JPS6041835Y2 - Shock voltage generator - Google Patents

Shock voltage generator

Info

Publication number
JPS6041835Y2
JPS6041835Y2 JP17838777U JP17838777U JPS6041835Y2 JP S6041835 Y2 JPS6041835 Y2 JP S6041835Y2 JP 17838777 U JP17838777 U JP 17838777U JP 17838777 U JP17838777 U JP 17838777U JP S6041835 Y2 JPS6041835 Y2 JP S6041835Y2
Authority
JP
Japan
Prior art keywords
trigger
gap
resistor
charging
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17838777U
Other languages
Japanese (ja)
Other versions
JPS54103521U (en
Inventor
有 川北
昌平 森永
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to JP17838777U priority Critical patent/JPS6041835Y2/en
Publication of JPS54103521U publication Critical patent/JPS54103521U/ja
Application granted granted Critical
Publication of JPS6041835Y2 publication Critical patent/JPS6041835Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Description

【考案の詳細な説明】 この考案は、ギャップ破壊時、充電コンデンサの電荷の
放出を防止腰長波尾の衝撃電圧を得るようにした衝撃電
圧発生装置に関する。
[Detailed Description of the Invention] This invention relates to an impulse voltage generating device which prevents discharge of charge from a charging capacitor when a gap breaks and obtains an impulse voltage with a waist long wave tail.

近年、核融合の研究が急速にすすむにつれ、そのエネル
ギー源である超高電圧を発生させる衝撃電圧発生装置の
大容量化が進み、その大容量化につれ装置の安定化、高
速化等の要求が生じ、密封ギャップ使用の各段自己トリ
ガ方式の衝撃電圧発生装置の開発が急がれている。
In recent years, as nuclear fusion research has progressed rapidly, the capacity of impulse voltage generators that generate ultra-high voltage, which is the energy source for fusion, has increased, and as the capacity increases, demands for more stable and faster devices are increasing. Therefore, there is an urgent need to develop a self-triggering impulse voltage generator in each stage using a sealed gap.

そして、従来、衝撃電圧発生装置は、第1図に示すよう
に、充電抵抗Rcを介し直流電源Sに対して並列接続さ
れ□た充電コンデンサCの各段間に、それぞれダンピン
グ抵抗Rsを介して接続された金属球等の主電極g□9
g2.・・・? grnおよびg工’? g2’?・・
・9gm′(以下総称してgtg’とする)を相対向し
て設け、その各主電極gw g/の相対向間隙に、それ
ぞれトリガ電極Tr1.Tr2゜・・・、Trm(以下
総称してTrとする)を挿入してディストーションタイ
プのギャップG1.G2.・・・。
Conventionally, as shown in FIG. 1, the impulse voltage generator has been configured to connect a charging capacitor C in parallel to a DC power source S via a charging resistor Rc between each stage of the charging capacitor C via a damping resistor Rs. Main electrode of connected metal ball etc. g□9
g2. ...? grn and g-engine'? g2'?・・・
9gm' (hereinafter collectively referred to as gtg') are provided facing each other, and trigger electrodes Tr1. Tr2°..., Trm (hereinafter collectively referred to as Tr) are inserted to create a distortion type gap G1. G2. ....

Gm(以下総称してGとする)を構成し、各トリガ電極
Trをトリガインピーダンスとなるトリガ抵抗RTを介
して複数段飛び(同図において2段飛び)に結合すると
ともに、初段、2段のギャップG1.G2の両トリガ電
極Tr1.Tr2をそれぞれトリガ端子Troに接続し
かつ接地抵抗RGを介して接地する。
Gm (hereinafter collectively referred to as G), each trigger electrode Tr is connected in multiple stages (two stages in the same figure) via a trigger resistor RT serving as a trigger impedance, and the first stage and second stage are connected. Gap G1. Both trigger electrodes Tr1.G2. Each Tr2 is connected to a trigger terminal Tro and grounded via a grounding resistor RG.

