JPS6041810B2 - superconducting coaxial line - Google Patents

superconducting coaxial line

Info

Publication number
JPS6041810B2
JPS6041810B2 JP14753679A JP14753679A JPS6041810B2 JP S6041810 B2 JPS6041810 B2 JP S6041810B2 JP 14753679 A JP14753679 A JP 14753679A JP 14753679 A JP14753679 A JP 14753679A JP S6041810 B2 JPS6041810 B2 JP S6041810B2
Authority
JP
Japan
Prior art keywords
coaxial line
loss
superconducting coaxial
superconducting
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14753679A
Other languages
Japanese (ja)
Other versions
JPS5671216A (en
Inventor
治夫 吉清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14753679A priority Critical patent/JPS6041810B2/en
Publication of JPS5671216A publication Critical patent/JPS5671216A/en
Publication of JPS6041810B2 publication Critical patent/JPS6041810B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Communication Cables (AREA)

Description

【発明の詳細な説明】 本発明は、伝搬損失を制御することを可能とした超伝導
同軸線構造に関するものてある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting coaxial line structure that makes it possible to control propagation loss.

超伝導同軸線は超伝導体の高周波損失が常伝導体の高周
波損失に比べ3桁程度低いことを利用し、低損失で、広
帯域で、低雑音の上に原理的に漏話が無い等の特徴を有
するものてある。
Superconducting coaxial cables take advantage of the fact that the high-frequency loss of superconductors is about three orders of magnitude lower than that of normal conductors, and have features such as low loss, wide band, low noise, and no crosstalk in principle. There are some that have

従来、この超伝導同軸線の例としては、外部導体の内径
が1.6−、内部導体の径がO、5Tn1nであり、超
伝導体として鉛を使用し、誘電体として、FEPを採用
した超伝導同軸線が試作されている。
Conventionally, as an example of this superconducting coaxial line, the inner diameter of the outer conductor is 1.6-, the diameter of the inner conductor is O, 5Tn1n, lead is used as the superconductor, and FEP is adopted as the dielectric material. A prototype superconducting coaxial line has been produced.

これらの超伝導同軸線の減衰量は、4.2にの液体ヘリ
ウム温度において、典型例では次式て表わせることが知
られている。α■O、5f+O、05f2dBIh)(
f:GH2) (1)即ち、1GH2において、O、6
dBlkm以下の低損失性が得られている。
It is known that the attenuation of these superconducting coaxial lines can be typically expressed by the following equation at a liquid helium temperature of 4.2. α■O, 5f+O, 05f2dBIh) (
f: GH2) (1) That is, in 1GH2, O, 6
Low loss of less than dBlkm has been obtained.

この(1)式で、第1項は前記誘電体による漏洩減衰量
であり、第2項は鉛超伝導体の表面抵抗による抵抗減衰
量である。しかしながら、上記減衰量は、前記材料を使
用した場合、ほぼ材料固有の値として定まつてしまうた
め、減衰量を変更するには使用材料を変えなければなら
ない。
In this equation (1), the first term is the leakage attenuation due to the dielectric, and the second term is the resistance attenuation due to the surface resistance of the lead superconductor. However, when the above-mentioned materials are used, the above-mentioned attenuation amount is almost determined as a value unique to the material, so in order to change the attenuation amount, it is necessary to change the material used.

その場合には、また別の固有の損失が得られ、その間の
任意の値を得ることはできない。超伝導同軸線の応用上
、特に短距離で使用したい場合には、上記損失値が小さ
すぎるため、反射やインピーダンス不均等の影響が問題
になり、むしろ損失を増加させて、上記悪影響を吸収し
、安定な伝送を実現したい要求が生じる。この場合、損
失値を任意に設定できれば便利である。本発明は、これ
らの応用上の多様性に対処するため、超伝導同軸線の内
外部導体表面に、薄層の常伝導層を形成することによつ
て、損失値をある範囲で任意に変更し得るようにした超
伝導同軸線を提供するものてある。
In that case, another inherent loss is obtained, and any value in between cannot be obtained. In the application of superconducting coaxial lines, especially when you want to use them over short distances, the above loss value is too small, and the effects of reflection and impedance imbalance become a problem.Instead, it is necessary to increase the loss to absorb the above negative effects. , a demand arises to realize stable transmission. In this case, it would be convenient if the loss value could be set arbitrarily. In order to cope with the diversity of these applications, the present invention forms a thin normal conductive layer on the surfaces of the inner and outer conductors of a superconducting coaxial line, thereby making it possible to arbitrarily change the loss value within a certain range. The present invention provides a superconducting coaxial line that can be used as a superconducting coaxial line.

