JPS6041211A - Transformer - Google Patents

Transformer

Info

Publication number
JPS6041211A
JPS6041211A JP58148832A JP14883283A JPS6041211A JP S6041211 A JPS6041211 A JP S6041211A JP 58148832 A JP58148832 A JP 58148832A JP 14883283 A JP14883283 A JP 14883283A JP S6041211 A JPS6041211 A JP S6041211A
Authority
JP
Japan
Prior art keywords
transformer
phase transformer
phase
conduit
busbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58148832A
Other languages
Japanese (ja)
Inventor
Yoshito Ebisawa
海老沢 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58148832A priority Critical patent/JPS6041211A/en
Publication of JPS6041211A publication Critical patent/JPS6041211A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To easily change over a single phase transformer to a spare transformer if trouble occurs in such single phase transformer by providing a signle phase transformer as a spare adjacently to a three-phase thransformer consisting of three units of single phase transformer. CONSTITUTION:Three units of single phase tranformers A, B, C forming a split type 3-phase transformer are composed of the 500kV system and ultra-high voltage transmission system through an interface. Moreover, a unit of spare single phase transformer 13 having the equivalent capability as that of these transformers is also provided in parallel. The transformer 13 is connected by the conduit buses 12, 9 both in the primary and secondary sides and can be connected to any phase of the conduit buses 4, 2 connected to the primary and secondary terminals of other three units of transformers. In the areas where the conduit buses 12, 9 sent from the transformer 13 and the conduit buses 4, 2 sent from the 3-phase transformer are located closely, the respective conduit buses 8, 7 have the structure wherein the external tank and internal conductor can be removed easily at the adequate range.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は特に超々高圧送電系統に連結される分割形の三
相変圧器において、予備の単相変圧器を配置する場合に
その配置方式及び系統との接続方式に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention particularly relates to an arrangement method and system for arranging a spare single-phase transformer in a split-type three-phase transformer connected to an ultra-super high voltage power transmission system. Regarding the connection method.

と 〔発明の技術的背景及毎その問題点〕 近年の電力需要の増大にともない、500KV送電が実
現され、さらに100OKV級の超々高圧送電(以下U
HV送電と称する)の研究も進められている。このより
な500KVあるいはUHV送電の変電所に設置される
変圧器は複数台の単位変圧器を並設して構成する3相変
圧器構成が適用されている。
[Technical background of the invention and its problems] With the increase in electricity demand in recent years, 500KV power transmission has been realized, and even 100OKV class ultra-super high voltage power transmission (hereinafter referred to as U
(referred to as HV power transmission) research is also progressing. The transformers installed in these 500 KV or UHV power transmission substations have a three-phase transformer configuration in which a plurality of unit transformers are arranged in parallel.

このように3相変圧器を各相ごとに分割する分割形質圧
器は変圧器輸送時の寸法制限に対処して変圧器容量の増
大化を図るに優れた方法である。第1図は3台の単相変
圧器A、B、Cが並置され、50゜KV の電圧をUH
V系統の電圧に昇圧する3相変圧器の構成を示している
。1台の単相変圧器1は左方の1次側(500KV側)
、右方ノ2 次側(Ul−1V 側)ともにガス−オイ
ルブッシング6.3、ガス絶縁管路母線4,2、開閉器
6を通して連結されている。このようなUHV級の変圧
器は現在の国内最大規模の変圧器の2〜3倍規模の容量
(2000〜3000MVA )となり、将来の送電系
統の要となるものである。従って、構成する変圧器は、
十分な信頼性が要求されることになる。しかし、万一、
これらの変圧器に事器が生じた場合、変圧器容量が大き
いだけに系統に対する影響は大きく、重大な事能をまね
く可能性もある。
The divided transformer, which divides a three-phase transformer into individual phases, is an excellent method for increasing the capacity of a transformer by dealing with dimensional restrictions when transporting the transformer. Figure 1 shows three single-phase transformers A, B, and C arranged in parallel to generate a voltage of 50°KV at UH.
This shows the configuration of a three-phase transformer that boosts the voltage of the V system. One single-phase transformer 1 is on the left primary side (500KV side)
, the right secondary side (Ul-1V side) are connected through a gas-oil bushing 6.3, gas insulated pipe busbars 4, 2, and a switch 6. Such UHV-class transformers will have a capacity two to three times larger (2000 to 3000 MVA) than the current largest transformers in Japan, and will be the keystone of future power transmission systems. Therefore, the constructing transformer is
Sufficient reliability will be required. However, in the unlikely event that
If a problem were to occur with one of these transformers, the impact on the system would be large because of the large capacity of the transformer, and there is a possibility that it would cause serious damage.

