JPS6041736A - Ion source - Google Patents

Ion source

Info

Publication number
JPS6041736A
JPS6041736A JP13514384A JP13514384A JPS6041736A JP S6041736 A JPS6041736 A JP S6041736A JP 13514384 A JP13514384 A JP 13514384A JP 13514384 A JP13514384 A JP 13514384A JP S6041736 A JPS6041736 A JP S6041736A
Authority
JP
Japan
Prior art keywords
ion source
container
discharge
discharging space
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13514384A
Other languages
Japanese (ja)
Inventor
Hifumi Tamura
田村 一二三
Toru Ishitani
亨 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13514384A priority Critical patent/JPS6041736A/en
Publication of JPS6041736A publication Critical patent/JPS6041736A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enable to produce ions of the solid phase component in a high melting point metal and the like by providing, in the discharging space of a hollow cathode, a container which is composed of a high melting point material with less reaction and has a thin nozzle to supply a material of the ion source positioned in the container bit by bit to the discharging space. CONSTITUTION:A container 8 for a material of an ion source is provided in the neighborhood of a hollow cathode 1. The container 8 for the material of the ion source, is made of a silica glass pipe with less reaction, and its tip is contracted so as to have a thin nozzle 11. The whole of the ion source portion is exhausted in a high vacuum state. Next, the introduction of gas is carried out and when a discharge is started, the container 8 for the material of the ion source is exposed to the plasma, and the material 10 of the ion source is heated and melted and is supplied to the discharging space through the thin nozzle 11. As a result, ions due to the material 10 of the ion source are generated. Once the material 10 of the ion source is supplied to the discharging space, even if the gas for exciting the discharge is cut off, the plasma due to the material 10 of the ion source is stably maintained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放電プラズマを利用したイオン源のイオン源物
質供給手段の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in an ion source material supply means for an ion source using discharge plasma.

〔発明の背景〕[Background of the invention]

従来、放電プラズマを利用したイオン源では、イオン源
物質はガス状にして放電空間に供給していた。そのため
、ガス状としての取り扱いか困難4な高融点全屈などの
イオンを取り出すことは困難とされていた。
Conventionally, in ion sources that utilize discharge plasma, the ion source material has been supplied to the discharge space in the form of a gas. Therefore, it has been considered difficult to extract ions with high melting points and the like, which are difficult to handle in a gaseous state.

この問題に関する従来技術について、デュオプラズマト
ロン形イオン源を例にとって説明する。
A conventional technique related to this problem will be explained using a duoplasmatron ion source as an example.

例えば、特開昭50−50599号公報に示されている
。第1図に、デュオプラズマトロン形イオン源の構成断
面図を示す。本イオン源は、ホローカッ−1へ1、中間
電極2、アノード3および引出し電極4および中間電極
2とアノ−1−3との空間に軸方向(同図では上下方向
)の磁場を印加するためのマグネットまたは磁場電源(
同図では省略)より構成されている。動作原理は、先ず
カソード1、中間電極2、アノード3のつくる空間を高
真空に排気し、次に取り出したいイオン種に関係したイ
オン源ガスとしてのガスを上記空間に適当量導入し、カ
ソード1とアノード3との間に放電々圧を印加し、放電
させ、プラズマ6を生成させる。
For example, it is shown in Japanese Unexamined Patent Publication No. 50-50599. FIG. 1 shows a cross-sectional view of the configuration of a duoplasmatron ion source. This ion source applies an axial magnetic field (vertical direction in the figure) to the hollow cup 1, to the intermediate electrode 2, to the anode 3, to the extraction electrode 4, and to the space between the intermediate electrode 2 and the anode 1-3. magnet or magnetic field power supply (
(omitted in the figure). The operating principle is to first evacuate the space created by the cathode 1, intermediate electrode 2, and anode 3 to a high vacuum, then introduce an appropriate amount of gas as an ion source gas related to the ion species to be extracted into the space, and A discharge pressure is applied between the anode 3 and the anode 3 to cause discharge and generate plasma 6.

