JPS604128B2 - Fused silica production method and equipment - Google Patents

Fused silica production method and equipment

Info

Publication number
JPS604128B2
JPS604128B2 JP8834482A JP8834482A JPS604128B2 JP S604128 B2 JPS604128 B2 JP S604128B2 JP 8834482 A JP8834482 A JP 8834482A JP 8834482 A JP8834482 A JP 8834482A JP S604128 B2 JPS604128 B2 JP S604128B2
Authority
JP
Japan
Prior art keywords
fused silica
silicon dioxide
raw material
hearth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8834482A
Other languages
Japanese (ja)
Other versions
JPS58204816A (en
Inventor
健次 太田黒
竹憲 堺
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8834482A priority Critical patent/JPS604128B2/en
Publication of JPS58204816A publication Critical patent/JPS58204816A/en
Publication of JPS604128B2 publication Critical patent/JPS604128B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、溶融シリカの製法及びその装置さらに詳しく
は移動可能な炉床を具えた密閉式炉の炉床上に溶融シリ
カ粒状物を載層し、さらにその上に原料二酸化ケイ素の
粒状物及び又は塊状物を敦暦して加熱溶融する溶融シリ
カの製法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing fused silica and an apparatus therefor. More specifically, the present invention provides a method for producing fused silica and an apparatus therefor. The present invention relates to a method for producing fused silica, in which granular and/or lumpy silicon dioxide particles are heated and melted, and an apparatus therefor.

溶融シリカは比較的不純物の少ない二酸化ケイ素を加熱
溶融したものであって、現在主として耐火材料や電子材
料に使用されている。
Fused silica is made by heating and melting silicon dioxide, which has relatively few impurities, and is currently mainly used in fire-resistant materials and electronic materials.

しかし、電子技術の進歩と共に高純度「高品質のものが
要求されるようになり、電子部品の封止材として用いら
れる溶融シリカもQ−線の含有量の少し、ものが要求さ
れている。溶融シリカの製法としてはいるいる提案され
ている。
However, as electronic technology advances, high purity and high quality products are required, and fused silica used as a sealing material for electronic components is also required to contain a small amount of Q-rays. Several methods have been proposed for producing fused silica.

