JPS6041588B2 - Method for promoting changes in biological properties of microorganisms - Google Patents

Method for promoting changes in biological properties of microorganisms

Info

Publication number
JPS6041588B2
JPS6041588B2 JP11081580A JP11081580A JPS6041588B2 JP S6041588 B2 JPS6041588 B2 JP S6041588B2 JP 11081580 A JP11081580 A JP 11081580A JP 11081580 A JP11081580 A JP 11081580A JP S6041588 B2 JPS6041588 B2 JP S6041588B2
Authority
JP
Japan
Prior art keywords
treatment
discharge
microorganisms
yeast
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11081580A
Other languages
Japanese (ja)
Other versions
JPS5736980A (en
Inventor
元隆 曽祢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Sangyo KK filed Critical Iwatani Sangyo KK
Priority to JP11081580A priority Critical patent/JPS6041588B2/en
Publication of JPS5736980A publication Critical patent/JPS5736980A/en
Publication of JPS6041588B2 publication Critical patent/JPS6041588B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、微生物の生体性質変化促進方法に関するもの
てある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for promoting changes in biological properties of microorganisms.

自然界の生物は微生物・植物・動物に分類され、微生物
は多種多様に亘り、古くから人間の生活と密接に係わつ
て来ており、人類は微生物による多大の損害を豪り乍ら
も、微生物から測り知れぬ程の恩恵も受けて来た。
Living organisms in the natural world are classified into microorganisms, plants, and animals, and microorganisms are diverse and have been closely related to human life since ancient times. I have received immeasurable benefits from it.

食品工業の醸造工業は、微生物のうちの菌類(特に各種
酵母菌)が生成する酵素の作用を有効活用するものであ
り、また、医薬品工業においては、細菌類のうちの放線
菌などを用いて各種抗生物質が製造されている。
The brewing industry in the food industry makes effective use of the action of enzymes produced by fungi among microorganisms (especially various yeasts), and in the pharmaceutical industry, bacteria such as actinomycetes are used to Various antibiotics are manufactured.

そして、現在、食糧危機・資源問題か世界的課題となつ
て来ており、バイオマスと言われる生物資源の有効性が
注目されて来た。
Currently, the food crisis and resource issues have become a global issue, and the effectiveness of biological resources called biomass has been attracting attention.

バイオマス関連分野のうちでも、応用微生物工業の可能
性は測り知れず、上記の食糧・資源問題に対する有力は
解決手段たり得る可能性を持つている。例えば、酵母を
用いて炭水化物をアルコール発酵させて得られるアルコ
ール燃料は代替燃料として脚光を浴びており、クロレラ
や水素細菌は高能率で、大量生産し得る各種食糧・飼糧
源として有力視されている。
Among biomass-related fields, the potential of applied microbial industry is immeasurable, and it has the potential to be a powerful solution to the food and resource problems mentioned above. For example, alcohol fuel obtained by alcoholic fermentation of carbohydrates using yeast is attracting attention as an alternative fuel, and chlorella and hydrogen bacteria are highly efficient and are considered promising sources of various foods and feeds that can be mass-produced. .

更に、産業排水・都市排水及ひ廃棄物の処理・再資源化
にも、益々微生物利用がなされるであろう。
Furthermore, the use of microorganisms will increase in the treatment and recycling of industrial wastewater, urban wastewater, and waste.

本発明は、上記微生物工業の発展の為の有力な一手段を
提供するものてあり、微生物の生体性質、変化を促進す
る方法に関する。
The present invention provides a powerful means for the development of the microbial industry, and relates to a method for promoting changes in the biological properties of microorganisms.

従来より、醸造工業や医薬品工業部門においては、微生
物遺伝学に基づき、物理的又は化学的方法を用いて、酵
母や細菌の改良を繰り返し、高収率かつ高活性の有用微
生物をつくり出して来た。
Traditionally, the brewing and pharmaceutical industries have repeatedly improved yeast and bacteria using physical or chemical methods based on microbial genetics to create useful microorganisms with high yields and high activity. .

例えば、物理的方法としては、X線・γ線・紫外線等の
照射によつて人工突然変異を誘発させる方法が広く用い
られ、また化学的方法としては、特定の化学物質で処理
することによつて菌株の遺伝的改良を行なう方法が知ら
れている。この他に、後天的な生体性質変化を促進する
方法としては、培養液中のPHの制御や化学物質投与に
より、微生物の酵素に化学的影響や変化を起こさせて、
微生物の生体活動を変化させる、即ちその生体性質変化
を促進させる方法がある。しかしながら、上記の各種方
法の楊合、特に物理的方法の場合、装置が複雑・高価に
なるだけでなく、その取扱いにも危険を伴なうことから
、その操作が面倒になる。
For example, as a physical method, the method of inducing artificial mutations by irradiation with X-rays, gamma rays, ultraviolet rays, etc. is widely used, and as a chemical method, it is caused by treatment with specific chemicals. Methods for genetically improving bacterial strains are known. In addition, methods for promoting acquired changes in biological properties include controlling the pH in the culture solution and administering chemical substances to cause chemical effects and changes in the enzymes of microorganisms.
There is a method of changing the biological activity of microorganisms, that is, promoting changes in their biological properties. However, in the case of the above-mentioned various methods, especially the physical method, not only the equipment becomes complicated and expensive, but also the handling thereof is dangerous, making the operation troublesome.

化学的方法の場合、化学物質の種類も多く、処理方法、
処理濃度などの設定も難しく、ぼう大な実験をしなけれ
ば有用な方法が得られない等の欠,点がある。これに対
し、本発明は物理化学的方法である。
In the case of chemical methods, there are many types of chemicals, processing methods,
It has drawbacks such as it is difficult to set the treatment concentration, etc., and a useful method cannot be obtained without extensive experiments. In contrast, the present invention is a physicochemical method.

即ち、本発明者は先の出願「植物の巨大化・成長促進方
法」(特開昭55−42512)において、放電雰囲気
を植物に与えることにより、その成長を促,進する方法
を開示したが、本発明は上記発明を微生物に応用するも
のである。つまり、放電やその他各種電磁波によつて、
中性気体を励起乃至イオン化することによつて負のイオ
ン状気体をつくり、このイオン状気体を含ん.だ雰囲気
で微生物を処理することによつて微生物の生体性質変化
を促進するものである。
That is, the present inventor disclosed a method for promoting and advancing the growth of plants by providing an electric discharge atmosphere to them in a previous application entitled "Method for Promoting Enlargement and Growth of Plants" (Japanese Unexamined Patent Publication No. 55-42512). , the present invention applies the above invention to microorganisms. In other words, due to discharge and various other electromagnetic waves,
By exciting or ionizing a neutral gas, a negative ionic gas is created, and this ionic gas is contained. This method promotes changes in the biological properties of microorganisms by treating them in a warm atmosphere.

