JPS6041156B2 - Surface treatment method for aluminum or aluminum alloy parts - Google Patents

Surface treatment method for aluminum or aluminum alloy parts

Info

Publication number
JPS6041156B2
JPS6041156B2 JP8109782A JP8109782A JPS6041156B2 JP S6041156 B2 JPS6041156 B2 JP S6041156B2 JP 8109782 A JP8109782 A JP 8109782A JP 8109782 A JP8109782 A JP 8109782A JP S6041156 B2 JPS6041156 B2 JP S6041156B2
Authority
JP
Japan
Prior art keywords
aluminum
fine powder
dispersion
aluminum alloy
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8109782A
Other languages
Japanese (ja)
Other versions
JPS58199897A (en
Inventor
一夫 戸田
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8109782A priority Critical patent/JPS6041156B2/en
Publication of JPS58199897A publication Critical patent/JPS58199897A/en
Publication of JPS6041156B2 publication Critical patent/JPS6041156B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、アルミニウムまたはアルミニウム合金部材
の表面に非帯電笛函滑性硬質皮膜を形成する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a non-electrified pipe box slippery hard coating on the surface of an aluminum or aluminum alloy member.

一般に、アルミニウムまたはアルミニウム合金は軽量で
あり、しかも、陽極酸化処理によって表面硬度の向上や
耐食性の改善、並びに染色や二次電解着色による多彩な
色調の付与が期待できることから、種々の方面に広汎な
用途が開かれていることは周知のとおりである。
In general, aluminum or aluminum alloys are lightweight, and can be expected to improve surface hardness and corrosion resistance through anodizing treatment, as well as impart a variety of colors through dyeing and secondary electrolytic coloring, so they are widely used in a variety of fields. It is well known that it has many uses.

ところで、一般に陽極酸化処理したアルミニウムまたは
アルミニウム合金の酸化皮膜表面層は非導電‘性であり
、それ故に若干の帯電性を有していることも知られてい
る。
By the way, it is also known that the oxide film surface layer of aluminum or aluminum alloy that has been anodized is generally non-conductive and therefore has some chargeability.

すなわち、アルミニウムまたはアルミニウム合金素材そ
のものは、4〜10KVのコロナ放電に晒した場合にせ
いぜい射程度の帯電がなされるかあるいは全く帯電を示
さないのに対して、陽極酸化処理したアルミニウムまた
はアルミニウム合金は、例えばその酸化皮膜が20〜3
0〆m程度の場合には同様な条件下で100〜200V
程度の帯電量を示すことが測定されている。もちろん、
この場合の測定材はアースされた状態の下にあったもの
である。しかしながら、最近の傾向として、軽量機能部
村として陽極酸化処理を施したアルミニウムまたはアル
ミニウム合金を機能部村として多用し、軽量化を図って
いるカメラ、VTR、複写機、その他の電子機器等にお
いては、そのようなアルミニウムまたはアルミニウム合
金部村の陽極酸化皮膜面が非帯電性であること、すなわ
ち導電・性であること、並びに良好な潤滑性を有するこ
とを要求される場合が多く、このような要求は、今後、
電子工業の急速な進歩発展にともない益々旺盛になるこ
とが予想される状況となっている。
In other words, aluminum or aluminum alloy materials themselves exhibit only a radiation charge or no charge at all when exposed to a corona discharge of 4 to 10 KV, whereas anodized aluminum or aluminum alloys show no charge at all. , for example, the oxide film is 20 to 3
If the voltage is about 0m, apply 100 to 200V under similar conditions.
It has been measured that a certain amount of charge is exhibited. of course,
The material to be measured in this case was under a grounded condition. However, as a recent trend, anodized aluminum or aluminum alloy is often used as a lightweight functional material in cameras, VTRs, copiers, and other electronic devices to reduce weight. In many cases, the anodized coating surface of such aluminum or aluminum alloy parts is required to be non-static, that is, to be conductive and have good lubricity. The request will be
With the rapid progress and development of the electronics industry, the situation is expected to become even more active.