なお、Tは出力端子である。そして、前記直流電源S(
端子電圧がそれぞれ十E、−E)により、各段の両充電
コンデンサCをそれぞれ+Eおよび−Eに充電した後、
トリガ端子Troにトリガ電圧を印加し、ギャップG工
、G2を破壊すると、各点の電位は、(49口)=E。
Note that T is an output terminal. Then, the DC power source S(
After charging both charging capacitors C in each stage to +E and -E with terminal voltages of 10E and -E, respectively,
When a trigger voltage is applied to the trigger terminal Tro and the gaps G and G2 are destroyed, the potential at each point is (49 points)=E.

(ハ、二、へ)=お、(ホット)=池、 Tr、、 T
r3=E、 Tr2. Tr、=3Eとなる。
(ha, two, to) = o, (hot) = pond, Tr,, T
r3=E, Tr2. Tr,=3E.

したがって、3段目のギャップG3において、一方の主
電極らの電位=池、他方の主電極ゐ′の電位=地および
トリガ電極Tr3の電位=Eとなり、先ず、一方の主電
極らとトリガ電極Tr3との間に放電が生じてギャップ
G3が破壊する。
Therefore, in the third stage gap G3, the potential of one main electrode = pond, the potential of the other main electrode 2' = ground, and the potential of trigger electrode Tr3 = E, and first, one main electrode and the trigger electrode A discharge occurs between the transistor Tr3 and the gap G3 is destroyed.

そして、以下同様に動作してギャップG4・・・Gmが
破壊し、出力端子Tに所要の衝撃電圧が発生する。
Then, in the same manner, the gaps G4, . . . , Gm are destroyed, and a required shock voltage is generated at the output terminal T.

ここで、各段のギャップGに挿入された各トリガ電極T
rは、トリガ抵抗RTを介して複数段(2段)飛びに結
合されるため、各トリガ電極Trが各段毎に結合された
場合に比し、各ギャップGにおいて両生電極g9g′と
トリガ電極Trとのそれぞれの間に大きな電位差が得ら
れ、ギャップGの破壊が高速かつ安定に行なわれること
になる。
Here, each trigger electrode T inserted into the gap G of each stage
Since r is coupled in multiple stages (two stages) at a time via the trigger resistor RT, the amphibious electrode g9g' and the trigger electrode A large potential difference is obtained between each of them and the Tr, and the gap G is destroyed quickly and stably.

ところで、前記の従来の衝撃電圧発生装置においては、
各ギャップGが破壊すると、たとえば、1点鎖線で示し
たループ回路のように、トリガ抵抗RTを通して充電コ
ンデンサCの電荷が放出されるため、出力端子Tには長
波尾の衝撃電圧を得ることができない。
By the way, in the above-mentioned conventional impulse voltage generator,
When each gap G is destroyed, the charge in the charging capacitor C is released through the trigger resistor RT, as shown in the loop circuit shown by the dashed-dotted line, so it is not possible to obtain a long-wave impulse voltage at the output terminal T. Can not.

そこで、長波尾の衝撃電圧を得るためには、トリガ抵抗
RTの値を大きくする必要があるが、トリガ抵抗RTの
値を大きくすると、トリガ電流が小さくなり、ギャップ
Gのトリガ特性が悪化する。
Therefore, in order to obtain an impulse voltage with a long wave tail, it is necessary to increase the value of the trigger resistor RT, but if the value of the trigger resistor RT is increased, the trigger current becomes smaller and the trigger characteristics of the gap G deteriorate.

1゛この考案は、以上の点に留意し、ギャップの破壊時
の充電コンデンサの電荷の放出を防止し、長い波尾の衝
撃電圧を得るようにしたものであり、つぎに、この考案
を、その実施例を示した第2図以下の図面とともに詳細
に説明する。
1. Taking the above points into consideration, this device prevents the charge from being discharged from the charging capacitor when the gap is broken, and obtains an impulse voltage with a long wave tail. This embodiment will be described in detail with reference to the drawings from FIG. 2 onwards, which show the embodiment.