例えば二酸化ケイ素をカーボン電極によりアークを発生
させ溶融する方法或いはジルコニア煉瓦を用いた炉体に
原料二酸化ケイ素粉末を供給すると共に酸水素炎により
溶融する方法がある。しかし、前者はカーボン電極を用
いているので、溶融シリカ中にカーボンが混入するので
その分離除去が困難であるので、現在は後者の方法が主
として採用されている。しかし後者によっても電子材料
例えばトランジェスターやICなどの樹脂封止材として
用いる場合、炉材のジルコニア煉瓦中に徴量存在するウ
ランが徴量に混入されて来る欠点がある。そのため原料
二酸化ケイ素の不純物の少し、ものを選択し、さらにこ
れを粉砕し、浮遊選鉱したり酸処理したり、適当な不純
物の除去手段を行った原料を用いても溶融シリカ製造装
置の炉材から不純物が溶融シリカ中に混入することは避
けられない。本発明はこれらの欠点を解決することを目
的とするもので、不純物の含有量の少ない二酸化ケイ素
を使用し、直接不純物の混入しないようにした装置すな
わち、可動式炉床の上に溶融シリカ粒状物さらにその上
に原料二酸化珪素塊状物を敦暦し、炉上部から高温加熱
することにより不純物特にウラン含有量の少ない溶融シ
リカの製法及びその装置を提供しようとするものである
。すなわち、本発明の第1の発明は、移動可能な炉床に
原料二酸化ケイ素を戦遣して加熱溶融する密閉式炉によ
り溶融シリカを製造するにあたり、炉床上に設けた耐熱
材料からなる容器に粒度1〜25肋の溶融シリカ粒、さ
らにその上に粒度30〜10仇吻の原料二酸化ケイ素塊
を鼓遣し、これを移動させながら少くとも温度1750
午0以上に加熱することを特徴とする溶融シリカの製法
であり、第2の発明は、移動可能な炉床に原料二酸化ケ
イ素を敦直して、移動しながら加熱する密閉式炉におい
て、炉床上に、溶融シリカ粒、さらにその上に原料二酸
化ケイ素塊を載層する耐熱材料製の容器を炉床上に配談
することを特徴とする溶融シリカ製造装置である。以下
図面に従って本発明をさらに説明する。
For example, there is a method in which silicon dioxide is melted by generating an arc with a carbon electrode, or a method in which silicon dioxide powder is supplied as a raw material to a furnace body using zirconia bricks and melted using an oxyhydrogen flame. However, since the former method uses a carbon electrode, carbon gets mixed into the fused silica and it is difficult to separate and remove it, so the latter method is currently mainly used. However, when the latter method is used as a resin sealing material for electronic materials such as transistors and ICs, there is a drawback that uranium, which is present in the zirconia bricks of the furnace material, is mixed into the material. Therefore, even if the raw material silicon dioxide containing only a small amount of impurities is selected, which is then crushed, flotated, or treated with acid, or other suitable impurity removal methods are used, the furnace material for fused silica production equipment may be used. It is unavoidable that impurities are mixed into the fused silica. The purpose of the present invention is to solve these drawbacks, and the present invention uses silicon dioxide with a low impurity content and is designed to prevent direct contamination of impurities. The present invention aims to provide a method and an apparatus for producing fused silica with a low content of impurities, particularly uranium, by heating a raw material silicon dioxide lump on top of the silicon dioxide block and heating it at high temperature from the upper part of the furnace. That is, the first aspect of the present invention is to produce fused silica using a closed furnace that heats and melts raw material silicon dioxide by feeding it onto a movable hearth. Pump fused silica grains with a grain size of 1 to 25 grains, and on top of them, a raw material silicon dioxide lump with a grain size of 30 to 10 grains, and while moving them, heat to a temperature of at least 1750 °C.
The second invention is a method for producing fused silica, which is characterized by heating to a temperature of 100 mL or higher, and the second invention is a closed furnace in which raw material silicon dioxide is heated on a movable hearth and heated while moving. The fused silica manufacturing apparatus is characterized in that a container made of a heat-resistant material is placed above the hearth, in which fused silica grains and raw material silicon dioxide lumps are layered thereon. The present invention will be further explained below with reference to the drawings.

図面は、本発明の実施例の溶融シリカ製造装置を示すも
のであって、第1図は装置の正面の断面図、第2図はそ
の側面の断面図、第3図、第4図「第5図は他の実施例
の側面の断面図である。まず第1図および第2図に示す
ように、炉体1は水冷式ステンレス製のほぼ立方体形の
形状をした箱型炉体からなり、さらにその上面には酸水
素バーナー5を具備した水冷式ステンレス製の炉蓋3が
配設されたものである。また炉床は移動装置8の上にス
テンレス製容器2の中にまず溶融シリカ粒6、次いで原
料二酸化ケイ素7を順に載層し、移動しながら上部酸水
素バーナー5で加熱溶融される。
The drawings show a fused silica manufacturing apparatus according to an embodiment of the present invention, in which FIG. 1 is a front cross-sectional view of the apparatus, FIG. 2 is a side cross-sectional view, and FIGS. Fig. 5 is a side cross-sectional view of another embodiment.First, as shown in Figs. Furthermore, a water-cooled stainless steel furnace cover 3 equipped with an oxyhydrogen burner 5 is disposed on the upper surface of the hearth. The grains 6 and then the raw material silicon dioxide 7 are layered one after another, and are heated and melted by the upper oxyhydrogen burner 5 while moving.

炉体1の縦方向両側面には移動可能な炉床の出入口とな
る開閉自在な関口部が設けられている。さらに、ステン
レス製容器2の内側には石英ガラス板4が例えば無機接
着剤などを介して固定し、直接ステンレス製容器2と原
料二酸化ケイ素と接触しないようにする。
On both longitudinal sides of the furnace body 1, there are provided entrances that can be opened and closed and serve as entrances and exits for a movable hearth. Further, a quartz glass plate 4 is fixed to the inside of the stainless steel container 2 using, for example, an inorganic adhesive to prevent direct contact between the stainless steel container 2 and the raw material silicon dioxide.