本発明者は、放電雰囲気即ち放電によつて生成されるイ
オン状気体を含んだ雰囲気が植物の発芽や成長を促進す
ることから、イオン状気体を含ん.゜だ雰囲気は、植物
に限らず微生物にも種々の影響を及ぼすであろうと想定
し、微生物のうち、菌類の代表としての酵母、一般藻類
の代表としてのクロレラ及び原生動物の代表としてのア
ルテミアに関する系統的実験を行つてその影響を確認し
た。
The present inventors believe that a discharge atmosphere, that is, an atmosphere containing ionic gases generated by electric discharge, promotes the germination and growth of plants. We assumed that the atmosphere would have various effects on not only plants but also microorganisms, and among microorganisms, we investigated yeast as a representative of fungi, chlorella as a representative of general algae, and Artemia as a representative of protozoa. A systematic experiment was conducted to confirm the effect.

以下、本発明の実施手順例として、上記実験について詳
しく説明する。先ず、近年アルコール発酵させて代替燃
料をつくるのに脚光を浴びている酵母を、放電によるイ
矛ン状気体で処理する2種類の実験を行つて、良仔な結
果が得られたので、これについて詳しく説男する。
The above experiment will be described in detail below as an example of the implementation procedure of the present invention. First, we conducted two types of experiments in which yeast, which has been attracting attention in recent years for producing alternative fuels through alcoholic fermentation, were treated with an iron-like gas produced by electrical discharge, and we obtained good results. I will explain about this in detail.

D実験方法 放電発生装置として、無声放電発生装置を用いた場合(
実験A)第1図に示すように、乾燥酵母をシヤーレ1に
容れ、これを送風筒2内に置き、この送風筒2へは無声
放電装置Eて放電させてつくつたイオン状気体を含んだ
雰囲気をファン3で送給し、各試料毎に所定時間ずつ処
理して4種の試料とし、これらを培養液中に混合し、恒
温槽内て34゜Cで培養し、酵母細胞の経時変化を測定
した。
D Experimental method When a silent discharge generator is used as the discharge generator (
Experiment A) As shown in Figure 1, dry yeast was placed in a shear dish 1 and placed in a blower tube 2, and the blower tube 2 contained ionic gas produced by discharging it with a silent discharge device E. The atmosphere was supplied by fan 3, and each sample was treated for a predetermined period of time to obtain four types of samples.These were mixed in a culture solution and cultured at 34°C in a constant temperature bath to observe changes in yeast cells over time. was measured.

但し、培養液としてHennberg氏液を用いた。放
電処理空気は、第2図に示す放電装置Eによつて発生さ
せた。
However, Hennberg's solution was used as the culture solution. The discharge treatment air was generated by a discharge device E shown in FIG.

この放電装置Eはピアノ線4を所定間隔ずつ空けて円筒
状に配設し、このピアノ線4の外周に、ガラス円筒5を
外装し、ガラス円筒5の内周面に塗つた導電塗料とピア
ノ線4間に負の直流高電圧を印加して導電塗料とピアノ
線4間のギャップに線状無声放電を発生させる。尚、接
地はガラス円筒5の外側のアルミ箱によつて行なわれる
。このように、接地ガラス円筒5以外に金属で行なわれ
る為、高電圧荷電による火花放電を防止することが出来
る。第1図に示すように、このイオン状気体を含んだ放
電雰囲気は、ファン3で送風筒2内へ送給されるが、こ
の放電雰囲気には負の酸素イオン及び窒素イオン等が自
然界の場合の数千〜数万倍の高濃度で含まれている。
This discharge device E has piano wires 4 arranged in a cylindrical shape with predetermined intervals, a glass cylinder 5 is wrapped around the outer periphery of the piano wire 4, and a conductive paint coated on the inner peripheral surface of the glass cylinder 5 is used. A negative DC high voltage is applied between the wires 4 to generate linear silent discharge in the gap between the conductive paint and the piano wire 4. Incidentally, grounding is performed by an aluminum box outside the glass cylinder 5. In this way, since metal is used in addition to the grounded glass cylinder 5, spark discharge due to high voltage charging can be prevented. As shown in Figure 1, this discharge atmosphere containing ionic gas is fed into the blower tube 2 by a fan 3, but this discharge atmosphere contains negative oxygen ions, nitrogen ions, etc. It is contained in concentrations thousands to tens of thousands of times higher than that of

放電発生装置として負イオン発生器を用いた場合(実験
B1及び実験B2)実験B1では、乾燥酵母をフラスコ
底部に容れ、フラスコの入口部に、負イオン発生部のイ
オン放出口を臨ませて、負のイオン状気体を含んだ雰囲
気を供給(以下、負イオン処理という)して各種の試料
とし、これらの試料を培養液で34℃恒温下て培養し、
酵母細胞数の経時変化を測定した。
When using a negative ion generator as a discharge generator (Experiments B1 and B2) In Experiment B1, dry yeast was placed in the bottom of the flask, and the ion discharge port of the negative ion generator was placed in front of the inlet of the flask. Various samples were prepared by supplying an atmosphere containing negative ionic gas (hereinafter referred to as negative ion treatment), and these samples were cultured in a culture solution at a constant temperature of 34°C.
Changes in the number of yeast cells over time were measured.

実験B2では、乾燥酵母を培養液に混合し、フラスコ内
に容れ、フラスコ入口部に負イオン発生器の負イオン放
出口を臨ませて配置し、負イオン連続処理しながら、3
4゜C恒温下で培養し、酵母細胞数の経時変化を測定し
た。
In experiment B2, dry yeast was mixed with a culture solution, placed in a flask, placed with the negative ion discharge port of the negative ion generator facing the inlet of the flask, and continuously treated with negative ions.
The yeast cells were cultured at a constant temperature of 4°C, and changes in the number of yeast cells over time were measured.

但し、実険B1及び実険B2共、培養液としてHenn
berg氏液を用いた。
However, for both Jitsken B1 and Jitsken B2, Henn was used as the culture medium.
Berg's solution was used.

負イオン発生器は原理的には、第3図に示す回路であり
、高電圧交流を整流してコンデンサーCて平滑化し、高
抵抗Rを介装して出力端子Pと接地間に弱電流放電を発
生させて、負のイオン状気体のみを発生させるものであ
る。
In principle, a negative ion generator is a circuit shown in Figure 3, in which high voltage alternating current is rectified, smoothed by a capacitor C, and a weak current is discharged between the output terminal P and ground by interposing a high resistance R. This generates only negative ionic gas.

(■)実験結果及び検討 実験Aの結果を第4図〜第6図に示し、実験B1及び実
験B2の結果を第7図〜第10図に示す。
(■) Experimental results and study The results of Experiment A are shown in FIGS. 4 to 6, and the results of Experiment B1 and B2 are shown in FIGS. 7 to 10.

第4図は「放電処理による細胞数の経時変化」を示し、
符号Cl,C2,C3,C4は各々無処理・2$f間放
電処理・梠時間放電処理・n時間放電処理のものと示す
Figure 4 shows "changes in cell number over time due to discharge treatment",
Symbols Cl, C2, C3, and C4 indicate those subjected to no treatment, 2 $f discharge treatment, half-time discharge treatment, and n-hour discharge treatment, respectively.

第5図は「放電処理時間と細胞の世体時間」を示し、第
6図は「放電処理時間と臨界値に達する日数」を示す。
FIG. 5 shows "discharge treatment time and cell life time", and FIG. 6 shows "discharge treatment time and number of days to reach critical value".

