JPS6040820A - Control method for magnetic bearing device - Google Patents

Control method for magnetic bearing device

Info

Publication number
JPS6040820A
JPS6040820A JP14922383A JP14922383A JPS6040820A JP S6040820 A JPS6040820 A JP S6040820A JP 14922383 A JP14922383 A JP 14922383A JP 14922383 A JP14922383 A JP 14922383A JP S6040820 A JPS6040820 A JP S6040820A
Authority
JP
Japan
Prior art keywords
torque command
magnetic bearing
gravity
center
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14922383A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishida
石田 精
Yoshinori Kamiya
神谷 嘉則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP14922383A priority Critical patent/JPS6040820A/en
Publication of JPS6040820A publication Critical patent/JPS6040820A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control

Abstract

PURPOSE:To perform stable control of a magnetic bearing by multiplying, the number of rotation detection signal multiplied by coefficient, by each torque command value and adding an integral value of this signal to the torque command of one side and subtracting the same from the torque command of the other side. CONSTITUTION:Electromagnets 1(a)-1(h) are provided on both end parts of a rotary shaft A and support the rotary shaft in the air. Command torque Ttheta, Tpsi are given for control in theta direction and psi direction, however, since gyro action is generated due to this torque, a detection signal from rotation speed detector is multiplied by the coefficient by means of a coefficient instrument. Respective torque command values TpsiS, TthetaS are multiplied by the value obtained as abovementioned by means of a multiplier and the value thus obtained is integrated by means of an integrator and added to the torque command TthetaS of one side, while it is subtracted from the torque command TpsiS of the other side and control is performed by a value obtained through such processes of operation. Thus, gyro action in the orthogonal direction is negated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気軸受装置の制御方法に関するものでるる。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of controlling a magnetic bearing device.

〔背景技術〕[Background technology]

磁気軸受は磁気力により回転体を全く非接触で猜中支持
する7ヒめ、潤滑の問題が−よいこと、特殊な環境の中
でも使用可能であること、またM停。
7. Magnetic bearings use magnetic force to support the rotating body in a completely non-contact manner, are free from lubrication problems, can be used even in special environments, and have M-stops.

摩耗、M音の問題が全くないか、極めて小さいので、超
高速運転が可能であるなどの特長があるため、その実用
化に向って磁気軸受装置の研究が盛んに行なわれている
Magnetic bearing devices are being actively researched to put them into practical use because they have the advantage of being able to operate at ultra-high speeds because they have no or very little problems with wear and M noise.

本出航人は、さきに、特jIA昭57−217082と
して1回転軸の両端部を磁気棚受によって空中支持した
磁気軸受装置において、前自己回転軸の両端部に作用す
る磁気吸引力の相互千渉が生じなりようにした磁気軸受
装置の制御方法を提案した。
The sailor previously discovered that, in a magnetic bearing device in which both ends of a rotating shaft are supported in the air by magnetic rack supports, as specified in JIA 1982-217082, the magnetic attraction forces acting on both ends of the self-rotating shaft are mutually equal. We proposed a control method for a magnetic bearing device that prevents interference from occurring.

しかしながら、その方法は、尚速回転時にジャイロ作用
のため整足時間が長くなるという欠点があることがわか
った。
However, it has been found that this method has the disadvantage that it takes a long time to set foot due to the gyroscopic effect when the motor rotates at a still high speed.

〔目的〕〔the purpose〕

本発明は、上記欠点を解消して、ジャイロ作用による振
れ回りを予測して、その発生を押えようとする磁気軸受
装置の制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a control method for a magnetic bearing device that predicts whirling due to gyroscopic action and attempts to suppress its occurrence.

〔発明の要旨〕[Summary of the invention]

本発明は、2個のラジアル軸受を構+lVする4軸吸引
制机型磁気軸受装置において、4軸方向の変位検出てよ
り、重心の変位と重心回りの振れ角をめ、これらを一定
になるよう制御するとき5回転数検出信号を係数倍した
ものと、それぞれのトルク指令1直とを乗算し、この信
号を積分したものを一方のトルク指令には力ロ鼻し他方
のトルク指令から減算するようにしたものである。
The present invention is a 4-axis suction control type magnetic bearing device that consists of two radial bearings, and detects displacement in the 4-axis directions to determine the displacement of the center of gravity and the deflection angle around the center of gravity, and to keep them constant. When performing such control, multiply the 5-rotation speed detection signal by a coefficient and each torque command 1 shift, integrate this signal, apply it to one torque command, and subtract it from the other torque command. It was designed to do so.

〔発明の実施例〕[Embodiments of the invention]

以下、図を用いて本兆明の具体的実施例を説明する。 Hereinafter, specific embodiments of this invention will be described using figures.

まず、ti解を容易にするため磁気軸受系のジャイロ作
用(ピッチング、ヨーイングの発生)について説明する
First, in order to facilitate the ti solution, the gyro effect (occurrence of pitching and yawing) of the magnetic bearing system will be explained.