このようにすれば不純物が混入しない。第1図および第
2図は、ステンレス製容器2が1個の場合を示したもの
であるが、第3図および第4図に示すように炉体が大き
い場合はこれを1個以上用いることができ大量に製造す
るのに適したものとなる。
In this way, impurities will not be mixed in. Figures 1 and 2 show the case where there is one stainless steel container 2, but if the furnace body is large as shown in Figures 3 and 4, one or more containers may be used. This makes it suitable for mass production.

この場合、第3図及び第4図に示すようにそれぞれ長い
台車及び無限軌道等の移動装置8を用いる。しかし、第
5図に示すように炉床が上下に移動する構造のものは炉
床を上下させる支持装置が大きくする必要があるので余
り大きい形状のものとすることは困難であるが、小型で
あるので温度管理や取り扱いが容易であるという利点が
ある。
In this case, as shown in FIGS. 3 and 4, a moving device 8 such as a long truck and endless track is used, respectively. However, as shown in Figure 5, a structure in which the hearth moves up and down requires a larger support device to move the hearth up and down, so it is difficult to make it too large. This has the advantage that temperature control and handling are easy.

炉体の形状は、立方体、長方形等の各種形状のものとす
ることができ特に制限はなく、ステンレス製容器が台車
や無限軌道などの移動装置8の上に戦遣して、移動でき
る移動装置であればよい。移動装置8は耐熱性材料で構
成され、加熱変形がなく「移動可能なものであればよい
。又、移動装置8は特に冷却をする必要はないが水冷し
た方が製品の取り出しが容易となる。この場合、熱放散
が大きくなるため、前記したようにステンレス製容器の
内側に耐火材料例えば石英ガラス板等を取付けることが
好ましい。原料7を溶融するバーナー5は炉体中央部上
部または側部から直接ステンレス製容器2内の原料に噴
射されるように設ける。バーナーの燃料としては水素、
プロパン等のガス状のものが好ましい。また、炉体の熱
効率を向上させると共に寿命を向上させるには、炉体の
前に子熱室、後に冷却室を設けることが好ましい。
The shape of the furnace body is not particularly limited and can be of various shapes such as cubic or rectangular, and the stainless steel container can be moved on a moving device 8 such as a trolley or endless track. That's fine. The moving device 8 may be made of a heat-resistant material, as long as it is movable without being deformed by heating.Also, the moving device 8 does not need to be particularly cooled, but it will be easier to take out the product if it is water-cooled. In this case, heat dissipation increases, so it is preferable to attach a refractory material such as a quartz glass plate to the inside of the stainless steel container as described above. It is installed so that it is injected directly into the raw material in the stainless steel container 2.The fuel for the burner is hydrogen,
Gaseous substances such as propane are preferred. Moreover, in order to improve the thermal efficiency of the furnace body and extend its life, it is preferable to provide a heating chamber in front of the furnace body and a cooling chamber at the rear thereof.

次に本発明の装置を用いて溶融シリカを製造する方法に
ついて説明する。
Next, a method for producing fused silica using the apparatus of the present invention will be explained.

ステンレス製容器2には厚さ1〜1仇奴好ましくは5肋
程度の石英ガラス板4を無機接着剤により接着し、その
上に溶融シリカ粒6、例えば粒度1〜3仇舷程度の大き
さのものを容器底部に均一に敷き、その上に粒度30〜
15仇肋好ましくは40〜low帆の原料二酸化ケイ素
を載層する。
A quartz glass plate 4 with a thickness of 1 to 1 mm, preferably about 5 ribs, is adhered to the stainless steel container 2 with an inorganic adhesive, and fused silica particles 6, for example, 1 to 3 dia. Spread the material evenly on the bottom of the container, and place the powder on top of it.
15 layers of raw material silicon dioxide, preferably 40 to 40,000 ml, are layered.

このようなステンレス製容器2を前記した移動装置によ
り移動させながら、炉上部または側部から温度1750
00以上に加熱する。
While moving such a stainless steel container 2 using the above-mentioned moving device, a temperature of 1750°C is applied from the top or side of the furnace.
Heat to over 0.00.

