JPS6040858B2 - Highly tough orthopedic implant components with excellent corrosion and wear resistance - Google Patents

Highly tough orthopedic implant components with excellent corrosion and wear resistance

Info

Publication number
JPS6040858B2
JPS6040858B2 JP57044134A JP4413482A JPS6040858B2 JP S6040858 B2 JPS6040858 B2 JP S6040858B2 JP 57044134 A JP57044134 A JP 57044134A JP 4413482 A JP4413482 A JP 4413482A JP S6040858 B2 JPS6040858 B2 JP S6040858B2
Authority
JP
Japan
Prior art keywords
orthopedic implant
excellent corrosion
wear resistance
implant components
highly tough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044134A
Other languages
Japanese (ja)
Other versions
JPS58159741A (en
Inventor
昌範 吉川
淑雄 大井
昭雄 西山
達宣 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57044134A priority Critical patent/JPS6040858B2/en
Publication of JPS58159741A publication Critical patent/JPS58159741A/en
Publication of JPS6040858B2 publication Critical patent/JPS6040858B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、すぐれた耐食性および耐摩耗性を有し、か
つ靭性にもすぐれた骨ねじや麹内釘などの整形外科イン
プラント部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to orthopedic implant members such as bone screws and Kojinai nails that have excellent corrosion resistance, wear resistance, and toughness.

現在、一般に上記のような整形外科ィンプラント部材の
製造には、ステンレス鋼などの金属材料や、単結晶アル
ミナなどの無機材料が使用されている。
Currently, metal materials such as stainless steel and inorganic materials such as single crystal alumina are generally used in the manufacture of orthopedic implant components as described above.

しかし、前記の金属材料においては、十分な耐食性をも
たないものであるため、手術後1年も経過すると体内に
おいて原形をとどめない程度に腐食が進行するのが普通
であり、場合によっては新らたなものと交換するか、交
換しないまでも摘出処理を施す必要性が生じることもあ
る。一方、後者の無機材料においては、生体適合性、耐
食性、および耐摩耗性にすぐれているものの級性の著し
く劣ったものであるため、取扱いが難かしく、かつ高価
なものであるという問題点がある。そこで、本発明者等
は、上述のような観点から、すぐれた生体適合性、耐食
性、および耐摩耗性を有し、かつ籾性にもすぐれた整形
外科ィンプラント部材をコスト安く得べく研究を行なっ
た結果、本体をステンレス鋼などの高合金鋼や、ハステ
ロイなどのNi基合金、あるいはステラィトなどのCo
基合金で構成すると共に、前記本体の表面を、通常の化
学蒸気法やイオンプレーティング法、さらにプラズマ化
学蒸着法などを用いて、Tiの窒化物、炭化物、炭窒化
物、炭酸化物、炭酸窒化物、および酸窒化物、並びに酸
化アルミニウム(以下、それぞれTIN,TIC,TI
CN,TIC○,TICN○,TIN○、およびAI2
C3の化学記号にて示す)のうちの1種の単層または2
種以上の穣層からなる表面硬質層を0.5〜50山肌の
平均層厚で被覆してなる整形外科ィンプラント部村にお
いては、前記本体によってすぐれた轍性が確保され、か
つ前記表面硬質層によってすぐれた生体適合性、耐食性
、および耐摩耗性が確保され、しかも前記本体の材料コ
スト並びに前記表面硬質層の形成コストは比較的安く、
したがって従釆の無機材料製のものに比して安価である
という知見を得たのである。この発明は上記知見にもと
づいてなされたものであるが「表面硬質層の平均層厚を
0.5〜50仏のと限定したのはtその平均層厚が0.
5仏の禾満では「所望のすぐれた生体適合性「耐食性、
および耐摩耗性を確保することができず、一方50仏凧
を越えて厚くすると割れが発生しやすくなるばかりでな
く、コスト高の原因ともなるという理由にもとづくもの
である。
However, since the above-mentioned metal materials do not have sufficient corrosion resistance, it is common for corrosion to progress to the extent that the original shape cannot be retained within the body even one year after surgery, and in some cases, new It may be necessary to replace it with a new one, or even remove it without replacing it. On the other hand, the latter type of inorganic material has excellent biocompatibility, corrosion resistance, and abrasion resistance, but has extremely poor quality, making it difficult to handle and expensive. be. Therefore, from the above-mentioned viewpoints, the present inventors conducted research to obtain an orthopedic implant member that has excellent biocompatibility, corrosion resistance, and abrasion resistance, and also has excellent graininess at a low cost. As a result, the main body is made of high-alloy steel such as stainless steel, Ni-based alloy such as Hastelloy, or Co-based material such as Stellite.
In addition to being composed of a base alloy, the surface of the main body is coated with Ti nitrides, carbides, carbonitrides, carbonates, and carbonitrides using ordinary chemical vapor methods, ion plating methods, plasma chemical vapor deposition methods, etc. aluminum oxide, oxynitride, and aluminum oxide (hereinafter referred to as TIN, TIC, and TI, respectively)
CN, TIC○, TICN○, TIN○, and AI2
A monolayer or two of the following (indicated by the chemical symbol C3)
In orthopedic implants that are coated with a hard surface layer consisting of a grain layer or more with an average layer thickness of 0.5 to 50 mounds, the main body ensures excellent rutting resistance, and the hard surface layer This ensures excellent biocompatibility, corrosion resistance, and abrasion resistance, and the material cost of the main body and the formation cost of the surface hard layer are relatively low.
Therefore, they found that it is cheaper than the secondary one made of inorganic material. This invention was made based on the above knowledge, but the reason why the average layer thickness of the surface hard layer was limited to 0.5 to 50 mm was that the average layer thickness was 0.5 mm to 50 mm.
5 Buddha's Compassion: ``The desired excellent biocompatibility, corrosion resistance,
This is because it is not possible to ensure abrasion resistance, and on the other hand, if the thickness exceeds 50 mm, cracks not only tend to occur, but also cause high costs.