以下、図面により実施例を詳細に説明する。第1図は、
本発明の1実施例を示したもので、1は内部導体となる
超伝導体、2はこの超伝導体1を補強安定化するための
金属材であり、通常加・工性の良い銅が使用される。
Hereinafter, embodiments will be described in detail with reference to the drawings. Figure 1 shows
This figure shows one embodiment of the present invention, where 1 is a superconductor that becomes an internal conductor, and 2 is a metal material for reinforcing and stabilizing the superconductor 1. Copper, which has good workability, is usually used. used.

3は外部超電導体、4はそれを裏打補強するための金属
材で、やはり加工性の良い銅などが使用される。
3 is an external superconductor, and 4 is a metal material for backing and reinforcing it, and copper or the like, which has good workability, is also used.

5は充実形に作られた誘電体、6は常伝導性の薄層であ
る。
5 is a dielectric material made into a solid shape, and 6 is a normal conductive thin layer.

このような構造における超伝導同軸線の単位長、さ当り
の等価回路は、第2図のように近似できる。ここで、R
、(f)は超伝導体の表面抵抗、RN(f)は上記常伝
導性層の表面抵抗、Lは線路のインダクタンス、Cは容
量、G(f)は誘電体の漏洩コンダクタンス、1は周波
数である。常伝導性の薄層6は、電磁界の表皮効果の深
さ(スキンデプス)以下に形成される必要があり、電磁
界はこの薄層6を浸透して超伝導体1,3にまで達して
いる。この場合、同軸線の減衰定数αは、で表わせる。
The equivalent circuit per unit length of superconducting coaxial line in such a structure can be approximated as shown in FIG. Here, R
, (f) is the surface resistance of the superconductor, RN(f) is the surface resistance of the normal conducting layer, L is the inductance of the line, C is the capacitance, G(f) is the leakage conductance of the dielectric, and 1 is the frequency. It is. The normal conducting thin layer 6 must be formed below the skin depth of the electromagnetic field, and the electromagnetic field penetrates this thin layer 6 and reaches the superconductors 1 and 3. ing. In this case, the attenuation constant α of the coaxial line can be expressed as follows.

ここで、A..bはそれぞれ誘電体、超伝導体の材料に
よつて定まる定数であり、cは常伝導層の材料及び厚さ
のよつて定まる定数である。また、nは常伝導層の低温
下での抵抗状態によるが、常伝導層が異常表皮効果を起
している場合には21ヌ正常表皮効果の場合には112
てある。通常の場合2ノ3が予想される。以上説明した
ように、(2)式に第3項が付加されることによつて損
失を増加させることができるが、特に定数cは厚さを変
えることによつて制御てきることが本発明の原理ある。
これは、電磁界が常伝導層の内部で減衰を受けるためで
、厚い程影響を強く受ける。しかし、厚すぎて常伝導層
内のみにすべての電磁界が存在するようになると、超伝
導性の利点である低損失性を失う恐れがある。従つて、
所望の損失値を与えるように厚さを設計する。電磁界の
侵入する表皮効果の深さδの目安として、前記異常表皮
効果が起つている状態における−推定例を示す。
Here, A. .. b is a constant determined by the material of the dielectric and superconductor, respectively, and c is a constant determined by the material and thickness of the normal conductive layer. In addition, n depends on the resistance state of the normal conductive layer at low temperature, but it is 21 when the normal conductive layer has an abnormal skin effect and 112 when the normal skin effect is present.
There is. Normally, 2 or 3 is expected. As explained above, the loss can be increased by adding the third term to equation (2), but the present invention particularly allows the constant c to be controlled by changing the thickness. There is a principle.
This is because the electromagnetic field is attenuated inside the normal conducting layer, and the thicker the layer, the stronger the effect. However, if it is too thick and all the electromagnetic field exists only within the normal conducting layer, there is a risk of losing the low loss property that is the advantage of superconductivity. Therefore,
Design the thickness to give the desired loss value. As a guideline for the depth δ of the skin effect into which the electromagnetic field penetrates, an example of estimation will be shown in a state where the abnormal skin effect is occurring.