従来、陽極酸化処理したアルミニウムまたはアルミニウ
ム合金の酸化皮膜表面に導電性を付与して帯電を防止す
るために、コロィダルカーボン、Agその他の金属粉末
、並びに導電性酸化物微粉末等を混入した導電性ペース
ト塗料を塗布することが知られてはいるが、このような
方法では、使用するペースト塗料によって表面色調が限
定され、また表面硬度や表面強度も十分なものを得るこ
とが困難であり、しかも比較的高価な導電性ペーストの
使用で処理コストが割高になる等の種々の問題があった
Conventionally, in order to impart conductivity to the oxide film surface of anodized aluminum or aluminum alloy and prevent charging, colloidal carbon, Ag and other metal powders, and conductive oxide fine powders were mixed. It is known to apply conductive paste paint, but with this method, the surface color is limited depending on the paste paint used, and it is difficult to obtain sufficient surface hardness and surface strength. Moreover, there have been various problems such as relatively high processing costs due to the use of a relatively expensive conductive paste.

また、アルミニウム材の陽極酸化皮膜にフッ素樹脂を含
潰させてその自己潤滑性能を向上せしめることは、例え
ばフッ素樹脂分散溶液を用いた通称タフラム処理と呼ば
れる表面処理法として知られているが、この場合にも、
処理製品が帯電性を有することに起因する前記問題を免
れることはできなかった。
In addition, improving the self-lubricating performance of anodized aluminum by impregnating it with a fluororesin is known as a surface treatment method commonly known as Toughflame treatment using a fluororesin dispersion solution. In case,
It was not possible to avoid the above-mentioned problem caused by the treated product having electrostatic properties.

本発明者等は、上述のような観点から、表面が非帯電性
であるとともに、良好な自己潤滑性を有し、しかも製造
コスト安く高精度の寸法の製品を得ることのできるアル
ミニウムまたはアルミニウム合金表面被覆処理部材を得
べ〈研究を行なった結果、以上a〜dに示す如き知見を
得たのである。
From the above-mentioned viewpoints, the present inventors have developed an aluminum or aluminum alloy that has a non-static surface, good self-lubricating properties, and can be manufactured at a low manufacturing cost and with highly accurate dimensions. As a result of conducting research to obtain a surface-coated member, the findings shown in a to d above were obtained.

すなわち、 【a} 本発明者等が先に袴豚昭55一59617号(
特関昭56−156603号)として提案した導電性微
粉末、すなわち、アンチモン:0.1〜20重量%を含
有し、残りが実質的に酸化錫からなる組成を有し、かつ
0.2仏m以下の平均粒径を有する微粉末は、その製造
法にもとづいて極めて粒子が4・さし、ので、この微粉
末の分散液中にアルミニウムまたはアルミニウム合金の
陽極酸化皮膜を浸債すると、該酸化皮膜の微細孔中に導
電性微粉末が含浸されるとともに該酸化皮膜の表面にも
吸着固定されて酸化皮膜自体がアルミニウムまたはアル
ミニウム合金素地と同じ程度の非帯電性を示すようにな
ること、‘b} 前記導電性微粉末の平均粒径と同様の
平均粒径を有するフッ素樹脂微粉末を、前記導電性微粉
末分散液中に共存させてアルミニウムまたはアルミニウ
ム合金の陽極酸化皮膜を浸糟するか、あるいは前記導電
性微粉末分散液とは別にフッ素樹脂微粉末分散液を用意
し、導電性微粉末分散液とフッ素樹脂微粉末分散液の両
者にアルミニウムまたはアルミニウム合金の陽極酸化皮
膜を浸糟することによって、該酸化皮膜の微細孔中や表
面に導電性微粉末とフッ素樹脂微粉末とが共に含浸ある
いは吸着固定され、酸化皮膜の非帯電性が確保されると
ともに、該皮膜に優れだ函滑性能が付与されること、(
c’前記のように微細寸法の導電性微粉末やフッ素樹脂
粉末は、極めて微粒子であるが故に、分散煤中に分散せ
しめると極めて高度の分散液をを容易に作り出すことが
でき、しかもこの分散液は長時間の静暦によっても粉末
の沈降をほとんど生ぜず、非常に安定したものであり、
したがって、陽極酸化皮膜の浸糟作業が容易に行なえる
こと、{d) 前記導亀性微粉末およびフッ素樹脂微粉
末は、可視光の波長より小さい粒径のものであるので、
陽極酸化皮膜の微細孔中や表面に含浸あるいは吸着され
ても該皮膜の色調に変化を生ぜず、またその陽極酸化皮
膜の染色あるいは二次電解着色後の含浸も可能であるこ
と。
That is, [a] The present inventors first published Hakamabuta No. 55-159617 (
The conductive fine powder proposed as Tokkoku Sho 56-156603) contains 0.1 to 20% by weight of antimony, with the remainder consisting essentially of tin oxide, and has a composition of 0.2% by weight of antimony. Fine powder having an average particle size of less than 1.5 m is very small depending on the manufacturing method, so if an anodic oxide film of aluminum or aluminum alloy is immersed in a dispersion of this fine powder, Conductive fine powder is impregnated into the fine pores of the oxide film and is also adsorbed and fixed on the surface of the oxide film, so that the oxide film itself exhibits non-static properties to the same degree as the aluminum or aluminum alloy base; 'b} A fine fluororesin powder having an average particle size similar to that of the conductive fine powder is allowed to coexist in the conductive fine powder dispersion to impregnate the anodic oxide film of aluminum or aluminum alloy. Alternatively, a fluororesin fine powder dispersion is prepared separately from the conductive fine powder dispersion, and an anodic oxide film of aluminum or aluminum alloy is applied to both the conductive fine powder dispersion and the fluororesin fine powder dispersion. By doing so, the conductive fine powder and the fluororesin fine powder are both impregnated or adsorbed and fixed in the fine pores and on the surface of the oxide film, ensuring the non-static property of the oxide film and providing an excellent coating for the film. Provided with sliding performance (
c' As mentioned above, conductive fine powders and fluororesin powders with fine dimensions are extremely fine particles, so when dispersed in dispersed soot, it is possible to easily create an extremely high-quality dispersion liquid, and this dispersion The liquid is extremely stable, with almost no powder settling even after a long period of time.
Therefore, the dipping work of the anodic oxide film can be carried out easily; {d) Since the torme-conducting fine powder and the fluororesin fine powder have a particle size smaller than the wavelength of visible light,
Even when impregnated or adsorbed into the fine pores or on the surface of the anodic oxide film, the color tone of the anodic oxide film does not change, and the anodic oxide film can be impregnated after dyeing or secondary electrolytic coloring.