かかるジャイロ作用は、公団文献1横軸形I気軸受の基
本方僅式と側倒系設計」(松村文夫氏龍電気学会論文誌
、56−019)て記載されているとおシ、第1図に示
すブロック図で表わされる。
Such gyroscopic action is described in Public Corporation Document 1, "Basic method of horizontal axis type I air bearing and side-tilt system design" (Fumio Matsumura, Journal of the Institute of Electrical Engineers, 56-019), Fig. 1. It is represented by the block diagram shown in .

図に2いて& ’Zl l ftm l ’Z31 ’
Z41 ’ r I* fr * *fr8.fr4は
第2図(イ)に示すように回転軸をとりまく各鹸磁石H
a)、Hb)、Hc)、1(d)、He)。
In the figure 2 &'Zl l ftm l 'Z31'
Z41' r I* fr * *fr8. fr4 is the magnet H surrounding the rotating shaft as shown in Figure 2 (a).
a), Hb), Hc), 1(d), He).

H−r)、Hg)、Hh)の吸引力でめり、gZI I
 gZ21g41 gZ41 g r t r g r
 z r g r s r g r 4 ハ、第21図
(ロ)及び(ハ)に示すようKその吸引力に対応した個
所のギャップで=bp、wは平衡状態におけるギャップ
である。またPはローリングの角速度、Jx及びJ、′
riそれぞれX軸、y軸回りの慣性モーメントである。
H-r), Hg), Hh), gZI I
gZ21g41 gZ41 g r t r g r
z r g r s r g r 4 c. As shown in FIGS. 21 (b) and (c), K is the gap at the location corresponding to the attraction force = bp, and w is the gap in the equilibrium state. Also, P is the rolling angular velocity, Jx and J,'
ri is the moment of inertia around the X-axis and the y-axis, respectively.

第3図は第1図の中央部分をとり出したもので。Figure 3 shows the central part of Figure 1.

θ方向とψ方向の指令トルクTθ、Tψけ夫々次式で表
わされる。たたし、簡単VC−)−るため11−1□−
1としまた第3.図から1次の(2)式が成り立つ。
The command torques Tθ and Tψ in the θ direction and ψ direction are respectively expressed by the following equations. However, for easy VC-)-11-1□-
1 and 3. From the figure, equation (2) of first order holds true.

但し、第3図において8はラグラス演算子であるから である。However, in Figure 3, 8 is a Lagras operator, so It is.

土配(2)式において、ψ=O2ψ=0とおくと。In Equation (2), if we set ψ=O2ψ=0.

TψとTθの関係は次式で表わされることになる。The relationship between Tψ and Tθ is expressed by the following equation.

同様に(2)式においてθ=0.θ=0とおくと。Similarly, in equation (2), θ=0. If we set θ=0.

1TψとTθ の関係は次式で表わされる。The relationship between 1Tψ and Tθ is expressed by the following equation.

上Me、 (3)式はψ=ψ−0となるTψとTθの関
係であるので、θを制御する時、すなわちTθの指令を
与えたとき(3)式に従がってTψにも指令を与えるよ
りにすればψは変化しないことを意味している。
Above Me, Equation (3) is the relationship between Tψ and Tθ such that ψ = ψ - 0, so when controlling θ, that is, when giving a command for Tθ, Tψ also changes according to Equation (3). This means that ψ will not change if a command is given.

また(4)式はθ=θ=0となるTψとTθの関係であ
るので、ψを制御する時すなわちTψの指令を与えたと
き(4)式に従がってTθにも指仝を与えるようにすれ
ばθは変化しないことを意味しでいる。
Also, since equation (4) is the relationship between Tψ and Tθ such that θ = θ = 0, when controlling ψ, that is, when giving a command for Tψ, a command is also given to Tθ according to equation (4). This means that if θ is given, θ will not change.

そこで(3) 、 <4)式に基づく制御方法をとシ入
れたのが第4図に示す本発明実施例である。
Therefore, the embodiment of the present invention shown in FIG. 4 incorporates a control method based on equations (3) and <4).

本発明の特徴はθやψの制御のためにトルク指令を与え
るとき、そのトルクによってジャイロ作用が生じること
がわかっているので、トルク指令を与えると同時に直交
する方向のジャイロ作用を打消すトルク指令も与えるよ
うにしたことで5g斗図の1点鎖線で囲んだ部分か本発
明により旬力日しfc部分である。
The feature of the present invention is that when a torque command is given to control θ and ψ, it is known that a gyroscopic action is caused by the torque, so at the same time as the torque command is given, a torque command that cancels the gyroscopic action in the orthogonal direction is given. By giving the same value, the part surrounded by the one-dot chain line in the 5g diagram is the fc part, which is the fc part according to the present invention.

