・予冷用熱交換器、3
・・・・・・ドライアイス製造槽、4・・・・・・送出
管、5・・・・・分離室、6・・・・・・バルブ、7・
・・・・・低温液化ガス槽、8・・・・・・ポンプ、9
・・・・・・ドライアイス貯蔵室、10・・・・・・ロ
ータリーバルブ、11・・・・・・管、12・・・・・
・金網コンベア、13,21・・・・・管、22・・・
・・・熱交換器、23,24・・・・・・ドライアイス
製造槽、25・・・・・・管、26,27,28,29
,30,31,32,33934200″バルブ。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention, FIG. 2 is a schematic diagram of another example of the apparatus, and FIG. 3 is a schematic diagram of an air separation apparatus that utilizes the cold energy of liquefied natural gas. 1...Pipe, 2...Precooling heat exchanger, 3
...Dry ice production tank, 4...Delivery pipe, 5...Separation chamber, 6...Valve, 7.
...Low temperature liquefied gas tank, 8...Pump, 9
...Dry ice storage chamber, 10...Rotary valve, 11...Pipe, 12...
・Wire mesh conveyor, 13, 21... pipe, 22...
...Heat exchanger, 23, 24...Dry ice production tank, 25...Pipe, 26, 27, 28, 29
,30,31,32,33934200'' valve.

Claims (1)

【特許請求の範囲】 1 炭酸ガスを常圧以上3重点圧力未満の圧力で、液体
窒素、液体酸素又はこれらの混合物又は液化天然ガスの
低温液化ガス中に吹きこむことにより、これらの低温液
化ガスと炭酸ガスを直接接触させ、冷却固化し、次で余
剰の低温液化ガスを気化させて分離することを特徴とす
るドライアイスの製造方法。 2 炭酸ガスを常圧以上3重点圧力未満の圧力で、液体
窒素、液体酸素又はこれらの混合物又は液化天然ガスの
低温液化ガス中に吹き込むことにより、これらの低温液
化ガスと炭酸ガスを直接接触させ、冷却固化し、次で低
温液化ガスをドライアイスから気化分離するに当り、低
温液化ガスを含むドライアイスに炭酸ガスを通気するこ
とにより、ドライアイス中に含まれる低温液化ガスを気
化させると共に、低温液化ガスの保有する冷熱によりド
ライアイスを生成せしめることを特徴とするドライアイ
スの製造方法。
[Claims] 1. Low-temperature liquefied gas such as liquid nitrogen, liquid oxygen, a mixture thereof, or liquefied natural gas by blowing carbon dioxide gas at a pressure of normal pressure or higher and lower than the triple point pressure. A method for producing dry ice, which is characterized by directly contacting carbon dioxide with carbon dioxide, cooling and solidifying it, and then vaporizing and separating surplus low-temperature liquefied gas. 2. By blowing carbon dioxide gas into low-temperature liquefied gas such as liquid nitrogen, liquid oxygen, a mixture thereof, or liquefied natural gas at a pressure of normal pressure or higher and lower than the triple point pressure, these low-temperature liquefied gases and carbon dioxide gas are brought into direct contact. , to cool and solidify, and then to vaporize and separate the low-temperature liquefied gas from the dry ice, by aerating carbon dioxide gas through the dry ice containing the low-temperature liquefied gas, the low-temperature liquefied gas contained in the dry ice is vaporized, A method for producing dry ice, characterized by producing dry ice using cold heat possessed by low-temperature liquefied gas.
JP53047320A 1978-04-20 1978-04-20 Dry ice manufacturing method Expired JPS6042163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53047320A JPS6042163B2 (en) 1978-04-20 1978-04-20 Dry ice manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53047320A JPS6042163B2 (en) 1978-04-20 1978-04-20 Dry ice manufacturing method

Publications (2)

Publication Number Publication Date
JPS54138892A JPS54138892A (en) 1979-10-27
JPS6042163B2 true JPS6042163B2 (en) 1985-09-20

Family

ID=12771978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53047320A Expired JPS6042163B2 (en) 1978-04-20 1978-04-20 Dry ice manufacturing method

Country Status (1)

Country Link
JP (1) JPS6042163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168229A (en) * 2009-01-20 2010-08-05 Taiyo Nippon Sanso Corp Mixture of carbon dioxide, producing method of the same, storing method of carbon dioxide, conveying method of carbon dioxide and transporting method of carbon dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935013A (en) * 1982-08-18 1984-02-25 Showa Denko Kk Preparation of dry ice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168229A (en) * 2009-01-20 2010-08-05 Taiyo Nippon Sanso Corp Mixture of carbon dioxide, producing method of the same, storing method of carbon dioxide, conveying method of carbon dioxide and transporting method of carbon dioxide

Also Published As

Publication number Publication date
JPS54138892A (en) 1979-10-27

Similar Documents

Publication Publication Date Title
US2823523A (en) Separation of nitrogen from methane
US4566886A (en) Process and apparatus for obtaining pure CO
US10113127B2 (en) Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
US2011550A (en) Manufacture of solid carbon dioxide
JPH06229668A (en) Method and equipment for manufacturing gaseous oxygen
US3203193A (en) Production of nitrogen
US2560469A (en) Oxygen process
US3057167A (en) Process and apparatus for separating helium from helium-air mixtures
US4765814A (en) Process for purification of a gas stream by a nitrogen scrubbing
CN105271144A (en) Device and method for extraction and refinement of N2O from petrochemical industrial tail gas
JPS6042163B2 (en) Dry ice manufacturing method
GB195950A (en) Improvements in or relating to the separation of the constituents of gaseous mixtures containing hydrogen
US2709348A (en) Process of and apparatus for separating gas mixtures
US1810312A (en) Pro ess of separating gases
JPS6042162B2 (en) Dry ice manufacturing method
US2926501A (en) Method of and apparatus for recovering nitrogen from air by use of a cold boiling liquid such as nitrogen
US2213338A (en) Method and apparatus for fractionating gaseous mixtures
US1850529A (en) Process for extracting helium
US2022165A (en) Method of separating and purifying hydrogen
US683492A (en) Process of separating oxygen and nitrogen from mixtures thereof.
US2062537A (en) Method of separating gases by freezing
CN207702828U (en) The equipment for producing High Purity Nitrogen and oxygen from air by cryogenic rectification
US1961201A (en) Process for separating mixed gases by liquefaction
US2012080A (en) Method of and apparatus for separating and purifying helium from a gaseous mixture
US2984079A (en) Process and apparatus for purifying and separating compressed gas mixtures