第7図は「負イオン処理による細胞数の経時変化」を示
し、符号C5,C6,C7,C8は各々無処理・2$f
間負イオン処理・4時間負イオン処理・冗時間負イオン
処理のものを示す。第8図は「負イオン処理時間と細胞
の世代時間」を示し、第9図は[負イオン処理時間と臨
界値に達する日数」を示す。第10図は「負イオン連続
処理培養時の細胞数の経時変化」を示し、符号C9,C
lOは各々無処理・負イオン連続処理培養のものを示す
。実験Aについて 第4図の酵母細胞数の経時変化から判るように、放電処
理することによつて、酵母細胞の増殖速度が飛躍的に速
められることが判る。
Figure 7 shows "changes in cell number over time due to negative ion treatment", where symbols C5, C6, C7, and C8 are untreated and 2$f, respectively.
Shown are those with intermittent negative ion treatment, 4-hour negative ion treatment, and long-time negative ion treatment. FIG. 8 shows "negative ion treatment time and cell generation time", and FIG. 9 shows "negative ion treatment time and number of days to reach critical value". Figure 10 shows "changes over time in cell number during culture with continuous negative ion treatment", with symbols C9 and C
IO indicates those of untreated culture and continuous negative ion treatment culture, respectively. As can be seen from the temporal change in the number of yeast cells shown in FIG. 4 for Experiment A, it can be seen that the growth rate of yeast cells is dramatically accelerated by the discharge treatment.

即ち、無処理の酵母は培養4日目まで比較的,緩慢に直
線的に増殖した後は、徐々に増殖し、6〜12日目に略
臨界状態に達する。
That is, untreated yeast proliferates relatively slowly and linearly until the fourth day of culture, then gradually proliferates and reaches a nearly critical state on days 6 to 12.

これに対し、2@間放電処理したものは、培養4日目に
臨界状態に達し、臨界細胞数も多い。
On the other hand, those subjected to the 2@ discharge treatment reached a critical state on the 4th day of culture, and the number of critical cells was also large.

そして、上記24時間放電処理したものに比べ、招時間
及びn時間処理のものでは、より低い細胞増殖傾向を示
す。
In addition, compared to those subjected to the 24-hour discharge treatment, those treated for an extended period of time and n hours show a lower cell proliferation tendency.

上記の傾向は培養6日目頃まで著しく、6日目以降は略
同水準の臨界値に達している。結局、乾燥酵母を放電に
よるイオン状気体で処理する場合、2橋間処理すれば最
も高い増殖速度となることが判る。
The above-mentioned tendency is remarkable until about the 6th day of culture, and after the 6th day, it reaches a critical value of approximately the same level. As a result, it can be seen that when dry yeast is treated with ionic gas by electric discharge, the highest growth rate can be obtained if the yeast is treated with two bridges.

ここで、以上のように、放電処理によつて、酵母の細胞
分裂・増殖が高速化される要因について考えてみる。
Here, let us consider the factors that speed up the cell division and proliferation of yeast by the discharge treatment as described above.

既述のごとく、放電によつて生成された負の活性酸素イ
オンが酵母への酸素の供給を促進するよノうに働き、酵
母の代謝に大きなウェイトを占める酸化作用が促進され
る結果、細胞の発育が促進され、その世代時間が短縮し
、細胞分裂の頻度が高まるものと推定される。
As mentioned above, the negative active oxygen ions generated by the discharge work to promote the supply of oxygen to the yeast, and as a result, the oxidation effect, which plays a large role in the yeast metabolism, is promoted, resulting in cell growth. It is estimated that growth is promoted, generation time is shortened, and the frequency of cell division is increased.

そこで、これを検討する為、細胞の世代時間を第5図に
示す。第5図から判るように、放電処理した酵母の世代
時間は、無処理のものに比べ著しく短縮されているが、
放電処理時間によつて大きな差見られ、24時間処理の
ものが、最小の世代時間を示す。
Therefore, in order to examine this, the cell generation time is shown in FIG. As can be seen from Figure 5, the generation time of discharge-treated yeast is significantly shorter than that of untreated yeast.
A large difference was observed depending on the discharge treatment time, with the 24-hour treatment having the minimum generation time.

ここで、放電処理によつて、酵母細胞の遺伝的性質まで
もが、変化したのか否か検討する為に、臨界値の細胞数
を算出する。培養開始後3週間経過時の細胞数の臨界値
は第1表のようになる。第1表に示す臨界値の変化率は
最大2.4%であり、これは相対誤差3.2%内に入つ
たことから、上記臨界値は略一定であるといえる。従つ
て、放電処理によつて、酵母細胞の遺伝的性質は変化が
なかつたものと推定される。
Here, in order to examine whether even the genetic properties of the yeast cells have changed due to the discharge treatment, a critical value of cell number is calculated. Table 1 shows the critical values for the number of cells after 3 weeks from the start of culture. The maximum rate of change in the critical value shown in Table 1 is 2.4%, which is within the relative error of 3.2%, so it can be said that the critical value is approximately constant. Therefore, it is presumed that the genetic properties of the yeast cells were not changed by the discharge treatment.

以上のように、放電処理は細胞の世代時間を短縮させる
が、細胞数の臨界値には影響を及ぼさないことが判つた
As described above, it was found that although the discharge treatment shortens the cell generation time, it does not affect the critical value of cell number.

次に、第1表の臨界値の平均値、420×8×1CF′
個/Tnlに到達するまでの所要日数を、世代時間を用
いて計算し、第6図に示す。この図から判るように、無
処理のものでは約6日で臨界値に達するのに対し、2橢
間処理のものは約2日目に臨界値に達し、その期間が6
7%短縮される。そして、4S1間処理のものでは、そ
の期間が17%短縮されるが、n時間処理のものでは、
殆んど短縮されない。そして、第6図の特性は第5図の
特性と同型であることから、臨界値に達する期間の短縮
は、世代時間短縮の2次的な結果であると判断される。
Next, the average value of the critical values in Table 1, 420×8×1CF'
The number of days required to reach number/Tnl is calculated using generation time and is shown in FIG. As can be seen from this figure, the non-treated one reaches the critical value in about 6 days, while the two-washed one reaches the critical value on about the second day, and the period is 6 days.
7% shorter. In the case of 4S1 processing, the period is shortened by 17%, but in the case of n-hour processing,
Almost never shortened. Since the characteristics shown in FIG. 6 are of the same type as those shown in FIG. 5, it is determined that the shortening of the period in which the critical value is reached is a secondary result of the shortening of the generation time.

−実験B1及び実験B2について−この実験は、負イオ
ン発生器により生成した負のイオン状気体を含んだ雰囲
気を酵母に与える、つまり負イオン処理した場合てある
- Regarding Experiments B1 and B2 - In this experiment, an atmosphere containing a negative ionic gas generated by a negative ion generator was applied to yeast, that is, negative ion treatment was performed.

第7図の細胞数の経時変化から判るように、無処理の酵
母では、培養4日目頃まで細胞数がある程度急激に増加
するが、その後緩慢に増加し続け、8〜10日目頃に略
臨界状態に達し、臨界状態の細胞数は約460×8X1
C1′個/mlである。
As can be seen from the change in cell number over time in Figure 7, in untreated yeast, the cell number increases rapidly to some extent until about the 4th day of culture, but then continues to increase slowly until about day 8 to 10. The number of cells in the critical state is approximately 460 x 8 x 1.
C1' pieces/ml.