この発明は、上記知見に基いてなされたもので、あり、
表面陽極酸化処理したアルミニウムまたはアルミニウム
合金部材を、アンチモン:0.1〜2の雲量%を含有し
、残りが実質的に酸化錫からなる組成を有し、かつ0.
24m以下の平均粒径を有する導電性微粉末と、フッ素
樹脂微粉末との分散液中に浸債することによって、表面
に非帯電性潤滑性陽極酸化皮膜を有したアルミニウムま
たはアルミニウム合金部材を得るようにしたことに特徴
を有するものである。
This invention was made based on the above knowledge, and includes:
An aluminum or aluminum alloy member whose surface has been anodized has a composition containing antimony in a cloud content of 0.1 to 2%, the remainder being substantially tin oxide, and 0.1% to 2% in cloud content, with the remainder being substantially tin oxide.
Obtain an aluminum or aluminum alloy member having a non-static lubricating anodic oxide film on its surface by immersing it in a dispersion of conductive fine powder having an average particle size of 24 m or less and fluororesin fine powder. It is characterized by the fact that it is made as follows.

なお、この発明の方法において、フッ素樹脂微粉末は、
前記導電性微粉末の分散液中に共に分散させて処理液と
しても良いし、あるいはまた、導電性微粉末の分散液と
は別のフッ素樹脂微粉末のみの分散液としても良く、こ
の場合には陽極酸化皮膜をそれぞれの分散液に順次浸債
すれば良いのである。
In addition, in the method of this invention, the fluororesin fine powder is
It may be used as a treatment liquid by dispersing the conductive fine powder together in the dispersion, or it may be a dispersion of only the fluororesin fine powder, which is separate from the conductive fine powder dispersion. The anodic oxide film can be immersed in each dispersion liquid in sequence.