つぎに、この発明の整形外科ィンプラント部材を実施例
により具体的に説明する。
Next, the orthopedic implant member of the present invention will be specifically explained using examples.

実施例 高合金鋼としてのオーステナィト系ステンレス鋼、Co
基合金としてのステラィト、およびNj基合金としての
ハステロイを用いて、整形外科ィンプラント部材本体と
しての骨ねじおよび骨支持臭を製造し、ついでこれら部
材本体の表面に、通常の化学蒸着法トィオンブレーティ
ンクー法「およびプラズマ化学務肴法を用いて〜それぞ
れ第1表に示される材質および層厚の表面硬質層を形成
することによっても本発明インプラント部材1〜34を
それぞれ製造した。
Examples Austenitic stainless steel as high alloy steel, Co
Bone screws and bone supports as orthopedic implant component bodies are manufactured using Stellite as the base alloy and Hastelloy as the Nj-based alloy, and then the surfaces of these component bodies are coated with a conventional chemical vapor deposition method. Implant members 1 to 34 of the present invention were also manufactured by forming hard surface layers having the materials and layer thicknesses shown in Table 1 using the Tinku method and the plasma chemical processing method, respectively.

ついで、この結果得られた本発明ィンプラント部材角〜
34のうち本発明ィンプラント部材1,3,5?14,
16,亀8,20?23,26,38,および32と、
比較の目的で、上記表面硬質層の形成がない第1表の1 第1表の2 比較ィンプラント部村1〜3について、生後12ケ月の
うさぎに手術により埋め込み、6ケ月経過後、整形部を
切開し、その腐食状況を観察の生体腐食試験を行なった
Next, the resulting implant member angle of the present invention ~
Among 34, implant members of the present invention 1, 3, 5?14,
16, turtle 8, 20?23, 26, 38, and 32,
For comparison purposes, the comparative implants No. 1 to No. 3 of Table 1, which do not have the formation of the above-mentioned hard surface layer, were surgically implanted in 12-month-old rabbits, and after 6 months, the orthopedic portion was removed. A biological corrosion test was conducted by cutting it open and observing the corrosion state.

この結果、本発明ィンプラント部材は、いずれもすぐれ
た耐食性を示し、原形のままの状態を示し、腐食が全く
見られないのに対して、表面硬質層の形成がない比較ィ
ンプラント部材1〜3においては、骨ねじについては頭
の十字部が原形をとどめないほどに著しく腐食しており
、さらに骨支持臭もエッジ部が約2脚程後退する腐食の
はげしいものであった。また、上記の本発明ィンプラン
ト部村1〜34および比較ィンプラント部材1〜3につ
いて、生体内での腐食を推定できる条件、すなわち水:
100の‘中に塩酸:100の‘を加えた塩酸水溶液、
並びに23%食塩水:200の‘を用い、この両液に温
度:23oCで5時間浸薄の条件で、塩酸水溶液浸簿試
験および食塩水浸濃試験をそれぞれ行ない、試験後、単
位面積当りの重量減を測定した。
As a result, all of the implant members of the present invention exhibited excellent corrosion resistance, remained in their original shape, and showed no corrosion at all, whereas comparative implant members 1 to 3, which did not have a hard surface layer, As for the bone screw, the cruciate part of the head was so corroded that it no longer retained its original shape, and the bone support odor was so corroded that the edge part receded by about two legs. Further, regarding the above-mentioned implant members 1 to 34 of the present invention and comparative implant members 1 to 3, conditions under which in vivo corrosion can be estimated, namely, water:
Aqueous hydrochloric acid solution with 100% hydrochloric acid added to 100%,
A hydrochloric acid aqueous solution immersion test and a saline solution immersion test were conducted using 200' of 23% saline solution and immersion in both solutions at a temperature of 23oC for 5 hours, and after the test, the Weight loss was measured.