なお、前記と同一記号は同一物を示す。Note that the same symbols as above indicate the same thing.

ます、■実施例について説明する。First, ① Examples will be explained.

第2図に示すように、従来と同様に、充電抵抗Rcを介
し直流電源Sに対して並列接続された充電コンデンサC
の各段間に、それぞれダンピング抵抗Rsを介して接続
された金属球等の主電極g9g’を相対向して設け、そ
の主電極gy g/の相対向間隙をギャップGとし、各
ギャップGにそれぞれトリガ電極Trを挿入し、各トリ
ガ電極Trを、トリガコンデンサC′および直流結合用
抵抗rの並列回路とトリガ抵抗RTとの直列回路により
構成されるトリガインピーダンスZを介シて、2段飛び
に結合し、1段および2段のギャップG1およびG2に
おけるトリガ電極Tr、およびTr2をそれぞれトリガ
コンデンサC′と直流結合用抵抗rとの並列回路を介し
てトリガ端子Troに接続するとともに接地抵抗RG、
RGを介して接地しトリガ回路を構成する。
As shown in FIG. 2, as in the conventional case, a charging capacitor C is connected in parallel to a DC power supply S via a charging resistor Rc.
Between each stage, main electrodes g9g' such as metal balls connected via damping resistors Rs are provided facing each other, and the opposing gap between the main electrodes gy g/ is defined as a gap G, and each gap G is A trigger electrode Tr is inserted into each trigger electrode Tr, and each trigger electrode Tr is connected in two steps via a trigger impedance Z composed of a parallel circuit of a trigger capacitor C' and a DC coupling resistor r, and a series circuit of a trigger resistor RT. The trigger electrodes Tr and Tr2 in the gaps G1 and G2 of the first and second stages are respectively connected to the trigger terminal Tro via a parallel circuit of a trigger capacitor C' and a DC coupling resistor r, and a ground resistor RG. ,
It is grounded via RG to form a trigger circuit.

ただし、トリガ抵pTの抵抗値〈直流結合用抵抗rの抵
抗値、直流結合用抵抗rの抵抗値〉充電抵抗Rcの抵抗
値、充電コンデンサCの容量〉トリガコンデンサC′の
容量、とする。
However, the resistance value of the trigger resistor pT (the resistance value of the DC coupling resistor r, the resistance value of the DC coupling resistor r), the resistance value of the charging resistor Rc, the capacitance of the charging capacitor C> the capacitance of the trigger capacitor C'.

したがって、前記実施例において、直流電源Sにより各
充電コンデンサCを充電したのち、トリガ端子Troに
トリガ電圧を印加し、従来と同様の動作をして各ギャッ
プGが破壊し、出力端子Tに衝撃電圧を得る際、たとえ
ば、1点鎖線で示したループ回路において、1段および
2段の充電コンデンサCの電荷は、トリガコンデンサC
′によりほとんどブロックされて放出することがない。
Therefore, in the above embodiment, after each charging capacitor C is charged by the DC power supply S, a trigger voltage is applied to the trigger terminal Tro, and each gap G is destroyed by the same operation as in the conventional case, and an impact is applied to the output terminal T. When obtaining a voltage, for example, in the loop circuit shown by the one-dot chain line, the charges of the first and second stage charging capacitors C are transferred to the trigger capacitor C.
It is almost blocked by ′ and is not released.

すなわち、すべての各ギャップGの破壊において、トリ
ガコンデンサC′により各段の充電コンデンサCの電荷
がほとんど失なわれることがないため、出力端子Tに長
波尾の衝撃電圧を得ることができる。
That is, when all the gaps G are destroyed, the charges in the charging capacitors C of each stage are hardly lost by the trigger capacitor C', so that an impulse voltage with a long wave tail can be obtained at the output terminal T.