これに対し、負イオン処理のものは、細胞の分裂・増殖
速度が大幅に大きくなる。2麟間処理のものでは、その
傾向は顕著ではないが、梠時間及びn時間処理のもので
は、3日目まで細胞数の急速増加現象が起り、4日目に
は殆んど臨界状態に達し、その後は、臨界状態が維持さ
れる。
On the other hand, when treated with negative ions, the rate of cell division and proliferation is significantly increased. In the case of the two-hour treatment, this tendency was not remarkable, but in the case of the two-hour treatment and the n-hour treatment, a rapid increase in cell number occurred until the third day, and reached an almost critical state on the fourth day. After that, the critical state is maintained.

負イオン処理の場合、放電処理の場合と異なつて、処理
時間の増加と共に、細胞増殖速度が増加する。
In the case of negative ion treatment, unlike the case of discharge treatment, the cell proliferation rate increases as the treatment time increases.

従つて、負イオン処理によつて乾燥酵母に与えられる負
のイオン状気体が培養酵母の細胞増殖を促進せしめるよ
うに作用することが判る。
Therefore, it can be seen that the negative ionic gas provided to the dried yeast by the negative ion treatment acts to promote cell growth of the cultured yeast.

即ち、前記実験Aにおける放電処理の場合にも、放電雰
囲気中の負のイオン状気体が培養酵母の細胞増殖を促進
するが、放電雰囲気に含まれる微量の正のイオン状気体
及びNOXなどの酸化物が阻害因となつて、実験B1と
異なる結果になつたものと推定される。そして、第7図
から判るように、本実験に関する限り24時間処理では
、その影響は大きくないが、お時間及ひ7時間処理のも
のでは、無処理のものに比べて酵母細胞の増殖速度が大
幅に向上する。
That is, in the case of the discharge treatment in Experiment A, the negative ionic gas in the discharge atmosphere promotes the cell growth of cultured yeast, but the minute amount of positive ionic gas contained in the discharge atmosphere and the oxidation of NOX, etc. It is presumed that the substance acted as an inhibiting factor, resulting in a different result from Experiment B1. As can be seen from Figure 7, as far as this experiment is concerned, the effect of 24-hour treatment is not large, but when treated for 7 hours and 7 hours, the growth rate of yeast cells is lower than that of untreated cells. Significantly improved.

第8図に、細胞の世体時間と負イオン処理時間の関係を
示す。
FIG. 8 shows the relationship between the body time of cells and the negative ion treatment time.

ここで、細胞の臨界値を、第2表に示し、その変化率は
相対誤差2.4%の範囲内である。
Here, the cell critical values are shown in Table 2, and the rate of change is within a relative error of 2.4%.

第9図には、臨界値に達する日数を示し、無処理の場合
に約9.5日要したのに対し、負イオン処理することに
よつてその所要日数を5.5日〜6.0日に短縮し得る
ことが判る。次に、実験B2即ち培養中の酵母に負のイ
オン状気体を含んだ雰囲気を与えて負イオン連続処理培
養した場合の実験結果を、第10図に示す。
Figure 9 shows the number of days required to reach the critical value, and while it took approximately 9.5 days without treatment, the number of days required to reach the critical value was reduced by 5.5 to 6.0 days with negative ion treatment. It turns out that it can be shortened to a day. Next, FIG. 10 shows the results of experiment B2, that is, the case where the yeast being cultured was cultured under continuous negative ion treatment by providing an atmosphere containing a negative ionic gas.

実験B1のように、負イオン処理の後培養する場合には
、培養開始と同時にその影響が現われるのに対し、本実
験の場合には、時間遅れを伴つてその影響が現われるこ
とが判る。即ち、実験B1においても、一定時間以上の
負イオン処理の場合に細胞増殖が急速化したように、本
実験の場合にも、一定時間負イオン処理された後にはじ
めて負イオン連続処理の影響が現われるのてある。そし
て、この場合培養3日目即ち7満間連続処理の後に細胞
増殖が活発化するであろう。尚、本実験B1ては、乾燥
酵母をフラスコ中の負イオン状気体の雰囲気下で処理し
たのに対し、この実験では、負イオン雰囲気下の培養液
を介して処理した為、負イオンの影響が培養液で減殺さ
れた結果、上記のようにn時間経過時まで遅れた゛もの
と推定される。
As in Experiment B1, when culturing is performed after negative ion treatment, the effect appears at the same time as the start of culture, whereas in the case of this experiment, the effect appears with a time delay. In other words, just as in Experiment B1, cell proliferation accelerated when negative ions were treated for a certain period of time, in this experiment as well, the effects of continuous negative ion treatment appeared only after negative ion treatment for a certain period of time. There it is. In this case, cell proliferation will become active after the 3rd day of culture, ie after 7 days of continuous treatment. In addition, in this experiment B1, dried yeast was treated in a negative ion gas atmosphere in a flask, whereas in this experiment, it was treated through a culture solution in a negative ion atmosphere, so there was no effect of negative ions. It is presumed that as a result of being reduced by the culture solution, the delay was delayed until n hours had elapsed as described above.

そして、このように培養液中の酵母に負イオン連続処理
する場合にも、負の酸素イオンが培養液に溶解し、培養
液中の活性酸素の濃度が高まつて、培養中の酵母の呼吸
により吸収され、その代謝作用を活発化させて、細胞の
発育を促進するものと推定される。
Also, when yeast in the culture medium is continuously treated with negative ions in this way, negative oxygen ions are dissolved in the culture medium, increasing the concentration of active oxygen in the culture medium, and inhibiting the respiration of yeast during culture. It is presumed that it is absorbed by the cells, activates its metabolic effects, and promotes cell growth.

結局、上記の放電処理及び負イオン処理及び負イオン連
続処理の実験結果から、次のようなことが判る。
In the end, from the experimental results of the above-mentioned discharge treatment, negative ion treatment, and negative ion continuous treatment, the following can be found.

即ち、放電発生装置を用いて大気中て放電させて負のイ
オン状気体をつくり、このイオン状気体を含んだ雰囲気
で所定の時間に亘つて乾燥酵母を処理することにより、
酵母の生体性質変化を促進し、培養中の酵母の成長を促
進して、その臨界細胞数を維持したまま、その世代時間
を大幅に短縮させて酵母の分裂・増殖速度を格段と高め
ることが出来る。
That is, by creating a negative ionic gas by discharging it in the atmosphere using a discharge generator, and treating the dried yeast in an atmosphere containing this ionic gas for a predetermined period of time,
It promotes changes in the biological properties of yeast, promotes the growth of yeast during culture, and significantly shortens the generation time while maintaining the critical cell number, dramatically increasing the rate of yeast division and proliferation. I can do it.

一般に、大気中で放電させると、放電により大気中の各
種気体分子(02、N2、H2Oなど)が励起して、正
のイオン状気体が発生するとともに、放電により放出さ
れた電子が、上記気体分子の中性粒子の漏洩電界の作用
により、中性粒子に附着し、各種の負のイオン状気体が
生成する。
Generally, when a discharge is made in the atmosphere, various gas molecules (02, N2, H2O, etc.) in the atmosphere are excited by the discharge, and positive ionic gas is generated, and the electrons released by the discharge are Due to the action of the leakage electric field of the neutral particles of molecules, various negative ionic gases are generated by adhering to the neutral particles.