イオンビー1z 5は、アノード3と引出し電極4との
間に引出し電界を印加して引き出す。このような従来構
成のデュオプラズマトロン形イオン源の欠点として、イ
オン種としてガス相成分の力に限定され、固相成分イオ
ンの生成が困難[であることがあげられる。
The ion bee 1z 5 is extracted by applying an extraction electric field between the anode 3 and the extraction electrode 4. A drawback of the duoplasmatron ion source with such a conventional configuration is that the ion species are limited to the power of gas phase components, and it is difficult to generate solid phase component ions.

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は上述したデュオプラズマト
ロン形のようなイオン源においてその構成を大幅に変え
ることなく高融点金属などの固相成分のイオンをも取り
出し得るようにしたイオン源を提供することにある。
Therefore, an object of the present invention is to provide an ion source such as the above-mentioned duoplasmatron type that can extract ions of solid phase components such as high melting point metals without significantly changing its configuration. It is in.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、ホローカ
ソードと、上記ホローカソードに対向して設けられたア
ノードと、上記ホローカソードの放電空間内に設けらj
した、反応性の少ない高融点材料からなり、かつ、その
内部に置かれたイオン源材料を微小量ずつ上記放電空間
に供給できるような細孔を有する容器とを具備させてイ
オン源を構成したことを特徴としている。
In order to achieve the above object, the present invention includes a hollow cathode, an anode provided opposite to the hollow cathode, and an anode provided within the discharge space of the hollow cathode.
The ion source is constructed by comprising a container made of a high melting point material with low reactivity and having pores that can supply the ion source material placed inside the container in minute amounts to the discharge space. It is characterized by

かかる本発明の特徴的な構成により、ガス成分イオンの
みならず固相成分イオンの生成も可能となり、しかも簡
単な構成で実現できるので安価で応用範囲の広いイオン
源を提供できるようになる。
This characteristic configuration of the present invention makes it possible to generate not only gas component ions but also solid phase component ions, and can be realized with a simple configuration, making it possible to provide an ion source that is inexpensive and has a wide range of applications.

つまり、本発明においてはハード面では、従来のホロー
カソードの放電空間に反応性の少ない石英ガラス、アル
ミナ磁器などの高融点材料で作られ、且つ内部に封入さ
れたイオン源材料に微小量ずつ放電空間に供給できるよ
うな細孔を有するイオン源材料容器を設ける。次に動作
としては先ず従来法と同様にして、カス放電を行ない、
上記容器を加熱してその内部のイオン源材料を溶融させ
、上記容器の細孔を通して放電空間に徐々にイオン源材
料を供給し、金属その他の固相元素のイオン化を行なう
In other words, in terms of hardware, in the present invention, the discharge space of a conventional hollow cathode is made of a high melting point material such as quartz glass or alumina porcelain with low reactivity, and the ion source material sealed inside is discharged in minute amounts. An ion source material container is provided having a pore such that it can be supplied to the space. Next, as for the operation, first perform a scum discharge in the same manner as the conventional method,
The container is heated to melt the ion source material therein, and the ion source material is gradually supplied to the discharge space through the pores of the container to ionize metals and other solid phase elements.

イオン源材料としては、甲−元素、化合物、混合物いず
れでも使用できるが、化合物または混合物の場合、組成
および組成比を適当に選択することにより、)容部温度
を低下させることができ、容易に上記細孔を通して放電
空間にイオン源材料を供給できる。
Any element, compound, or mixture can be used as the ion source material, but in the case of a compound or mixture, by appropriately selecting the composition and composition ratio, the temperature of the container can be lowered, and it is easy to Ion source material can be supplied to the discharge space through the pores.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により詳細に述へる。 Hereinafter, the present invention will be described in detail with reference to Examples.

第2図は本発明によるデュオプラズマ1ヘロン形イオン
源の基本構成を示したものである。
FIG. 2 shows the basic configuration of a duoplasma one-heron type ion source according to the present invention.