ここで、各直流結合用抵抗rは、各トリガコンデンサC
′の電荷を放出するとともに各トリガ電極Trを直流的
に結合する機能を有している。
Here, each DC coupling resistor r is each trigger capacitor C
It has the function of discharging the electric charge of ' and coupling each trigger electrode Tr with direct current.

つぎに、他の実施例を示した第3図について説明する。Next, FIG. 3 showing another embodiment will be explained.

前記第2図の実施例において、トリガ抵抗RTは、トリ
ガコンデンサC′が有するため、値を小さくでき、した
がって、第3図に示すように、トリガ低損RTを除去し
てもよい。
In the embodiment of FIG. 2, the trigger resistor RT can be reduced in value because it is included in the trigger capacitor C', and therefore the trigger low loss RT may be eliminated as shown in FIG.

その場合、トリガインピーダンス2の値が小さくなるた
め、瞬時には大きなトリガ電流が得られ、ギャップGの
トリガ特性が向上する。
In that case, since the value of the trigger impedance 2 becomes small, a large trigger current can be obtained instantaneously, and the trigger characteristics of the gap G are improved.

以上のように、この考案の衝撃電圧発生装置によると、
充電抵抗を介し直流電源に対して並列に接続された充電
コンデンサの各段間にそれぞれ接続された放電用の主電
極を相対向して設け、各主電極の相対向間隙をギャップ
とし、各ギャップにそれぞれトリが電極を挿入腰各トリ
ガ電極を、充電コンデンサの容量より小なる容量を有す
るトリガコンデンサと充電抵抗の抵抗値より犬なる抵抗
値を有する直流結合用抵抗との並列回路を介して、それ
ぞれN(複数)段飛びに結合し、初段からN段までの各
ギャップの各トリガ電極を前記並列回路と同様の並列回
路を介してそれぞれトリガ電圧を出力するトリが端子に
接続したことにより、ギャップのトリガ特性を悪化させ
ることなく、ギャップ破壊時の充電コンデンサの電荷の
放出を防止することができ、長波尾の衝撃電圧を得るこ
とができ、この考案は安定した動作を行なう衝撃電圧発
生装置を提供することができる。
As described above, according to the shock voltage generator of this invention,
The main electrodes for discharging connected between each stage of the charging capacitor connected in parallel to the DC power supply through the charging resistor are provided facing each other, and the opposing gap between the main electrodes is defined as a gap. Insert each trigger electrode into the waist, through a parallel circuit with a trigger capacitor having a capacitance smaller than the capacitance of the charging capacitor and a DC coupling resistor having a resistance value larger than the resistance value of the charging resistor. By connecting the trigger electrodes in each gap from the first stage to the N stages to the terminals, the trigger electrodes are connected in N (multiple) stages, respectively, and each trigger voltage is output through a parallel circuit similar to the parallel circuit described above. It is possible to prevent the release of charge from the charging capacitor at the time of gap breakdown without deteriorating the trigger characteristics of the gap, and to obtain a shock voltage with a long wave tail.This invention is a shock voltage generator that operates stably. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の衝撃電圧発生装置の電気的結線図、第2
図以下の図面はこの考案の衝撃電圧発生装置の実施例を
示し、第2図は1実施例の電気的結線図、第3図は他の
実施例の一部の電気的結線図である。 C・・・・・・充電コンデンサ、C′・・・・・・トリ
がコンデンサ、G・・・・・・ギャップ、g9g・・・
・・・主電極、Rc・・・・・・充電抵抗、r・・・・
・・直流結合用抵抗、Tr・・・・・・トリガ電極、S
・・・・・・直流電源。
Figure 1 is an electrical wiring diagram of a conventional impulse voltage generator;
The following drawings show embodiments of the impulse voltage generator of this invention, FIG. 2 is an electrical wiring diagram of one embodiment, and FIG. 3 is a partial electrical wiring diagram of another embodiment. C...Charging capacitor, C'...Tri is capacitor, G...Gap, g9g...
...Main electrode, Rc...Charging resistance, r...
...DC coupling resistance, Tr...Trigger electrode, S
...DC power supply.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 充電抵抗を介し直流電源に対して並列に接続された充電
コンデンサの各段間にそれぞれ接続された放電用の主電
極を相対向して設け、前記各主電極の相対向間隙をギャ
ップとし、前記各ギャップにそれぞれトリガ電極を挿入
し、前記各トリガ電極を、前記充電コンデンサの容量よ
り小なる容量を有するトリガコンデンサと前記充電抵抗
の抵抗値より大なる抵抗値を有する直流結合用抵抗との
並列回路を介して、それぞれN(複数)段飛びに結合腰
初段からN段までの各ギャップの各トリガ電極を前記並
列回路と同様の並列回路を介してそれぞれトリガ電圧を
出力するトリガ端子に接続した衝撃電圧発生装置。
Discharging main electrodes connected to each stage of a charging capacitor connected in parallel to a DC power source through a charging resistor are provided facing each other, and the opposing gap between the main electrodes is defined as a gap. A trigger electrode is inserted into each gap, and each trigger electrode is connected in parallel with a trigger capacitor having a capacitance smaller than the capacitance of the charging capacitor and a DC coupling resistor having a resistance value larger than the resistance value of the charging resistor. Each trigger electrode of each gap from the first stage to the N stage was connected to a trigger terminal that outputs a trigger voltage through a parallel circuit similar to the parallel circuit described above. Shock voltage generator.
JP17838777U 1977-12-29 1977-12-29 Shock voltage generator Expired JPS6041835Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17838777U JPS6041835Y2 (en) 1977-12-29 1977-12-29 Shock voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17838777U JPS6041835Y2 (en) 1977-12-29 1977-12-29 Shock voltage generator