そこで、これらの変圧器には事故を生じさせないような
信頼性の高い機器が供給されなければならないことは言
うまでもないが、万一変圧器内で事故を生じた場合でも
事故後の復旧が速かに行える手段が考慮されていなけれ
ばならない。
Therefore, it goes without saying that these transformers must be supplied with highly reliable equipment that will not cause accidents, but even if an accident occurs in the transformer, it is important to ensure that recovery after the accident is quick. Consideration must be given to measures that can be taken to

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みなされたもので、分割形の3相
変圧器において1台の単相変圧器内で事故が生じた場合
、この変圧器を系統から取り除き隣接して配置されてい
る予備の変圧器と容易に切換え接続が可能な変圧器を提
供することを目的とするものである。
The present invention has been made in view of the above points, and when an accident occurs in one single-phase transformer in a split-type three-phase transformer, this transformer is removed from the system and placed adjacent to it. The object of the present invention is to provide a transformer that can be easily switched and connected to a spare transformer.

〔発明の概要〕[Summary of the invention]

本発明は以上の目的を達成するために3台の単相変圧器
から成る3相変圧器に更に1台の予備の単相変圧器を隣
接して配置し、この予備単相変圧器の1次、2次側端子
にあらかじめ管路母線を接続して、他の3台の単相変圧
器の夫々1次、2次側に接続されている管路母線に容易
に切換え接続可能な構成として、万一、1台の単相変圧
器内で事故を生じた場合、その単相変圧器を切り離し、
予備の単相変圧器内で事故を生じた場合、その単相変圧
器を切り離し、予備の単相変圧器と管路母線の簡単な接
続換えにより、単相変圧器の入換を行うものである。
In order to achieve the above object, the present invention further arranges one spare single-phase transformer adjacent to a three-phase transformer consisting of three single-phase transformers, and one of the spare single-phase transformers. Next, the conduit busbar is connected to the secondary side terminal in advance, and the configuration is such that it can be easily switched and connected to the conduit busbars connected to the primary and secondary sides of the other three single-phase transformers, respectively. In the event that an accident occurs within one single-phase transformer, disconnect the single-phase transformer and
If an accident occurs in a spare single-phase transformer, the single-phase transformer can be replaced by disconnecting the single-phase transformer and simply changing the connection between the spare single-phase transformer and the conduit busbar. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第2図は本発明に係り、分割形の3相変圧器におい
て、1台の予備の単相変圧器13を隣接して並置した構
成図を示している。第2図において、分割形の3相変圧
器を構成する3台の単相変圧器A、B、Cは500KV
系統とUHV系統を連系するため、第1図と同様に配置
されて、かつ3台の単相変圧器A、B、Cの各々と同等
の能力をもつ1台の予備単相変圧器13が降接して並置
されている。ここでこの予備単相変圧器は1次側、2次
側端子とも管路母線12,9によって接続され、他の3
台の単相変圧器の1次、2次端子に接続された管路母線
4.2のいずれの相とも接続可能なように構成されてい
る。そして、予備単相変圧器からの管路母線12,9と
3相変圧器からの管路母線4.2が互いに近接している
個所では、夫々の管路母線が適当な範囲の部分で、外側
のタンク及び、内部の導体がともに容易に取り外せる構
造の管路母線8,7とな−っている。常時はこの両者の
管路母線は接続されるととなく、互いに上下の位置関係
(交差する高さ位置の違い)にて分離されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of a split three-phase transformer according to the present invention, in which one spare single-phase transformer 13 is arranged adjacently. In Figure 2, three single-phase transformers A, B, and C that make up a split three-phase transformer have a voltage of 500 KV.
In order to interconnect the grid and the UHV grid, one standby single-phase transformer 13 is arranged in the same manner as shown in Fig. 1 and has the same capacity as each of the three single-phase transformers A, B, and C. are descended and juxtaposed. Here, the primary side and secondary side terminals of this spare single-phase transformer are connected by conduit buses 12 and 9, and the other three
It is configured so that it can be connected to any phase of the conduit busbar 4.2 connected to the primary and secondary terminals of the single-phase transformer. At locations where the conduit busbars 12, 9 from the standby single-phase transformer and the conduit busbars 4.2 from the three-phase transformer are close to each other, each conduit busbar is located within an appropriate range, Both the outer tank and the inner conductor are conduit busbars 8, 7 having a structure that can be easily removed. Normally, these two pipe busbars are not connected to each other, but are separated from each other by their vertical positional relationship (difference in height at which they intersect).