第2図は、第1図に示した従来のデュオプラズマ1〜ロ
ン形イオン源に本発明を適用した状態を示す。本イオン
源は、従来のカッ−1−1、中間電極2、アノ−1<3
および引出し電極4のほかに新しく、ホローカッ−1州
の近傍に設りたイオン源材 4料容器8から構成されて
いる。カソード1にはイオン源材料中に含まれるガス4
Jl気を能率よく行うための排気ロアを設けた。またイ
オン源材料容器8を支えるための支えネジ9を段目た。
FIG. 2 shows a state in which the present invention is applied to the conventional duo plasma 1 to Ron type ion source shown in FIG. This ion source consists of a conventional cup 1-1, an intermediate electrode 2, and an anode 1<3.
In addition to the extraction electrode 4, the ion source material container 8 is newly installed near the hollow cup. The cathode 1 has a gas 4 contained in the ion source material.
An exhaust lower has been installed to efficiently carry out air conditioning. Further, a support screw 9 for supporting the ion source material container 8 was provided in a row.

イオン源材料10は、反応性の少ない石英ガラスを利用
し、ガラスバイブの先端を0.1〜0.5IIIlll
φ の細孔11を有するように絞り加工し、これにより
、イオン源材料の放電空間への導入量をコン1〜ロール
する。
The ion source material 10 uses quartz glass with low reactivity, and the tip of the glass vibrator is 0.1 to 0.5 IIIll.
It is drawn to have a pore 11 of φ, thereby controlling the amount of ion source material introduced into the discharge space.

動作m(理は、先ず、イオン源部全体を従来と同様に高
真空に排気し、次にガス導人を行ない従来通り放電を開
始させる。イオン源材料容器8、およびイオン源材料1
oはプラズマにさらされ、加熱、溶融し、」−記細孔1
1を通して放電空間に供給される。その結果、イオン源
材料1oによるイオンが生成される。一度イオン源材料
10が放電空間に供給されると放電励起用ガスを遮断し
ても、イオン源材料10によるプラズマが安定に維持さ
れる。プラズマ状態は、放電々圧を変化させることによ
り、安定に制御できる。
Operation m (The principle is to first evacuate the entire ion source section to a high vacuum as in the conventional case, then conduct the gas conductor and start the discharge in the conventional manner.Ion source material container 8 and ion source material 1
o is exposed to plasma, heated and melted, and pore 1
1 to the discharge space. As a result, ions are generated by the ion source material 1o. Once the ion source material 10 is supplied to the discharge space, the plasma generated by the ion source material 10 is stably maintained even if the discharge excitation gas is cut off. The plasma state can be stably controlled by changing the discharge pressure.

イオン源材料10としては、7.Ii々化合物および混
合物を使用できるが、−例として、Cs CIを用いた
場合の動作特性を示す。イオン源容H;(8は石英ガラ
ス製を用い、イオン源材料10の供給用の細孔11とし
て0.1nwnφを用いた。Cs C]による放電々流
(カッ−)−1とアノード3との間に流Jしる電流)を
]、 001TIΔに固定し、C8“て300μA、C
I−で450μAを11jた。安定度は、1〜51”7
 / ] O分て、従来のガスイオン源と同程度である
。またイオン源のノf命は、材料の保有量ににるが、I
grのCsClを用いると数羽イオン電流300゛μハ
の場合、は+t:I OO11,1″間安定動作する。
As the ion source material 10, 7. Although various compounds and mixtures can be used - as an example the operating characteristics are shown using Cs CI. Ion source capacity H; (8 is made of quartz glass, and 0.1 nwnφ was used as the pore 11 for supplying the ion source material 10. 001TIΔ, 300 μA at C8, C
11j of 450 μA at I-. Stability is 1~51”7
/ ] O, which is comparable to that of a conventional gas ion source. Also, the life of an ion source depends on the amount of material it has, but I
When CsCl of gr is used and the ion current is 300μ, stable operation is achieved for +t:IOO11,1″.