導電性微粉末とフッ素樹脂微粉末との共存分散液を使用
すれば、一度の浸濃処理のみで作業を終えることができ
るが、分散液の調整や、処理液の終処理が面倒となり、
他方、別々の分散液を使用する場合には逆の問題が起き
るので、必要に応じていずれかを選択すれば良い。また
、この発明の方法にて使用する導電性微粉末のアンチモ
ン含有量を0.1〜2唯重量%と限定したのは、その含
有量が0.1重量%未満では、所望の良好な導電性を確
保することができず、一方20重量%を越えて含有させ
ると、粉末が青味を帯びるようになり、陽極酸化皮膜の
微細孔中や表面に含浸吸着せしめた場合に、その色調や
透明性が損なわれるようになるという理由からであり、
また、平均粒径を0.2仏m以下に限定したのは、0.
2〃mを越えた平均粒径にすると、陽極酸化皮膜の微細
孔中や表面への含浸や吸着が困難となって、微粉末の密
着性が弱く、剥離を招く恐れが生じてくるとともに、媒
体中にて均一分散状態を保持できなくなるからである。
If a coexisting dispersion of conductive fine powder and fluororesin fine powder is used, the work can be completed with just one immersion treatment, but the adjustment of the dispersion liquid and the final treatment of the treatment liquid become troublesome.
On the other hand, if separate dispersions are used, the opposite problem will occur, so one can be selected depending on the need. Furthermore, the reason why the antimony content of the conductive fine powder used in the method of the present invention is limited to 0.1 to 2% by weight is that if the content is less than 0.1% by weight, the desired good conductivity cannot be achieved. On the other hand, if the content exceeds 20% by weight, the powder becomes bluish, and when it is impregnated and adsorbed into the fine pores or the surface of the anodic oxide film, the color tone and This is because transparency will be compromised.
In addition, the reason why the average particle size was limited to 0.2 mm or less was 0.2 mm.
If the average particle size exceeds 2 m, it becomes difficult to impregnate and adsorb into the fine pores and surface of the anodic oxide film, resulting in weak adhesion of the fine powder and the risk of peeling. This is because it becomes impossible to maintain a uniformly dispersed state in the medium.

これは、フッ素樹脂微粉末についても同機で、微粉末と
は平均粒径が0.2ムm以下のものを指すのである。ま
た、この発明の方法において使用する導電性微粉末は、
アルコール、塩酸水溶液、およびアセトンのうちの1種
または2種以上の混合液に塩化錫(以下SnC14で示
す)と塩化アンチモン(以下S比13で示す)とを溶解
したものからなる溶液を、加熱水中に加えて、Sb含有
Sn02を折出させる方法によって製造することができ
るが、Sn02粉末とSb化合物とを焼成する方法や、
Sn化合物とSb化合物とを混合した後、焼成する方法
などの公知の方法によって製造されたSb含有6n02
粉末は、いずれも0.2〃mを越えた平均粒径をもつも
のであり、したがって、これらの公知の方法では、この
発明の0.2ムm以下の平均粒径を有するS〆含有Sn
02粉末を製造することはできない。
This also applies to fluororesin fine powder, where fine powder refers to one with an average particle size of 0.2 mm or less. Furthermore, the conductive fine powder used in the method of this invention is
A solution consisting of tin chloride (hereinafter referred to as SnC14) and antimony chloride (hereinafter referred to as S ratio 13) dissolved in a mixture of one or more of alcohol, hydrochloric acid aqueous solution, and acetone is heated. It can be produced by a method in which Sb-containing Sn02 is precipitated in water, but it can also be produced by a method in which Sn02 powder and an Sb compound are calcined,
Sb-containing 6n02 manufactured by a known method such as a method of mixing a Sn compound and an Sb compound and then firing.
All of the powders have an average particle size exceeding 0.2 mm. Therefore, in these known methods, the S-containing Sn powder of the present invention having an average particle size of 0.2 mm or less cannot be used.
02 powder cannot be manufactured.

他方、フッ素樹脂微粉末分散液は、市販のフッ素樹脂濃
縮液を、通常の分散媒体で薄めるのみで容易に手に入れ
ることができる。さらに、分散液中の導電性微粉末濃度
は1〜30夕/そ程度の範囲を用いるのが良く、特に好
ましくは10〜20夕/その濃度のものが良い。
On the other hand, a fluororesin fine powder dispersion can be easily obtained by simply diluting a commercially available fluororesin concentrate with a common dispersion medium. Furthermore, the conductive fine powder concentration in the dispersion is preferably in the range of 1 to 30 m/s, particularly preferably 10 to 20 m/s.