第3図は第2図のA”−″′A″断面図であり、3相変
圧器側の管路母線4,2、予備単相変圧器側の管路母線
11,8の常時の位置関係を示すものである。各々の管
路母線は、ある距離を隔てて、はぼ90°の角度をもっ
て、上下の位置関係にて交わっている。
Figure 3 is a sectional view of A''-'''A'' in Figure 2, showing the usual positions of the pipeline busbars 4 and 2 on the three-phase transformer side and the pipeline busbars 11 and 8 on the standby single-phase transformer side. This shows the relationship.Each pipe bus line is separated by a certain distance and intersects at an angle of approximately 90 degrees in a vertical positional relationship.

第4図は事故を生じた単相変圧器と予備の単相変圧器と
の接続換えを示す図である。事故を起した単相変圧器は
1次、2次側とも当該変圧器と開閉器との間で一部の管
路母線(第3図における管路母線10.7 )を取り外
し予備単相変圧器側の管路母線12.9と接続するだめ
の専用の管路母線15゜14を取り付けて、予備の単相
変圧器と接続変更を行っている。
FIG. 4 is a diagram showing the connection change between the single-phase transformer that caused the accident and the spare single-phase transformer. For the single-phase transformer that caused the accident, some of the pipe busbars (pipe busbar 10.7 in Figure 3) were removed between the transformer and the switch on both the primary and secondary sides and a spare single-phase transformer was installed. A dedicated conduit busbar 15°14 was installed to connect to the conduit busbar 12.9 on the side of the transformer, and the connection was changed to a spare single-phase transformer.

第5図は第4図のB矢視図を示している。ここで第4図
、第5図に示した予備単相変圧器と接続するための専用
の管路母線15.14においてタンクの内部に配置され
た導体は、容易に摺動可能な構造として、導体の端部は
他の導体と容易に接続が可能な構造とする。すなわち導
体はスライドコンタクトを構成している。
FIG. 5 shows a view taken along arrow B in FIG. Here, the conductor arranged inside the tank in the dedicated conduit busbar 15.14 for connecting with the standby single-phase transformer shown in FIGS. 4 and 5 has a structure that allows easy sliding. The ends of the conductors shall be structured so that they can be easily connected to other conductors. In other words, the conductor constitutes a slide contact.

第6図は本発明の他の実施例であり、第2図に示した構
成の変形例である。第6図において、予備の単相変圧器
は3相変圧器2バンクの中央に設置され、他の6台のい
づれの単相変圧器とも容易に接続換え可能であり、1台
の予備単相変圧器を2パンクの予備単相変圧器として兼
用することが可能となっている。
FIG. 6 shows another embodiment of the present invention, which is a modification of the configuration shown in FIG. In Figure 6, the spare single-phase transformer is installed in the center of two banks of three-phase transformers, and can be easily connected to any of the other six single-phase transformers. The transformer can also be used as a standby single-phase transformer with two punctures.

第2図、第6図の場合とも1次、2次側が反対方向に引
き出されているが、両者が同一方向に引き出される場合
にも、本発明の実施が可能なことは言うまでもない。
Although the primary and secondary sides are pulled out in opposite directions in both FIGS. 2 and 6, it goes without saying that the present invention can be practiced even when both sides are pulled out in the same direction.

〔発明の効果〕〔Effect of the invention〕

このように構成された本発明の変圧器において、次のよ
うな種々の効果が得られる。
In the transformer of the present invention configured in this way, the following various effects can be obtained.