δは例えば、JOUrIlalOfAppliedPh
ySlCS誌 ■o1−39、NO.伝PP2592(
1968)に示されているように、により与えられるか
ら、 m(電子の質量)=9.1×10−31(K9)、e(
電子の電荷)=1.6×10−19(C)、μo (真
空の透磁率)=4π×10′−9(Hlm)、の定数と
、例として、温度4.2Kにおける鉛の物性値を用いる
と、■F(フェルミ速度)=2.43×1σ(7TL1
S)、Nn(2流体モデルにおける常伝導電子の密度)
=5.25×lσ7(7n−3)であり、これらからδ
=0.36μmを得る。
δ is, for example, JOUrIlalOfAppliedPh
ySlCS magazine ■o1-39, NO. Legend PP2592 (
1968), m (electron mass) = 9.1 × 10-31 (K9), e (
Electron charge) = 1.6 x 10-19 (C), μo (vacuum permeability) = 4π x 10'-9 (Hlm), and as an example, the physical property value of lead at a temperature of 4.2 K. Using, ■F (Fermi velocity) = 2.43 × 1σ (7TL1
S), Nn (density of normal conduction electrons in two-fluid model)
=5.25×lσ7(7n-3), and from these δ
=0.36 μm is obtained.

従つて、このδに比べ十分に薄い常伝導層を、超伝導体
層(例えば、10PWL程度)の上くに蒸着、スパッタ
あるいはメッキなどの手段により付加形成する。勿論、
実際の形成法、厚さ等は、実験により決定されるが、製
作面からみて、上記数値は目安として十分現実的な値で
ある。上記の効果は前述の鉛超伝導体、FEP誘電体か
らなる超伝導同軸線において鉛表面に薄い炭素層を形成
することによつて実証されている。例えば、信学会論文
誌VOl.63−13、NO.7、PP.7l5−72
2(1980)r超伝導同軸線の伝送特性の検討ョにl
おいて例示されているように、炭素層の存在により、損
失値を示す式(2)の1例として、α=0.55f+0
.52f2+0.3f213(DBI−) ・・
・(4)が、1紬の超伝導同軸線において実測されてい
る。
Therefore, a normal conductive layer that is sufficiently thinner than this δ is additionally formed on the superconductor layer (for example, about 10 PWL) by means of vapor deposition, sputtering, plating, or the like. Of course,
The actual forming method, thickness, etc. are determined through experiments, but from the manufacturing standpoint, the above values are sufficiently realistic values as a guide. The above effect has been demonstrated by forming a thin carbon layer on the lead surface of the superconducting coaxial line made of the above-mentioned lead superconductor and FEP dielectric. For example, IEICE Transactions Vol. 63-13, NO. 7.PP. 7l5-72
2 (1980) Study of transmission characteristics of superconducting coaxial lines
As exemplified in , α=0.55f+0 as an example of equation (2) indicating the loss value due to the presence of the carbon layer.
.. 52f2+0.3f213(DBI-)...
・(4) has been actually measured in a superconducting coaxial line of 1 Tsumugi.

即ち、この場合、式(2)のCは0.3である。また、
アルミニウムなどの薄層でも実現できる。また損失の設
定可能な範囲は、上述の説明からも分かるように、超伝
導体及び誘電体による固有の損失値から導体抵抗損失が
ほとんど常伝導体層損失て定まるまての範囲である。な
お、常伝導層6の効果は、内部導体1の表面と外部導体
3の内表面とで独立に生じるわけで、損失設定の程度、
製作のし易さ等の条件によつて、どちらか一方でもよい
That is, in this case, C in equation (2) is 0.3. Also,
This can also be achieved with thin layers such as aluminum. Further, as can be seen from the above explanation, the range in which the loss can be set is the range in which the conductor resistance loss is almost determined by the normal conductor layer loss from the inherent loss values of the superconductor and the dielectric. Note that the effect of the normal conductive layer 6 occurs independently on the surface of the inner conductor 1 and the inner surface of the outer conductor 3, and therefore depends on the degree of loss setting,
Either one may be used depending on conditions such as ease of manufacture.