この場合、原料二酸化ケイ素は加熱による衝撃により、
粗砕されると共に炉内高温度領域に一定時間帯留すると
溶融体となり、冷却されて製品となる。
In this case, the raw material silicon dioxide is affected by the impact caused by heating.
When it is coarsely crushed and kept in a high-temperature area in the furnace for a certain period of time, it becomes a melt, which is then cooled and becomes a product.

以上説明したように本発明は、移動装置の上にステンレ
ス製容器を配置し、この容器内に溶融シリカ粒、さらに
この上に原料魂を載直し、これを移動させながら加熱す
るようにした溶融シリカ製造装置であって、本発明によ
れば、菱樽から不純物が混入することがなく、また、原
料の微粉砕のための動力が少くてすみ、ステンレス製容
器に溶着することなく、連続的に製品を取り出すことが
できるすぐれた装置である。
As explained above, the present invention has a stainless steel container placed on a moving device, molten silica grains in this container, raw material souls placed on top of the container, and heated while moving the molten silica particles. According to the present invention, there is a silica manufacturing apparatus that does not allow impurities to be mixed in from the rhombus barrel, requires less power for finely pulverizing raw materials, and is capable of continuous production without welding to a stainless steel container. This is an excellent device that can take out products at any time.

以下実施例をあげてさらに詳しく説明する。A more detailed explanation will be given below with reference to Examples.

実施例第1図および第2図に示す構造の装置により溶融
シリカを製造した。
EXAMPLE Fused silica was produced using an apparatus having the structure shown in FIGS. 1 and 2.

炉体は縦100伍吻横100仇帆高さ100伍吻の立方
体のものを使用し、第1表に示す条件で操作した。
A cubic furnace body measuring 100 mm long, 100 mm wide, and 100 mm high was used, and the furnace was operated under the conditions shown in Table 1.

容器としては、ステンレス製のものは厚さ5肋の石英板
を張ったもの又はアルミナ製のものでその寸法は500
×500×8仇吻のものを用いた。この容器に敷物とし
て溶融シリカ粒粒径6〜25m′mの**ものlk9充
填し、その上に原料蛙石魂40〜100m′wを6k9
充填し、これを移動装置に載層し、移動させながら炉上
部からの酸水素炎バーナーにより175ぴ0に加熱し、
18分間その温度に保持し冷却した。溶融体は、溶融シ
リカ粒に一部付着はしているが、石英板に付着はしてい
なかった。本発明により製造した溶融シリカを粉砕しX
線回祈により定量したところ、クリストバライト及びQ
一石英は含まれておらず100%溶融シリカであった。
The container is made of stainless steel, covered with a quartz plate with a thickness of 5 ribs, or made of alumina, and its dimensions are 500 mm.
A size of ×500 × 8 proboscis was used. This container is filled with lk9 of fused silica particles with a particle size of 6 to 25 m'm as a mat, and 6 k9 of raw material Frog Stone Soul 40 to 100 m'w is placed on top of it.
Fill it, place it on a moving device, and while moving it heat it to 175 psi with an oxyhydrogen flame burner from the top of the furnace.
It was held at that temperature for 18 minutes and cooled. Although some of the molten material adhered to the fused silica grains, it did not adhere to the quartz plate. By pulverizing the fused silica produced according to the present invention
As determined by linear analysis, cristobalite and Q
It contained no quartz and was 100% fused silica.

また、そのQ線量を後光光度計により測定したところ1
岬pbであり「同一原料を用いた従来法によるものは1
0皿pbであった。
In addition, when the Q-dose was measured using a halophotometer, it was 1
Misaki PB and ``Those made by the conventional method using the same raw materials are 1
It was 0 plate pb.

table

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は正面の断
面図、第2図はその側面の断面図、第3図、第4図、及
び第5図は他の実施例の側面の断面図である。 符号、1・・・…炉体、2・・・・・・容器、3・・・
・・・炉頂部、4・・・・・・石英ガラス板、5・・・
・・・バーナー、6…・・・溶融シリカ粒、7・・・・
・・原料、8・・・・・・移動装置。 亥1認券2函 券3趣 妥ム敵 茅5趣
The drawings show an embodiment of the present invention; FIG. 1 is a front sectional view, FIG. 2 is a side sectional view, and FIGS. 3, 4, and 5 are side views of other embodiments. FIG. Code, 1... Furnace body, 2... Container, 3...
...furnace top, 4...quartz glass plate, 5...
... Burner, 6... Fused silica grains, 7...
...Raw material, 8...Movement device. 1 certified ticket, 2 boxed tickets, 3 different types, 5 different types of enemy grass