(1) UHV系統に係る変圧器は、変圧器自身の容置
が大きく、万一事故を生じた場合には、他に与える影響
が非常に大きい。そこで、本発明のように予備の単相変
圧器を分割形の3相変圧器に隣接して配置し、しかも各
々の単相変圧器と予備の単相変圧器が容易に接続可能な
ようにあらかじめ、予備単相変圧器から管路母線を接続
して3相変圧器のいずれの相の管路母線とも交わるよう
に配置されていれば、事故と生じた単相変圧器の切り離
し及び予備単相変圧器との接続を迅速に行うことが可能
である。この接続換えが迅速に行えるということは事故
による影響を長期にわたって系統に与えることがなく、
系統の運用1優れたものとな、る。
(1) The transformer used in the UHV system has a large capacity, and in the event of an accident, the impact on others would be extremely large. Therefore, as in the present invention, a spare single-phase transformer is placed adjacent to a split three-phase transformer, and each single-phase transformer and the spare single-phase transformer can be easily connected. If the conduit busbar from the standby single-phase transformer is connected in advance and placed so that it intersects with the conduit busbars of any phase of the three-phase transformer, it will be possible to prevent the disconnection of the single-phase transformer and the standby standby line in the event of an accident. It is possible to quickly make a connection with a phase transformer. The fact that this connection change can be carried out quickly means that the accident will not have a long-term impact on the grid.
Grid operation 1 is excellent.

(2)本発明のように予備単相変圧器からの管路母線と
3相変圧器の管路母線が交わっている近傍で双方が適当
な長さにわたって管路母線が取り外し可能な構造である
ことは、両者を接続する場合専用の接続管路母線により
容易に接続することが可能となり、接続の前後で絶縁的
に信頼性の高い構造である。
(2) As in the present invention, the conduit busbar from the standby single-phase transformer and the three-phase transformer have a structure in which the conduit busbar can be removed over an appropriate length near where they intersect. This means that when connecting the two, it is possible to easily connect them using a dedicated connection pipe busbar, and the structure is highly reliable in terms of insulation before and after the connection.

(3)本発明の構造では、いずれの相の単相変圧器を予
備の単相変圧器と交換する場合でも、接続用の専用管路
母線は共通であり、常時、1次側。
(3) In the structure of the present invention, no matter which phase of the single-phase transformer is replaced with a spare single-phase transformer, the dedicated conduit busbar for connection is common and always connected to the primary side.

2次側の1組分の専用管路母線のみを備えるだけでよい
It is sufficient to provide only one set of dedicated conduit bus bars on the secondary side.