そして、弱電流放電の場合には、励起エネルギーは不十
分なので、正のイオン状気体は極めて少なく、イオン状
気体の大部分は負のイオン状気体で占められることにな
る。
In the case of weak current discharge, the excitation energy is insufficient, so there is very little positive ionic gas, and most of the ionic gas is occupied by negative ionic gas.

これら負のイオン状気体が酵母の生体活動に種々の影響
を及ぼすことは十分に在り得ることである。
It is quite possible that these negative ionic gases have various effects on the biological activities of yeast.

即ち、負のイオン状酸素は活性酸素であつて、酵母純粋
培養時の呼吸に伴なう代謝作用を大幅に促進する作用を
有することから、酵母の成長が促進されて、増殖速度が
速まるのであろう。
In other words, negative ionic oxygen is active oxygen and has the effect of greatly promoting the metabolic effects associated with respiration during pure culture of yeast, thus promoting the growth of yeast and accelerating its proliferation rate. Probably.

このこ,とは、既に記載した通りであるが、培養酵母だ
けでなく、乾燥酵母を処理するだけで、その影響が培養
中の酵母に現われるということを、代謝の酸化作用だけ
で説明するのは困難である。酵母等微生物は、各種の酵
素をその生体内外に;生成し、この微量な化学物質であ
る酵素と複雑な化学反応を行なうことによつて、その生
体機能を維持しているのであるが、これら酵素に上記イ
オン状気体が直接的に又間接的に影響を及ぼすという可
能性もあり得る。
As already mentioned, the effect of treating not only cultured yeast but also dried yeast will be felt on the cultured yeast, which cannot be explained solely by the oxidation effect of metabolism. It is difficult. Microorganisms such as yeast produce various enzymes inside and outside of their bodies, and maintain their biological functions by performing complex chemical reactions with enzymes, which are trace amounts of chemical substances. It is also possible that the ionic gas has a direct or indirect effect on the enzyme.

即ち、乾燥酵母が有する酵素が、イオン状気体の影響を
受け、この酵素が培養中の酵母に影響を及ぼしたと考え
ることも出来る。
That is, it can be considered that the enzyme possessed by the dry yeast was affected by the ionic gas, and this enzyme affected the yeast during culture.

次に、放電によるイオン状気体がクロレラ及びアルミア
に及ぼす影響を調べる為に行なつた実験jについて説明
する。
Next, an experiment conducted to investigate the influence of ionic gas caused by discharge on chlorella and alumia will be described.

クロレラは微生物の中の単細胞藻類に属し、太陽エネル
ギー今高効率で吸収して、活発な光合成を行ない、水と
炭酸ガスを原料として多量の必須アミノ酸を含んだ疋白
質や各種ビタミン等を生成るするので、将来の食糧難を
解決する為の代替食糧・飼糧源として有力視されている
Chlorella belongs to the unicellular algae among microorganisms, and absorbs solar energy with high efficiency, performs active photosynthesis, and uses water and carbon dioxide as raw materials to produce white matter containing large amounts of essential amino acids and various vitamins. Therefore, it is considered a promising alternative food and feed source to solve future food shortages.

放電によるイオン状気体を含んだ雰囲気で処理すること
により、クロレラ及びアルテシアの生体性質変化を促進
し得るか否かを検討する為、次の実験を行なつた。−ク
ロレラに関する実験一 (1)実験方法 放電発生装置として無声放電発生装置を用いた場合(実
験C)第11図に示す無声放電発生装置E″を用いて大
気中で放電させ、イオン状気体を含んだ雰囲気を生成さ
せ、第12図に示すようにこの雰囲気をエアポンプAを
用いて培養中のクロレラに供給した。
The following experiment was conducted to examine whether changes in biological properties of Chlorella and Artesia could be promoted by treatment in an atmosphere containing ionic gas caused by electrical discharge. -Experiment 1 on Chlorella (1) Experiment method When a silent discharge generator is used as the discharge generator (Experiment C) The silent discharge generator E'' shown in Fig. 11 is used to discharge in the atmosphere, and ionic gas is generated. A containing atmosphere was generated, and this atmosphere was supplied to the chlorella under cultivation using air pump A, as shown in FIG.

この供給方法として、第12図に示すように、通気法処
理W及び照射法処理G及び無処理Nの3種の処理につい
て実験した。
As this supply method, as shown in FIG. 12, experiments were conducted on three types of treatments: aeration method treatment W, irradiation method treatment G, and no treatment N.

第11図の放電発生装置E″は、ガラス筒6内に鉛製円
板の陽極7と針状の陰極8とを対置させて直流高電圧を
印加して放電させとともに、片方のガラス管9から供給
された大気内で放電させ、この放電雰囲気を他方のガラ
ス管10から取り出すようにしたものである。
The discharge generating device E'' shown in FIG. 11 has a lead disk anode 7 and a needle-shaped cathode 8 placed opposite each other in a glass tube 6 and applies a DC high voltage to generate a discharge. A discharge is caused in the atmosphere supplied from the glass tube 10, and this discharge atmosphere is taken out from the other glass tube 10.

また、放電雰囲気の供給(以下、放電処理という)は、
培養開始後2〜8.時間に亘る第1次処理の後、培養開
始後26〜31時間に亘る第2次処理を行ない細胞数の
経時変化を測定した。
In addition, the supply of discharge atmosphere (hereinafter referred to as discharge treatment)
2-8 after the start of culture. After the first treatment over a period of time, the second treatment was performed for 26 to 31 hours after the start of culture, and changes in cell number over time were measured.

(■)実験結果及び検討実験Cの結果を第13図〜第1
6図に示す。
(■) Experimental results and results of study experiment C are shown in Figures 13-1.
It is shown in Figure 6.

第13図は[2.6μm以上の放電処理クロレラの細胞
数の経時変化」を示し、第14図は「2.6μm以上の
放電処理クロレラの細胞数比較」を示し、第15図は「
放電処理クロレラの全細胞数の経時変化」を示し、第1
6図は「放電処理クロレラの全細胞数比較」を示す。
Figure 13 shows [Time-dependent change in the number of cells of discharge-treated chlorella with a diameter of 2.6 μm or more], Figure 14 shows "comparison of the number of cells in discharge-treated chlorella with a diameter of 2.6 μm or more", and Figure 15 shows "
1.
Figure 6 shows "comparison of total cell numbers of discharge-treated Chlorella".

また、図中符号11,12は各々第1次処理区間・第2
処理区間を示し、符号0−O・4・●は各々無処理・照
射法処理・通気法処理のものを示す。
In addition, the symbols 11 and 12 in the figure are the first processing section and the second processing section, respectively.
The treatment sections are shown, and the symbols 0-O, 4, and ● indicate no treatment, irradiation method treatment, and aeration method treatment, respectively.

一実験Cについて− 第13図は、クロレラ細胞の大きさが、2.6μm以上
の大形細胞の細胞数の経時変化を示す。
Regarding Experiment C - Figure 13 shows changes over time in the number of large Chlorella cells with a size of 2.6 μm or more.