Claims (1)

【特許請求の範囲】 1 移動可能な炉床に原料二酸化ケイ素を載置して加熱
する密閉式炉により溶融シリカを製造するにあたり、炉
床上に設けた耐熱材料からなる容器に粒度1〜25mm
の溶融シリカ粒、さらにその上に粒度30〜100mm
の原料二酸化ケイ素塊を載置しこれを移動させながら少
くとも温度1750℃以上に加熱することを特徴とする
溶融シリカの製法。 2 移動可能な炉床に原料二酸化ケイ素を載置して、上
部から加熱する密閉式炉において、炉床上に溶融シリカ
粒、さらにその上に原料二酸化ケイ素塊を載置する耐火
材料製の容器を炉床上に配設することを特徴とする溶融
シリカ製造装置。
[Claims] 1. When producing fused silica using a closed furnace in which raw material silicon dioxide is placed on a movable hearth and heated, a particle size of 1 to 25 mm is placed in a container made of a heat-resistant material provided on the hearth.
fused silica particles with a particle size of 30 to 100 mm
A method for producing fused silica, which comprises placing a silicon dioxide lump as a raw material and heating it to a temperature of at least 1750°C or higher while moving the lump. 2. In a closed furnace in which raw material silicon dioxide is placed on a movable hearth and heated from above, a container made of refractory material is placed on which molten silica grains are placed on the hearth and the raw material silicon dioxide chunks are placed on top of the molten silica particles. A fused silica production device characterized by being disposed on a hearth.
JP8834482A 1982-05-25 1982-05-25 Fused silica production method and equipment Expired JPS604128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8834482A JPS604128B2 (en) 1982-05-25 1982-05-25 Fused silica production method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8834482A JPS604128B2 (en) 1982-05-25 1982-05-25 Fused silica production method and equipment

Publications (2)

Publication Number Publication Date
JPS58204816A JPS58204816A (en) 1983-11-29
JPS604128B2 true JPS604128B2 (en) 1985-02-01

Family

ID=13940227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8834482A Expired JPS604128B2 (en) 1982-05-25 1982-05-25 Fused silica production method and equipment

Country Status (1)

Country Link
JP (1) JPS604128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296826B1 (en) * 1994-12-30 2001-10-02 Shin-Etsu Quartz Products Co., Ltd. Method for the preparation of vitrified silica particles

Also Published As

Publication number Publication date
JPS58204816A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
JP4231960B2 (en) Method and apparatus for producing carbon-containing iron using hearth rotary furnace
KR100500079B1 (en) Method of producing a reduced metal, and traveling hearth furnace for producing same
US6270552B1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
EP0395397A2 (en) Process and apparatus for treatment of excavated landfill material in a plasma fired cupola
JPH02503306A (en) melting furnace
US20060016290A1 (en) Method of refining scrap silicon using an electron beam
US2291534A (en) Method of making refractories
US3979168A (en) Apparatus for the manufacture of light granulates
US6749664B1 (en) Furnace hearth for improved molten iron production and method of operation
JPS604128B2 (en) Fused silica production method and equipment
JPH04263003A (en) Method for operating blast furnace
EP0640992A1 (en) Method of melting treatment of radioactive miscellaneous solid wastes
JPH032440B2 (en)
US5076902A (en) Electrolysis apparatus
US6395954B2 (en) Advanced vitrification system frit
US6224820B1 (en) Method of producing a reduced metal, and traveling hearth furnace for producing same
WO2002091392B1 (en) Waste vitrification process (avs) and melting process
JP3451901B2 (en) Operating method of mobile hearth furnace
JPH0619539Y2 (en) Glass melting furnace
US588267A (en) de chalmot
CA1236856A (en) Refractory cement
JP2001317713A (en) Method for melting and disposing waste asbestos material
JPS61115695A (en) Manufacture of granular sintering type flux
JPH03215316A (en) Production of electrofused magnesia
JP4006863B2 (en) How to operate the furnace