なぜなら、その濃度が1夕/そを下廻ると十分な非帯電
性付与効果を得ることができず、一方30夕/夕を越え
てもそれ以上の効果の向上がみられないからである。そ
して、導電性微粉末と共存させるか、独立に用意するフ
ッ素樹脂微粉末の濃度は1〜20夕/メが適当であり、
特に好ましくは5〜10多/その濃度で使用するのが良
い。
This is because if the concentration is less than 1 night/night, a sufficient antistatic property imparting effect cannot be obtained, and on the other hand, if the concentration exceeds 30 nights/night, no further improvement in the effect is observed. The appropriate concentration of the fluororesin fine powder, which is prepared together with the conductive fine powder or prepared independently, is 1 to 20 m/m.
Particularly preferably, it is used at a concentration of 5 to 10.

なぜなら、その濃度が19/そを下廻る濃度であっても
、フッ素樹脂含浸効果は得られるが、十分な含浸濃度を
得るには1夕/そ以上の分散液濃度が必要であり、一方
20多/そを越えると含浸後の後処理(乾燥、その他)
において表面の汚れや曇り等、外観の均一性を欠く現象
が発生しやすいからである。分散液による含浸処理温度
は、常温〜60qo程度が適しているが、35〜45℃
程度が特に良い結果を得るものである。
This is because even if the concentration is less than 19%, the fluororesin impregnation effect can be obtained, but in order to obtain a sufficient impregnation concentration, a dispersion concentration of 10% or more is required. If the amount is exceeded, post-treatment after impregnation (drying, etc.)
This is because phenomena such as surface stains and cloudiness that lack uniformity of appearance are likely to occur. The suitable temperature for impregnation treatment with the dispersion is room temperature to about 60 qo, but 35 to 45 °C
Particularly good results can be obtained depending on the degree of

この発明は、上述のように,、導電性微粉末およびフッ
素樹脂微粉末分散液にて陽極酸化皮膜を処理するもので
あるが、この処理は、染色工程や二次電解着色工程の後
でも実施できるものであり、また、陽極酸化処理、水洗
工程、染色工程、二次電解着色工程、封孔処理等の一連
の処理法は、従来のアルミニウムまたはアルミニウム合
金の陽極酸化処理材の製造条件をそのまま利用できるも
のである。
As described above, this invention treats an anodized film with a conductive fine powder and a fluororesin fine powder dispersion, but this treatment can also be carried out after the dyeing process or secondary electrolytic coloring process. In addition, a series of processing methods such as anodizing, washing with water, dyeing, secondary electrolytic coloring, and sealing can be carried out under the same manufacturing conditions as conventional aluminum or aluminum alloy anodized materials. It is available.

次に、この発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.

まず、1050アルミニウム板材を、通常行なわれてい
る所定の前処理を経てから陽極酸化処理し、30仏mの
硬質酸化皮膜を形成した。
First, a 1050 aluminum plate was subjected to a predetermined pretreatment that is commonly performed, and then subjected to anodization treatment to form a hard oxide film with a thickness of 30 cm.

このときの陽極酸化処理条件は、日2S04:300夕
/夕、シュウ酸:39/そ、AIH十:5夕/その浴中
にて、温度:0℃、電流密度:2.私/dで、処理時間
:40分というものであった。
The anodizing conditions at this time were: Sun 2S04:300pm/evening, oxalic acid: 39/day, AIH 1:5pm/day in the bath, temperature: 0°C, current density: 2. For me/d, the processing time was 40 minutes.

次いで、これを流水水洗した後、平均粒蓬:0.07仏
mの(Sn・Sb)02微粉末(Sb:1の重量%を含
有し、残りが実質的にSn02からなる微粉末)を15
夕/夕と、テフロン■(商品名):5夕/夕を共存する
分散液に、3500にて30分間浸潰して(Sn・Sb
)・02並びにテフロン■(商品名)を含浸処理し、さ
らに水洗した後熱風乾燥した。ここで用いた(Sn・S
b)・02及びテフロン■(商品名)分散液は次のよう
に調整したものである。
Next, after washing this with running water, (Sn/Sb)02 fine powder (fine powder containing Sb: 1% by weight and the remainder essentially consisting of Sn02) with an average grain size of 0.07 French m was added. 15
(Sn/Sb
), 02 and Teflon ■ (trade name), washed with water, and then dried with hot air. Used here (Sn・S
b).02 and Teflon ■ (trade name) dispersions were prepared as follows.