Publications (2)

Publication Number Publication Date
JPS54103521U JPS54103521U (en) 1979-07-21
JPS6041835Y2 true JPS6041835Y2 (en) 1985-12-19

Family

ID=29188797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17838777U Expired JPS6041835Y2 (en) 1977-12-29 1977-12-29 Shock voltage generator

Country Status (1)

Country Link
JP (1) JPS6041835Y2 (en)

Also Published As

Publication number Publication date
JPS54103521U (en) 1979-07-21

Similar Documents

Publication Publication Date Title
JPH08132321A (en) Discharge excitation pulse laser device
US4207493A (en) Cathode ray tube arc-over protection
JPS6041835Y2 (en) Shock voltage generator
JP2789187B2 (en) Mobile object static elimination method
US5399910A (en) High voltage/current pulse generator using spark gaps
RU2128877C1 (en) High-voltage pulse generator
JP3638105B2 (en) Grounding characteristic converter
JP2963914B2 (en) Boost circuit
JPH06209244A (en) Linear converter
JPH11205098A (en) Pulse generator
JPH0654554A (en) Voltage control circuit
JPS6155351B2 (en)
SU813725A1 (en) Pulse voltage generator
JP2527193B2 (en) Shock voltage / current generator
SU551743A1 (en) Device for starting parallel spark gaps
JP2000227484A (en) Electronic time piece
SU782132A1 (en) Device for shaping control pulses for thyristor
SU693534A1 (en) Pulse high voltage generator
JPS61209982A (en) Detonator with electric time delay device
SU995287A1 (en) High-voltage pulse generator
JPS5911261B2 (en) DC high voltage generator
JPS5952571B2 (en) square wave generator
JP2876235B2 (en) Method for measuring internal impedance of lead-acid battery
JPS5920019A (en) Current-voltage converting circuit
JPH041680Y2 (en)