〔発明の効果〕〔Effect of the invention〕

以」−詳述したように、本発明によオしは、子コオプラ
ズマトロン形のようなイオン源においてその構造を大幅
に変えることなく高融点全屈などの同相成分イオンをも
取り出すことが可能となる。
- As described in detail, the present invention makes it possible to extract in-phase component ions such as those with high melting points in an ion source such as a child core plasmatron without significantly changing its structure. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のデュオプラズマ1−ロン形イオン源の基
本構成図、第2図はΔ〈発明によるデュオプラズマ1〜
ロン形イオン源の基本構成図である。 1 ・ホローカソード、2・・中間電(!1.3 アノ
−1く、4・・・引出し電極、5−イオンビー11.6
 プラズマ、7・・排気1コ、8 容器、9 支えネジ
、10・・・イオン源月料、11 ・釦孔。 第 1 図 石 2Lン
Figure 1 is a basic configuration diagram of a conventional Duo Plasma 1-Ron type ion source, and Figure 2 is a diagram of the basic configuration of a conventional Duo Plasma 1-
FIG. 2 is a basic configuration diagram of a Ron type ion source. 1. Hollow cathode, 2. Intermediate electrode (!1.3 Anno-1, 4. Extracting electrode, 5-ion beam 11.6
Plasma, 7... 1 exhaust, 8 container, 9 support screw, 10... ion source charge, 11 ・Button hole. 1st figure stone 2Ln

Claims (1)

【特許請求の範囲】[Claims] 1、 ホローカソードと、上記ホローカソードに対向し
て設けられたアノードと、」二記ホローカソードの放電
空間内に設けられた、反応性の少ない高融点材料からな
り、かつ、その内部に置かれたイオン源材料を微小量ず
つ上記放電空間に供給できるような細孔を有する容器と
を具備してなることを特徴とするイオン源。
1. A hollow cathode, an anode provided opposite to the hollow cathode; an ion source comprising: a container having pores capable of supplying minute amounts of ion source material into the discharge space;
JP13514384A 1984-07-02 1984-07-02 Ion source Pending JPS6041736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13514384A JPS6041736A (en) 1984-07-02 1984-07-02 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13514384A JPS6041736A (en) 1984-07-02 1984-07-02 Ion source

Publications (1)

Publication Number Publication Date
JPS6041736A true JPS6041736A (en) 1985-03-05

Family

ID=15144809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514384A Pending JPS6041736A (en) 1984-07-02 1984-07-02 Ion source

Country Status (1)

Country Link
JP (1) JPS6041736A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475636A (en) * 1967-11-14 1969-10-28 Hughes Aircraft Co Liquid-metal arc cathode with maximized electron/atom emission ratio
JPS52150688A (en) * 1976-06-09 1977-12-14 Hitachi Ltd Solid ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475636A (en) * 1967-11-14 1969-10-28 Hughes Aircraft Co Liquid-metal arc cathode with maximized electron/atom emission ratio
JPS52150688A (en) * 1976-06-09 1977-12-14 Hitachi Ltd Solid ion source

Similar Documents

Publication Publication Date Title
US6103298A (en) Method for making a low work function electrode
GB875232A (en) Electron beam furnace for the production of gas free metals
US4641313A (en) Room temperature metal vapour laser
JPS6041736A (en) Ion source
JPH0160889B2 (en)
Liebl et al. Study of an iodine discharge in a duoplasmatron
JPS6293834A (en) Ion source
Masic et al. A new way of producing ion beams from metals and gases using the plasma jet from a duoplasmatron
US3405301A (en) Apparatus for producing quiescent plasma
JPH1021933A (en) Electrode of solid oxide fuel cell and its forming method
JPH09199810A (en) Metal vapor laser device
JPS593814B2 (en) solid ion source
Walther et al. Production of atomic or molecular nitrogen ion beams using a multicusp and a microwave ion source
US3100272A (en) Low pressure mercury plasma discharge tube
JPS5842150A (en) Ion source for ion implanting device
JPS59121747A (en) Method of ion milling
JPS62188127A (en) Ion source
JP2526228B2 (en) Electronic beam type plasma device
RU1774391C (en) Duoplasma-type ion source
JPH024979B2 (en)
Shimizu et al. Plasmatron-type ion source for metallic elements
EP0164934A2 (en) Room temperature metal vapour laser
JPH06223756A (en) Ion source
JPH04206237A (en) Liquid metal ion source
JPS6273544A (en) Ion gun