(4)本発明の構造では予備単相変圧器の管路母線と3
相変圧器の管路母線と交わる部分にて、常時は適当な距
離を隔てて互いに独立して構成されている。この2つの
管路母線の交わる部分に専用の開閉装置機構を取り付け
る方法も考えられるが、本発明の場合、複雑な開閉装置
機構を取り付ける場合に比べ安価であり、また操作ミス
によって誤った開閉動作が行われる必要もなく、常時の
絶縁的信頼性に優れている。
(4) In the structure of the present invention, the conduit busbar of the standby single-phase transformer and the
At the portion where the phase transformer intersects with the pipeline busbar, they are normally constructed independently from each other with an appropriate distance apart. Although it is possible to install a dedicated switchgear mechanism at the intersection of these two pipe busbars, in the case of the present invention, it is cheaper than installing a complicated switchgear mechanism, and it also prevents incorrect opening/closing operations due to operational errors. There is no need to perform this process, and the insulation reliability is excellent at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の3相分割形の変圧器の構成図、第2図は
本発明に係る3相分割形の変圧器の構成図、第3図、第
4図、第5図は1台の単相変圧器と予備の単相変圧器を
接続換えする場合の構成図、第6図は本発明に係る他の
実施例を示す構成図である。 1・・・単相変圧器 2,4・・・3相変圧器の管路母
線6・・・開閉装置 7.8,10.11・・・取外し可能な管路母線9.1
2・・・予備単相変圧器の管路母線13・・・予備単相
変圧器 (7317) 代理人 弁理士 則 近 憲 佑 (は
が1名)π1 鉛1(1 第3図 第4図 第5図 第6図
Fig. 1 is a block diagram of a conventional three-phase split type transformer, Fig. 2 is a block diagram of a three-phase split type transformer according to the present invention, and Figs. 3, 4, and 5 show one unit. FIG. 6 is a block diagram showing another embodiment of the present invention. 1... Single-phase transformer 2, 4... Three-phase transformer conduit busbar 6... Switchgear 7.8, 10.11... Removable conduit busbar 9.1
2... Pipe busbar 13 of standby single-phase transformer... Standby single-phase transformer (7317) Agent Patent attorney Noriyuki Chika (1 person) π1 Lead 1 (1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)単相変圧器を3台組み合せて、分割形の3相変圧
器を構成し、前記単相変圧器と同等の能力を有する予備
の単相変圧器を隣接して設置し、かつ3相変圧器から他
の変電機器までの間を絶縁管路母線によって接続したも
のにおいて、前記予備単相変圧器の1次・2次側に絶縁
管路母線を接続し、この絶縁管路母線を前記3相変圧器
のいずれの相の夫々1次・2次側絶縁管路母線とも、は
ぼ垂直に上下の位置関係にて近接して交わるように配置
し、管路母線が交わる近傍において互いの絶縁管路母線
のタンク、母線とも取り外し可能にし互いに絶縁管路母
線を取り外した後は専用の接続用絶縁管路母線にて予備
の単相変圧器が任意の相の他の変電機器に接続できるよ
うにしたことを特徴とした変圧器。 (2、特許請求の範囲第1項において、予備の単相変圧
器を2パンクの分割形3相変圧器のほぼ中央に配置して
、予備単相変圧器に接続される絶縁管路母線を2バンク
の3相変圧器にまたがって配置したことを特徴とした変
圧器。
(1) Three single-phase transformers are combined to form a split three-phase transformer, and a spare single-phase transformer having the same capacity as the single-phase transformer is installed adjacently, and three In a system in which a phase transformer and other substation equipment are connected by an insulated conduit busbar, an insulated conduit busbar is connected to the primary and secondary sides of the spare single-phase transformer, and this insulated conduit busbar is connected to the primary and secondary sides of the spare single-phase transformer. The primary and secondary insulated conduit busbars of each phase of the three-phase transformer are arranged so that they intersect closely vertically in a vertical positional relationship, and the conduit busbars of each phase of the three-phase transformer are arranged so that they closely intersect with each other in a vertical positional relationship. The tank and busbar of the insulated conduit busbar are both removable, and after the insulated conduit busbars are removed from each other, the spare single-phase transformer can be connected to other substation equipment of any phase using the dedicated connection insulated conduit busbar. A transformer that is characterized by the ability to (2. In claim 1, the spare single-phase transformer is arranged approximately in the center of the split three-phase transformer with two punctures, and the insulated conduit busbar connected to the spare single-phase transformer is A transformer characterized by being placed across two banks of three-phase transformers.
JP58148832A 1983-08-16 1983-08-16 Transformer Pending JPS6041211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148832A JPS6041211A (en) 1983-08-16 1983-08-16 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148832A JPS6041211A (en) 1983-08-16 1983-08-16 Transformer

Publications (1)

Publication Number Publication Date
JPS6041211A true JPS6041211A (en) 1985-03-04

Family

ID=15461725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148832A Pending JPS6041211A (en) 1983-08-16 1983-08-16 Transformer

Country Status (1)

Country Link
JP (1) JPS6041211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279139U (en) * 1988-12-03 1990-06-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279139U (en) * 1988-12-03 1990-06-18

Similar Documents

Publication Publication Date Title
US6771489B2 (en) High voltage hybrid station with opposite busbars and shielded cutoff and switching modules for same
JP2007259681A (en) Gas insulated switchgear
WO1988002941A1 (en) Gas insulating switch
KR100893534B1 (en) Gas insulated switchgear having high space utilization
KR100886587B1 (en) Gas insulated switchgear
US4484086A (en) Switching network
JPS6041211A (en) Transformer
CN210443803U (en) 220kV HGIS power distribution device applied to single bus sectional wiring of transformer substation
CN208284790U (en) The single-row arrangement GIS device of 220kV bus extended type
CN108390262A (en) The single-row arrangement GIS device of 220kV busbar extended types
JPS631527Y2 (en)
JPH0235531B2 (en) GASUZETSUENKAIHEISOCHI
JPS58186302A (en) Ac/dc conversion station
CN210224772U (en) GIS wiring and arrangement structure
JPH04308405A (en) Gas-insulated switchgear
JPH0413925B2 (en)
JPS596622Y2 (en) bunki connector
JPS592515A (en) Gas insulated switching device
JP2745746B2 (en) Gas insulated switchgear
WO2018109915A1 (en) Gas insulated switching apparatus
JPS58222706A (en) Gas insulated switching device
JP2013027062A (en) Gas-insulated switchgear
CN108281917A (en) A kind of extra-high-voltage alternating current substation and its design method
JPS5957408A (en) Three-phase transformer
JPS609401B2 (en) Power distribution equipment using gas-insulated switchgear