すなわち、水:3000ccを温度:90ooに加熱保
持し、これに激しく鷹梓を加えながら、メタノール:3
00ccにSnC14:173夕とSbC13:20.
9夕とを溶解したものからなる溶液を、4時間かけてゆ
っくりと注入して(Sb・Sn)・02粉末を析出生成
せしめ、次いで該(Sb・Sn)・02粉末を櫨刻し、
洗浄してから、空気中にて温度:50000に2時間保
持の加熱処理を施すことによって得られた微粉末を、テ
フロン■(商品名)とともに、所定量の弱アルカリ溶液
に投じて、ポールミルにて1幼時間混練することによっ
て原液を調整してから、さらに分散剤(トライトン:5
夕/そ)を含むイオン交換水にて稀釈した。このように
処理した1050アルミニウム板の表面帯電電位を測定
し、さらに表面潤滑特性を知るために摩擦係数をも測定
した結果、弧Vのコロナ放電に晒したとき(Elect
rostatic PaperA雌lyzer使用)に
3〜5Vの帯電量を示し、1050アルミニウム素材の
帯電電位である0〜2Vに近い表面帯電電位を有するこ
とが明らかとなり、また、テフロン■(商品名)含浸吸
着によって摩擦係数(仏)が0.15という値を示した
That is, 3,000 cc of water was heated and maintained at a temperature of 90 oo, and 3000 cc of methanol was added to it while vigorously adding Takaazusa.
00cc to SnC14:173 evening and SbC13:20.
A solution consisting of a mixture of 9 and 10% was slowly injected over a period of 4 hours to precipitate (Sb/Sn)/02 powder, and then the (Sb/Sn)/02 powder was diced.
After washing, the fine powder obtained by heat treatment in the air at a temperature of 50,000 for 2 hours was poured into a predetermined amount of weak alkaline solution together with Teflon ■ (trade name), and placed in a pole mill. After adjusting the stock solution by kneading for 1 hour, add a dispersant (Triton: 5
The solution was diluted with ion-exchanged water containing 100% water and 50% water. We measured the surface charge potential of the 1050 aluminum plate treated in this way, and also measured the friction coefficient in order to know the surface lubrication characteristics.
It was revealed that rostatic Paper (using a female lyzer) exhibited a charge amount of 3 to 5 V, and that it had a surface charge potential close to 0 to 2 V, which is the charge potential of 1050 aluminum material. The coefficient of friction (French) showed a value of 0.15.

ちなみに、1050アルミニウムに30仏mの硬質酸化
皮膜を形成しただけの比較材では、120〜180Vの
帯電量と、0.5〜0.7という高い摩擦係数を示した
。なお、この実施例は、処理液として(Sb・Sn)・
02粉末とテフロン■(商品名)との共存分散液を使用
したものであるが、これらのそれぞれ上記と同濃度の別
々の分散液を用意し、上記順序で各々への浸債処理を行
なったところ、上記績果とほとんど変らない良好な成績
を得ることができた。
By the way, a comparative material in which a hard oxide film of 30 fm thick was formed on 1050 aluminum showed a charge amount of 120 to 180 V and a high coefficient of friction of 0.5 to 0.7. In this example, (Sb/Sn)/
A coexisting dispersion of 02 powder and Teflon ■ (trade name) was used. Separate dispersions with the same concentrations as above were prepared for each, and each was subjected to bond immersion treatment in the above order. However, we were able to obtain good results that were almost the same as the above results.

上述のように、この発明によれば、極めて簡単に生産性
高く、非帯電性高潤滑性の表面被覆処理アルミニウム系
部材を製造することができ、陽極酸化処理材の仕上り寸
法がそのまま製品寸法となるので、寸法精度の高い製品
が得られ、また陽極酸化皮膜の強度を劣化することなく
非帯電性及び潤滑性を強化された製品を得ることができ
るなど工業上有用な効果がもたらされるのである。
As described above, according to the present invention, it is possible to extremely easily manufacture non-static, highly lubricating surface-coated aluminum members with high productivity, and the finished dimensions of the anodized material are the same as the product dimensions. As a result, products with high dimensional accuracy can be obtained, and products with enhanced anti-static properties and lubricity can be obtained without deteriorating the strength of the anodic oxide film, providing industrially useful effects. .