以上説明したように、本発明によれば、超伝導同軸線の
特徴である低損失性、低雑音、電磁界遮蔽性(無漏話)
を損うことなく、損失値をある範囲で任意に設定できる
利点があり、端局や接続点での反射及びインピーダンス
不均等による周波数特性の劣化等を吸収できる効果があ
り、特に、短距離での使用の場合に有効と考えられる以
外に、さらに必要な損失内でインピーダンス不均等の要
因である加工寸法精度の許容範囲を緩和できる効果があ
る。
As explained above, according to the present invention, the characteristics of superconducting coaxial lines are low loss, low noise, and electromagnetic field shielding (no crosstalk).
It has the advantage of being able to set the loss value arbitrarily within a certain range without damaging the signal, and has the effect of absorbing reflections at terminal stations and connection points, as well as deterioration of frequency characteristics due to uneven impedance, especially over short distances. In addition to being considered effective in the case of use, it also has the effect of relaxing the tolerance range of processing dimensional accuracy, which is a factor of impedance unevenness, within the necessary loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超伝導同軸線の一実施例での断面図
、第2図は、本発明の詳細な説明するための図である。
FIG. 1 is a cross-sectional view of one embodiment of the superconducting coaxial line of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 1 内部導体の表面および外部導体の内表面が超伝導体
からなる超伝導同軸線において、前記内外部導体表面上
に電磁界の侵入する表皮効果の深さ以下の厚さの常伝導
薄層を形成し、電磁界が前記常伝導薄層によつて損失を
受けるようにしたことを特徴とする超伝導同軸線。
1. In a superconducting coaxial line in which the surface of the inner conductor and the inner surface of the outer conductor are made of superconductors, a normal conducting thin layer with a thickness equal to or less than the depth of the skin effect where the electromagnetic field penetrates is formed on the surface of the inner and outer conductors. A superconducting coaxial line, characterized in that the electromagnetic field is formed such that the electromagnetic field undergoes loss through the normal conducting thin layer.
JP14753679A 1979-11-14 1979-11-14 superconducting coaxial line Expired JPS6041810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14753679A JPS6041810B2 (en) 1979-11-14 1979-11-14 superconducting coaxial line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14753679A JPS6041810B2 (en) 1979-11-14 1979-11-14 superconducting coaxial line

Publications (2)

Publication Number Publication Date
JPS5671216A JPS5671216A (en) 1981-06-13
JPS6041810B2 true JPS6041810B2 (en) 1985-09-19

Family

ID=15432525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14753679A Expired JPS6041810B2 (en) 1979-11-14 1979-11-14 superconducting coaxial line

Country Status (1)

Country Link
JP (1) JPS6041810B2 (en)

Also Published As

Publication number Publication date
JPS5671216A (en) 1981-06-13

Similar Documents

Publication Publication Date Title
Pucel et al. Microstrip propagation on magnetic substrates-Part I: Design theory
US4441088A (en) Stripline cable with reduced crosstalk
US2769148A (en) Electrical conductors
US4383225A (en) Cables with high immunity to electro-magnetic pulses (EMP)
US4376920A (en) Shielded radio frequency transmission cable
US2508479A (en) High-frequency electromagneticwave translating arrangement
EP0435765A2 (en) Method of fabricating a superconductive microwave component
US20080303621A1 (en) Common mode choke coil
US5164692A (en) Triplet plated-through double layered transmission line
EP0455527A1 (en) Microstrip line resonator composed of oxide superconductor material
JPS63146306A (en) Transmission line with improved electrical signal transmission characteristic
US4017344A (en) Magnetically enhanced coaxial cable with improved time delay characteristics
JP2001283652A (en) Communication cable
US3886506A (en) Magnetically enhanced coaxial cable with improved time delay characteristics
US3162717A (en) Compact transmission line consisting of interleaved conductor strips and shield strips
JPS6232841B2 (en)
US2787656A (en) Magnetically loaded conductors
US2086629A (en) Shielded cable system
US2689294A (en) Metal film attenuator
US2950454A (en) Helix wave guide
US2924797A (en) Finline coupler
JPS6041810B2 (en) superconducting coaxial line
US2879318A (en) Shield for electric current apparatus
US3263193A (en) Superconducting to normal conducting cable transition
US3163832A (en) Superconductive coaxial line useful for delaying signals