無処理のものは、略直線的な細胞数の増加を示し、放電
処理したものにも著しい変化は見られなかつた。しかし
、第1次処理区間及び第2次処理区間においては、明ら
かに放電処理の影響が現われていた。即ち、第1次処理
区間では、無処理及び照射法処理のものが細胞数の増加
傾向を示すのに対し、通気法処理のものは減少傾向を示
す。また、第2次処理区間ては、無処理及ひ照射法処理
のものが減少傾向を示し、通気法処理のものは増加傾向
を示している。
The untreated cells showed a nearly linear increase in cell number, and no significant change was observed in the discharge-treated cells. However, in the first treatment section and the second treatment section, the influence of the discharge treatment was clearly evident. That is, in the first treatment section, cells treated with no treatment and those treated with the irradiation method tend to increase in cell number, whereas those treated with the aeration method show a tendency to decrease. Furthermore, in the secondary treatment section, those treated with no treatment and those treated with the irradiation method showed a decreasing trend, and those treated with the aeration method showed an increasing trend.

このように、放電処理中に2.6μm以上の大形の細胞
の細胞数を減少させることから、放電処理はクロレラ細
胞に対して、(1)何らかの障害を与えて細胞を死滅さ
せる作用、及び(2)細胞分裂を促進させて、大形の細
胞の数を減少させる作用、の2通りの影響を及ぼすこと
が想定される。
As described above, since the number of large cells of 2.6 μm or more is reduced during the discharge treatment, the discharge treatment has the effect of (1) causing some damage to the cells and killing them; It is assumed that there are two effects: (2) an effect of promoting cell division and reducing the number of large cells.

これを調べる為、細胞数の増加率を、次の第3表に示す
。但し処理区間中の平均細胞数をベースとして算出した
ものである。上記第3表から判るように、前期において
は、放電処理したものが、無処理のものに比べて高い増
加率を示し、後期においては、前期と逆の傾向を示して
いる。従つて、第1次処理は細胞分裂を促進する作用を
なし、第2次処理は細胞分裂及び成長を阻害する作用を
なしていることが明らかである。
To investigate this, the rate of increase in cell number is shown in Table 3 below. However, it is calculated based on the average number of cells during the treatment period. As can be seen from Table 3 above, in the first period, those treated with discharge showed a higher rate of increase compared to those without treatment, and in the latter period, the tendency was opposite to that of the first period. Therefore, it is clear that the first treatment has the effect of promoting cell division, and the second treatment has the effect of inhibiting cell division and growth.

第14図には、無処理のものを100%として、これに
対する比率で細胞数の経時変化を示す。
FIG. 14 shows the change in cell number over time in proportion to that of untreated cells as 100%.

この図から判るように、通気法処理では、細胞分裂及び
成長に障害となるが、照射法処理では多少の障害となる
ものの、6.5時間程度の処理(第1次処理)は細胞分
裂及び成長を促進させる作用があると判断されらる。以
上は、2.6μm以上の大形の細胞に関する検討である
が、放電処理の細胞分裂促進作用を調べる為に、次に全
細胞数の経時変化を検討する。
As can be seen from this figure, the aeration method impedes cell division and growth, while the irradiation method causes some impediments, but the 6.5-hour treatment (first treatment) It is judged to have the effect of promoting growth. The above is an examination of large cells of 2.6 μm or more, but in order to investigate the cell division promoting effect of discharge treatment, next we will examine changes over time in the total number of cells.

第15図は、全細胞数の経時変化を示し、第1次処理区
間及び第2次処理区間共に、通気法処理のものの細胞数
増加が著しく、照射法処理のものは無処理のものと大差
ない。これは通気法処理が細胞分裂を著しく促進させる
作用をもつことを示している。そして、第1次処理〜第
2次処理、及び第2次処理以降の細胞数を調べてみると
、通気法処理のものの増加率が極めて小さい値となつた
Figure 15 shows the change in the total cell number over time. In both the first and second treatment sections, the number of cells treated with the aeration method increased significantly, and the number of cells treated with the irradiation method was significantly different from that without treatment. do not have. This indicates that aeration treatment has the effect of significantly promoting cell division. When we investigated the number of cells from the first to second treatments and after the second treatment, we found that the rate of increase in cells treated with the aeration method was extremely small.

従つて、通気法処理すると、処理後の細胞分裂は殆んど
起らないと考えられる。第16図には、無処理のものを
100%として、これに対する比率で細胞数の経時変化
を示す。
Therefore, it is considered that when the aeration method is used, cell division hardly occurs after the treatment. FIG. 16 shows the change over time in the number of cells as a percentage of the untreated cells as 100%.

結局、以上を要約すると次のようになる。(1)通気法
処理及び照射法処理の影響は異なるものではないが、通
気法処理の場合に一層強く影響が現われる。
In the end, the above can be summarized as follows. (1) Although the effects of the aeration method treatment and the irradiation method treatment are not different, the influence appears more strongly in the case of the aeration method treatment.

(2)放電処理の影響は、2.6μm以上の細胞の細胞
数への影響よりも、むしろ小形の細胞を含めた全細胞の
細胞数への影響に大きく現われる。(3)放電処理は細
胞分裂に大きく影響を及ぼし、6.5時間程度の放電処
理は細胞分裂を著しく促進させる。ーアルテミアに関す
る実験(実験D)ー アルテミアは高等微生物のうちの原生動物に属し、乾燥
卵を塩水に入れることによりリ貯化するという特異な性
質を有している。
(2) The influence of the discharge treatment is more pronounced in the influence on the number of all cells including small cells than on the number of cells with a diameter of 2.6 μm or more. (3) Electric discharge treatment greatly affects cell division, and electric discharge treatment for about 6.5 hours significantly promotes cell division. - Experiment on Artemia (Experiment D) - Artemia belongs to the protozoa of higher microorganisms, and has the unique property of re-storing dried eggs by placing them in salt water.

アルテミアの乾燥卵に放電処理が卿化及び卿化後の成長
にどのような影響を及ぼすか検討する為に、次のような
実験を行つた。
The following experiment was conducted to examine the effect of electric discharge treatment on dried eggs of Artemia on their growth and on their growth.

(1)実験方法 試料として、カルフォルニア産Artemissall
naの乾燥卵を密封シヤーレに容れ、その中へ前記の放
電発生装置で発生させたイオン状気体を各種時間に亘つ
て供給した(以下、放電処理という)。
(1) Experimental method Artemissall from California was used as a sample.
Na dried eggs were placed in a sealed shear dish, into which the ionic gas generated by the above-mentioned discharge generator was supplied for various times (hereinafter referred to as discharge treatment).

この放電処理した乾燥卵を食塩水に容れて卿化させ、ア
ルテミアの体長の経時変化を測定した。この処理時間と
して、(1)2時間、(2)3〜1満間、の2種類の実
験をしたが、(1)に関しては殆んど影響が認められな
かつたので説明を省略する。
The dried eggs subjected to electrical discharge treatment were placed in saline solution to cure the eggs, and changes in the body length of Artemia over time were measured. Two types of experiments were conducted with respect to the treatment time: (1) 2 hours and (2) 3 to 1 hour, but since almost no effect was observed regarding (1), the explanation will be omitted.