Claims (1)

【特許請求の範囲】 1 表面陽極酸化処理したアルミニウムまたはアルミニ
ウム合金部材を、アンチモン:0.1〜20重量%を含
有し、残りが実質的に酸化錫からなる組成を有し、かつ
0.2μm以下の平均粒経を有する導電性微粉末と、フ
ツ素樹脂微粉末との分散液中に浸漬し、該部材の表面に
非帯電性潤滑性硬質皮膜を形成することを特徴とするア
ルミニウムまたはアルミニウム合金部材の表面処理法。 2 上記特許請求の範囲第1項記載の方法において、上
記分散液は、上記導電性微粉末と上記フツ素樹脂微粉末
とが共存した分散液であることを特徴とするアルミニウ
ムまたはアルミニウム合金部材の表面処理法。3 上記
特許請求の範囲第1項記載の方法において、上記分散液
は、上記導電性微粉末の分散液と、上記フツ素樹脂微粉
末の分散液との2種からなることを特徴とするアルミニ
ウムまたはアルミニウム合金部材の表面処理法。
[Scope of Claims] 1. An aluminum or aluminum alloy member whose surface has been anodized, containing 0.1 to 20% by weight of antimony, with the remainder substantially consisting of tin oxide, and having a thickness of 0.2 μm. Aluminum or aluminum characterized by forming a non-static lubricating hard film on the surface of the member by immersing it in a dispersion of a conductive fine powder having the following average particle size and a fluororesin fine powder. Surface treatment method for alloy parts. 2. The method according to claim 1, wherein the dispersion liquid is a dispersion liquid in which the conductive fine powder and the fluororesin fine powder coexist. Surface treatment method. 3. The method according to claim 1, wherein the dispersion liquid is composed of two types: a dispersion liquid of the conductive fine powder and a dispersion liquid of the fluororesin fine powder. Or surface treatment method for aluminum alloy parts.
JP8109782A 1982-05-14 1982-05-14 Surface treatment method for aluminum or aluminum alloy parts Expired JPS6041156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8109782A JPS6041156B2 (en) 1982-05-14 1982-05-14 Surface treatment method for aluminum or aluminum alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8109782A JPS6041156B2 (en) 1982-05-14 1982-05-14 Surface treatment method for aluminum or aluminum alloy parts

Publications (2)

Publication Number Publication Date
JPS58199897A JPS58199897A (en) 1983-11-21
JPS6041156B2 true JPS6041156B2 (en) 1985-09-14

Family

ID=13736879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8109782A Expired JPS6041156B2 (en) 1982-05-14 1982-05-14 Surface treatment method for aluminum or aluminum alloy parts

Country Status (1)

Country Link
JP (1) JPS6041156B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615284B2 (en) * 1991-08-19 1997-05-28 三菱重工業 株式会社 Manufacturing method of aluminum composite products

Also Published As

Publication number Publication date
JPS58199897A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US4434541A (en) Electromagnetic shielding
US4507359A (en) Electromagnetic shielding
US2008733A (en) Treatment of coatings
MX2010012956A (en) Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same.
DE69912612T2 (en) Light colored conductive coated particles
JPS6313463B2 (en)
JP2802397B2 (en) Electrodeposited film forming composition and coating method
EP1125988A2 (en) A self-sacrifice type metal corrosion inhibitor and a metal corrosion inhibiting method
US4769280A (en) Electromagnetic shielding
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JP2582034B2 (en) Powder having multilayer film on surface and method for producing the same
JPS6041156B2 (en) Surface treatment method for aluminum or aluminum alloy parts
JP5400306B2 (en) White conductive powder and its use
CN1051373A (en) The manufacture method of coating composition and the metal products that applied thereof
US5186802A (en) Electro-deposition coated member and process for producing it
US3635809A (en) Electrodeposition coating process of vinylidene fluoride resin
JPS6112028B2 (en)
KR101409403B1 (en) Method for forming coating having carbon nanotube on metallic material and metallic material having the coating
JPH02168698A (en) Conductive resin film and manufacture thereof
JPH01246398A (en) Production of composite dispersive particles and composite plating method
JPH06264010A (en) Electrodeposition coating material, electrodeposition coated member, and production of the member
US3788961A (en) Plastic coatings for articles and a method of producing same
JPH11209895A (en) Metallic product excellent in antibacterial property and its production
JPH0370322B2 (en)
KR810001139B1 (en) Manufacturing method for electronic photo exposure substance