この測定結果をビッカース硬さと共に第1表に合せて示
した。第1表に示される結果から、本発明ィンプラント
部材1〜34は、比較インプラント部材1〜3に比して
一段とすぐれた耐食性を示し、かつきわめて高い硬さを
もつことから耐摩耗性にもすぐれていることが明らかで
ある。上述のように、この発明の整形外科ィンプラント
部材は、その本体によってすぐれた磁性が確保されるの
で、その取り扱いに細心の注意をはらう必要がなく、ま
たその表面硬質層によってすぐれた生体適合性、耐食性
、および耐摩耗性が確保されるので、その実用に際して
はすぐれた性能を著しく長期に亘つて発揮し、さらに製
造コストの安価なものであるなど工業上有用な特性を有
するのである。
The measurement results are shown in Table 1 along with the Vickers hardness. From the results shown in Table 1, implant members 1 to 34 of the present invention exhibit much better corrosion resistance than comparative implant members 1 to 3, and have extremely high hardness, so they also have excellent wear resistance. It is clear that As mentioned above, the orthopedic implant member of the present invention has excellent magnetism due to its main body, so there is no need to take great care when handling it, and the hard surface layer provides excellent biocompatibility and Since corrosion resistance and abrasion resistance are ensured, it exhibits excellent performance over a long period of time in practical use, and has industrially useful properties such as being inexpensive to manufacture.

Claims (1)

【特許請求の範囲】[Claims] 1 高合金鋼、Co基合金、あるいはNi基合金からな
る本体の表面に、Tiの窒化物、炭化物、炭窒化物、炭
酸化物、炭酸窒化物、および酸窒化物、並びに酸化アル
ミニウムのうちの1種の単層または2種以上の複層から
なる表面硬質層を0.5〜50μmの平均層厚で被覆し
てなる耐食性摩耗性にすぐれた高靭性整形外科インプラ
ント部材。
1. On the surface of the main body made of high alloy steel, Co-based alloy, or Ni-based alloy, one of Ti nitride, carbide, carbonitride, carbonate, carbonitride, and oxynitride, and aluminum oxide. A high-toughness orthopedic implant member having excellent corrosion resistance and abrasion resistance, which is coated with a surface hard layer consisting of a single layer or a multilayer of two or more types with an average layer thickness of 0.5 to 50 μm.
JP57044134A 1982-03-19 1982-03-19 Highly tough orthopedic implant components with excellent corrosion and wear resistance Expired JPS6040858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044134A JPS6040858B2 (en) 1982-03-19 1982-03-19 Highly tough orthopedic implant components with excellent corrosion and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044134A JPS6040858B2 (en) 1982-03-19 1982-03-19 Highly tough orthopedic implant components with excellent corrosion and wear resistance

Publications (2)

Publication Number Publication Date
JPS58159741A JPS58159741A (en) 1983-09-22
JPS6040858B2 true JPS6040858B2 (en) 1985-09-12

Family

ID=12683151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044134A Expired JPS6040858B2 (en) 1982-03-19 1982-03-19 Highly tough orthopedic implant components with excellent corrosion and wear resistance

Country Status (1)

Country Link
JP (1) JPS6040858B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176153A (en) * 1984-09-25 1986-04-18 工学社エンジニアリング株式会社 Artificial valve for artificial heart having surface treatment applied thereto
AU614435B2 (en) * 1988-11-03 1991-08-29 Mixalloy Limited Improvements in the production of coated components
JPH02286158A (en) * 1989-04-27 1990-11-26 Ishikawajima Harima Heavy Ind Co Ltd Artificial joint

Also Published As

Publication number Publication date
JPS58159741A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
Blackwood Biomaterials: past successes and future problems
US5152794A (en) Zirconium oxide and nitride coated prothesis for reduced microfretting
JP5753256B2 (en) Non-ferrous metal substrate suitable for wear-resistant orthopedic joints with nitride-based coating
AU2015201857B2 (en) Surface alloyed medical implant
US20040122524A1 (en) Bi-polar hip prosthetic devices employing diffusion-hardened surfaces
AU2002360511A1 (en) In-situ oxidized textured surfaces for prosthetic devices and method of making same
AU639468B2 (en) Prosthesis
EP2468313A1 (en) Ceramic coated orthopaedic implants
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP2007196365A (en) Insert for milling steel
DK174876B1 (en) Implant and implant surface modification process
Hovsepian et al. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering
AU2021222575A1 (en) Coated implant and method of making the same
JPS6040858B2 (en) Highly tough orthopedic implant components with excellent corrosion and wear resistance
Fathi et al. Tantalum, niobium and titanium coatings for biocompa improvement of dental implants
EP2774631B1 (en) Cobalt chrome coated titanium implant
EP1404257A1 (en) An orthopaedic joint prosthesis
US9757498B2 (en) Bonded alumina coating for stainless steel
JP3353449B2 (en) Coated cutting tool
JPH09169508A (en) Multilayer coating of nitride-containing compound and methodfor forming the same
JPS62122669A (en) Implant member for living body
Kameník et al. Identification of tool wear intensity during miniature machining of austenitic steels and titanium
CN219578955U (en) Orthopedics sword with compound stereoplasm coating
JPH0841611A (en) Amorphous alloy having water repellency, antibacterial property and corrosion resistance and apparatus for medical use
Martin Tribological Coatings for Biomedical Devices