第17図に「アルテミアの平均体長の経時変化」を示し
、符号0−O・1・●は各々無処理・3時間処理・6時
間処理・12fI!間処理のものを示す。
Figure 17 shows "changes in average body length of Artemia over time", where symbols 0-O, 1, and ● indicate no treatment, 3-hour treatment, 6-hour treatment, and 12fI!, respectively. Indicates intermediate processing.

この図から判るように、無処理のものは、4日目以降早
くも成長鈍化の傾向を示すのに対し、放電処理したもの
は、12日目のピークまて直線的成長を示し、処理時間
の長いもの程急成長している。従つて、放電処理がアル
テミアのり靜化後の成長を促進させる作用をなすことは
明らかである。そして、この成長を促進させる作用を検
討する為、体長の最大値の経時変化を調べた。
As can be seen from this figure, the untreated specimens show a tendency to slow down in growth as early as the 4th day, whereas the discharge-treated specimens show linear growth reaching a peak on the 12th day, and the treatment time The longer the period, the faster the growth. Therefore, it is clear that the discharge treatment has the effect of promoting the growth of Artemia after it becomes stagnant. In order to examine the effect of promoting this growth, we investigated changes in maximum body length over time.

(第18図参照)第18図から判るように、体長の最大
値に関しても、体長の平均値と同様の傾向が見られるこ
とから、放電処理の成長促進作用が確められた。
(See FIG. 18) As can be seen from FIG. 18, the same tendency was observed for the maximum body length as for the average body length, confirming the growth promoting effect of the discharge treatment.

尚、図中の符号は第17図の場合と同じである。以上、
放電による負のイオン状気体が、酵母、クロレア、アル
テミアの生体性質変化促進作用について、各種実験デー
タに基づく検討を加えた結果、負のイオン状気体を所定
の時間に亘つて微生物に与えることにより、微生物の生
体性質変化を促進し得ることが実証された。
Note that the symbols in the figure are the same as in FIG. 17. that's all,
As a result of studies based on various experimental data regarding the effect of negative ionic gas caused by electrical discharge on promoting biological property changes in yeast, chlorea, and Artemia, we found that by providing negative ionic gas to microorganisms for a predetermined period of time, , it was demonstrated that it can promote changes in the bioproperties of microorganisms.

微生物はその生体内外に多種の酵素を生成し、この酵素
の作用で、その生体機能を維持している生化学的存在で
あり、外界の変化に敏感に対応して先天的及び後天的変
化を行なつているものであるから、自然条件下に比べて
極めて高濃度の負のイオン状気体によつて、その生体性
質変化を受け易いのである。
Microorganisms are biochemical entities that produce a variety of enzymes inside and outside of their bodies, and maintain their biological functions through the action of these enzymes.They respond sensitively to changes in the outside world and undergo congenital and acquired changes. Because of this, it is more susceptible to changes in its biological properties due to extremely high concentrations of negative ionic gases compared to natural conditions.

上記、酵母、クロレラ、アルテミアの他の別生物に対し
ても負のイオン状気体の影響は様々な形で作用すること
は、上記実験結果からも容易に想到し得る。
It can be easily inferred from the above experimental results that negative ionic gases also act in various ways on other organisms other than yeast, chlorella, and Artemia.

本発明は、各種の放電発生手段で負のイオン状気体を発
生させ、このイオン状気体を含んだ雰囲気で微生物を処
理することによつて微生物の生体性質変化を促進させる
方法であるから、従来の物理的又は化学的方法と異なり
、放電発生装置という簡単かつ安価にして取扱いの容易
な装置を用いて、放電雰囲気を種々適宜選択したり、放
電発生手段を適宜選択したり、処理時間を適宜設定した
りするだけの簡単な条件設定により、多種の微生物に対
し、多種の生体性質変化促進条件を設定して生体性質変
化を促進し得る。
The present invention is a method for promoting changes in biological properties of microorganisms by generating negative ionic gas using various discharge generating means and treating microorganisms in an atmosphere containing this ionic gas. Unlike physical or chemical methods, a simple, inexpensive, and easy-to-handle device called a discharge generator is used to appropriately select various discharge atmospheres, appropriately select discharge generation means, and adjust processing time as appropriate. By simply setting conditions, it is possible to set various biological property change promoting conditions for various types of microorganisms and promote biological property changes.

従つて、本発明は今日資源問題・食糧危機等との関連で
、益々重要性増している応用微生物工業等における微生
物の生体性質変化等に有力な手段となるものである。特
に、将来の代替燃料としてのアルコールの製造に大量に
必要となる酵母に本発明を適用する場合には、酵母の成
長を著しく保進させ、臨界状態に達する大幅に短縮し得
るので、酵母を高能率で培養することが可能となる。ま
た、クロレラに本発明を適用する場合には、処理条件に
よつては、培養クロレラの細胞分裂を保進させ得る。
Therefore, the present invention is an effective means for changing the biological properties of microorganisms in the applied microbial industry, which is becoming increasingly important in connection with resource problems and food crises. In particular, when the present invention is applied to yeast, which will be required in large quantities for the production of alcohol as an alternative fuel in the future, the growth of yeast can be significantly accelerated and reaching a critical state can be greatly shortened. It becomes possible to culture with high efficiency. Furthermore, when the present invention is applied to Chlorella, depending on the treatment conditions, cell division of cultured Chlorella can be accelerated.

また、アルテミアの乾燥卵に本発明を適用するj場合に
は、アルテミアリ眸化後の成長を大幅に促進させ得る。
図面の簡単な説明図は本発明の実施手順例に用いた装置
及び実験結果の線図を示し、第1図は実験Aに関し乾燥
酵母は放電処理する実験装置の斜視図、第2図は実験A
に用いた無声放電発生装置の斜視図、第3図は負イオン
発生器の回路図、第4図〜第6図は実験Aの結果に関し
、第4図は「放電処理による細胞数の経時変化」を示す
線図、第5図は「放電処゛理時間と細胞の世代時間」を
示す線図、第6図は「放電処理時間と臨界値に達する日
数」を示す線図、第7図〜第10図は実験B1及びB2
の結果に関し、第7図は「負イオン処理による細胞数の
経時変化」を示す線図、第8図は「負イオン処理時間と
細胞の世代時間」を示す線図、第9図は「負イオン処理
時間と臨界値に達する日数」を示す線図、第10図は「
負イオン連続処理培養時の細胞数の経時変化」を示す線
図、第11図は実験Cに用いた無声放電発生装置の縦断
側面図、第12図は実験Cの放電処理の説明図、第13
図〜第16図は実験Cの結果に関し、第13図は「2.
6μm以上の放電処理クロレラの細胞数の経時変化」を
示す線図、第14図は「2.6μm以上の放電処理クロ
レラの細胞数比較」を示す線図、第15図は「放電処理
クロレラの全細胞数の経時変化」を示す線図、第16図
は「放電処理クロレラの全細胞数比較」を示す線図、第
17図は「アルテミアの平均体長の経時変化」を示す線
図、第18図は「アルテミアの体長の最大値の経時変化
」を示す線図である。
Furthermore, when the present invention is applied to dried Artemia eggs, the growth of Artemia ants after their appearance can be significantly promoted.
Brief explanatory diagrams of the drawings show the apparatus used in the example of the implementation procedure of the present invention and a line diagram of the experimental results. Fig. 1 is a perspective view of the experimental apparatus in which dry yeast was subjected to electrical discharge treatment for experiment A, and Fig. 2 is a diagram showing the experimental results. A
Figure 3 is a circuit diagram of the negative ion generator, Figures 4 to 6 relate to the results of Experiment A, and Figure 4 is a graph showing the change in cell number over time due to discharge treatment. ”, Figure 5 is a diagram showing “discharge treatment time and cell generation time”, Figure 6 is a diagram showing “discharge treatment time and number of days to reach critical value”, and Figure 7 is a diagram showing “discharge treatment time and cell generation time”. ~Figure 10 shows experiments B1 and B2.
Regarding the results, Figure 7 is a line diagram showing ``changes in cell number over time due to negative ion treatment'', Figure 8 is a line diagram showing ``negative ion treatment time and cell generation time'', and Figure 9 is a line diagram showing ``changes in cell number over time due to negative ion treatment''. Figure 10 is a diagram showing the ion processing time and the number of days to reach the critical value.
Figure 11 is a longitudinal side view of the silent discharge generator used in Experiment C. Figure 12 is an explanatory diagram of the discharge treatment in Experiment C. 13
Figures 1 to 16 relate to the results of Experiment C, and Figure 13 shows "2.
Figure 14 is a line diagram showing ``Cell count over time of discharge-treated chlorella with a diameter of 6 μm or more'', Figure 14 is a line diagram showing ``comparison of cell numbers of discharge-treated chlorella with a diameter of 2.6 μm or more'', and Figure 15 is a line diagram showing ``changes over time in the number of cells of discharge-treated chlorella with a diameter of 2.6 μm or more''. Figure 16 is a line diagram showing the ``change in total cell number over time,'' Figure 16 is a line diagram showing ``comparison of total cell number in discharge-treated Chlorella,'' and Figure 17 is a line diagram showing ``change in average body length of Artemia over time.'' Figure 18 is a diagram showing "time-dependent changes in the maximum body length of Artemia."

Claims (1)

【特許請求の範囲】 1 負のイオン状気体を含んだ雰囲気で微生物を処理す
ることを特徴とする微生物の生体性質変化促進方法。 2 特許請求の範囲第1項に記載した微生物の生体生質
変化促進方法において、微生物として乾燥酵母を用い、
その生体性質変化を促進し、その増殖速度を変化させる
もの。 3 特許請求の範囲第1項に記載の微生物の生体生質変
化促進方法において、微生物として、培養中の酵母を用
い、その生体性質変化を促進し、その増殖速度を変化さ
せるもの。 4 特許請求の範囲第1項に記載した微生物の生体生質
変化促進方法において、微生物として培養中のクロレラ
を用い、その生体性質を変化させてクロレラの細胞分裂
を促進させるもの。 5 特許請求の範囲第1項に記載した微生物の生体生質
変化促進方法において、微生物としてアルテミアの乾燥
卵を用い、その生体性質を変化させて、アルテミアの卵
浮化後の成長を促進させるもの。
[Scope of Claims] 1. A method for promoting changes in biological properties of microorganisms, which comprises treating microorganisms in an atmosphere containing a negative ionic gas. 2. In the method for promoting biotransformation of microorganisms as set forth in claim 1, using dried yeast as the microorganism,
Something that promotes changes in its biological properties and changes its growth rate. 3. The method for promoting biological changes in microorganisms as set forth in claim 1, in which yeast in culture is used as the microorganisms, and changes in biological properties are promoted to change its growth rate. 4. The method for promoting biotransformation of microorganisms as set forth in claim 1, in which Chlorella in culture is used as the microorganism, and its biological properties are changed to promote cell division of Chlorella. 5. In the method for promoting biological changes in microorganisms as set forth in claim 1, dried eggs of Artemia are used as microorganisms, and the biological properties of the eggs are changed to promote the growth of Artemia eggs after they float. .
JP11081580A 1980-08-11 1980-08-11 Method for promoting changes in biological properties of microorganisms Expired JPS6041588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081580A JPS6041588B2 (en) 1980-08-11 1980-08-11 Method for promoting changes in biological properties of microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081580A JPS6041588B2 (en) 1980-08-11 1980-08-11 Method for promoting changes in biological properties of microorganisms

Publications (2)

Publication Number Publication Date
JPS5736980A JPS5736980A (en) 1982-02-27
JPS6041588B2 true JPS6041588B2 (en) 1985-09-18

Family

ID=14545353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081580A Expired JPS6041588B2 (en) 1980-08-11 1980-08-11 Method for promoting changes in biological properties of microorganisms

Country Status (1)

Country Link
JP (1) JPS6041588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082621A1 (en) * 2017-10-25 2019-05-02 シャープ株式会社 Cell stimulation device, cell culture device, and cell stimulation method
JP7032263B2 (en) * 2017-10-25 2022-03-08 シャープ株式会社 Cell stimulator, cell culture device and cell stimulating method

Also Published As

Publication number Publication date
JPS5736980A (en) 1982-02-27

Similar Documents

Publication Publication Date Title
JP6218340B2 (en) Animal and plant growth promotion method
Hunt et al. Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications
CN1826408A (en) Large volume ex vivo electroporation method
Wang et al. Effect of positive and negative corona discharge field on vigor of millet seeds
Nakajima et al. Generation of bactericidal factors in the liquid phase and approach to new gene transfer technology by low temperature plasma jet treatment
JPS6041588B2 (en) Method for promoting changes in biological properties of microorganisms
Kooshki et al. Efficient treatment of bio-contaminated wastewater using plasma technology for its reuse in sustainable agriculture
Barjasteh et al. Recent progress of non-thermal atmospheric pressure plasma for seed germination and plant development: current scenario and future landscape
Belov et al. A device for biological activation of aqueous solutions using glow discharge plasma in water vapor
JP2000086220A (en) Ultrafine carbon particle
CN113438789A (en) Flexible large-area glow discharge plasma disinfection and sterilization device
Gostev et al. Cold plasma–a powerful agent for biological applications
Normov et al. Energy intensity decrease in chlorella growth technology by electro ozonation
Jabłońska et al. The use of the electromagnetic field in microbial process bioengineering
JPH01210100A (en) Anaerobic digestion of sludge
US7491340B1 (en) Method for treating a living organism using a fluid with increased oxygen concentration and reduced surface tension
CN101368279A (en) Mesoporous metal-based electroproduction strong oxygenant emitting material
Halim Inactivation Techniques of Algae Water by Generation of High Voltage Discharge Plasma
CN109647154A (en) A kind of method of biology dystopy degradation of formaldehyde
Suwannarat et al. Disinfection Efficacy of Electrohydraulic Discharge Plasma against Xanthomonas campestris pv campestris: A Sustainable Seed Treatment Approach
Veremii et al. Influence of plasma micro-and coronary discharge on the development of higher fungi myceles
Khatami Food Safety Technology Based on Cold Atmospheric Plasma Brush Effect on Different Bacterial Spectrums
Lajis et al. Bioelectricity harvesting at aquaponics system: current and future challenges
CN108624498B (en) Device for promoting anaerobic fermentation of organic waste to prepare lactic acid by utilizing low-temperature plasma
CN106976933A (en) A kind of electrode for handling agricultural chemicals waste water and its preparation and application