それ以外は前述した本出願人が先に提案した磁気軸受制
御装置で16〜19及び16′〜19′はノNワー変換
器、24〜27,24’〜27’、30〜32及び30
′〜32′は係数器、28.28’、29及び29′は
PID調節計、33.33’、34及び34′は線形化
コントローラである。
The rest is the above-mentioned magnetic bearing control device proposed by the present applicant; 16 to 19 and 16' to 19' are N-power converters; 24 to 27, 24' to 27', 30 to 32, and 30
' to 32' are coefficient units, 28, 28', 29 and 29' are PID controllers, and 33, 33', 34 and 34' are linearization controllers.

本発明は、同転速度検出器2の検出信号Wを係数器3に
より係数倍し、それを乗算器◆によりそれぞれのトルク
指分値Tψ8.Tψ8に乗じ、それを積分器5,5によ
って夫々積分したものを一方のトルク指令Tθ3に加算
し、他方のトルク指令Tψ8から減算ブ°るようにし、
その演算値で制御することによシ直交する方向のジャイ
ロ作用を打消すようにしたものである。
In the present invention, the detection signal W of the rotational speed detector 2 is multiplied by a coefficient by a coefficient multiplier 3, and then multiplied by a multiplier ◆ to each torque index value Tψ8. Multiply Tψ8 and integrate it by integrators 5, 5, respectively, and add it to one torque command Tθ3 and subtract it from the other torque command Tθ8,
By controlling with the calculated value, the gyro effect in the orthogonal direction is canceled.

〔効果〕〔effect〕

本発明によれば、ジャイロ作用による振れ回)が予測さ
れてヂ11えられるので、高速回転時の収釆が速くなp
、安短した制岬が実現できる。
According to the present invention, since the swing caused by the gyroscopic action is predicted and calculated, the settling speed during high-speed rotation is quickly achieved.
, a cheap and short cape can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、磁気軸受系のジャイロ作用を衣わすブロック
図、第2図は磁気軸受装置の電磁石の配置と、その鉄引
力及び谷ギャップを示す説明図、第3図は第1図の一郡
を取シ出した拡大ブロック図、第4図は本発明の実施例
のブロック図であも2・・・回転速度検出器、3・・・
係数器、牛、4′・・・乗算器、 5 、5’・・・積
分器 筒j圓 第3 jH
Figure 1 is a block diagram that affects the gyro effect of the magnetic bearing system, Figure 2 is an explanatory diagram showing the arrangement of electromagnets in the magnetic bearing device, their iron attraction, and the valley gap, and Figure 3 is the same diagram as Figure 1. FIG. 4 is an enlarged block diagram showing an example of the present invention.
Coefficient unit, cow, 4'... multiplier, 5, 5'... integrator tube j circle 3rd jH

Claims (1)

【特許請求の範囲】[Claims] 回転軸の両端部に電磁石を設け、その電磁石の磁気吸引
力によって回転軸を空中支持する磁気軸受装置のうち、
2個のラジアル軸受を構成する斗JJ4fJg&引制御
形磁気軸受装置において、前記回転軸両端部の磁気吸引
力作用点における回転軸の変位偏差から回転軸の重心の
変位偏差と重心回夛の振れ角を算出し、#起重心の変位
偏差と重心回シの振れ角が0になるよう、重心に働く力
と重心回シのトルクを制御するよう前記両端部に設けた
電磁石を′Ir1lJ fallするとき1回&数検t
kJ信号を係数倍したものと、それぞれのトルク指令値
とを乗算し、この信号を積分したものを一方のトルク指
令に加算し、他方のトルク指令から減算することを%徴
とする磁気軸受装置の制御方法。
Among magnetic bearing devices, electromagnets are provided at both ends of the rotating shaft, and the rotating shaft is supported in the air by the magnetic attraction of the electromagnets.
In the Dou JJ4fJg & pull control type magnetic bearing device that constitutes two radial bearings, the displacement deviation of the center of gravity of the rotating shaft and the deflection angle of the rotation of the center of gravity are determined from the displacement deviation of the rotating shaft at the points of application of the magnetic attraction force at both ends of the rotating shaft. When the electromagnets provided at both ends are controlled to control the force acting on the center of gravity and the torque of the rotation of the center of gravity so that the displacement deviation of the center of gravity and the deflection angle of the rotation of the center of gravity become 0. One time & several tests
A magnetic bearing device whose percentage sign is to multiply the kJ signal multiplied by a coefficient and each torque command value, then integrate this signal and add it to one torque command and subtract it from the other torque command. control method.
JP14922383A 1983-08-17 1983-08-17 Control method for magnetic bearing device Pending JPS6040820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14922383A JPS6040820A (en) 1983-08-17 1983-08-17 Control method for magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14922383A JPS6040820A (en) 1983-08-17 1983-08-17 Control method for magnetic bearing device

Publications (1)

Publication Number Publication Date
JPS6040820A true JPS6040820A (en) 1985-03-04

Family

ID=15470548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14922383A Pending JPS6040820A (en) 1983-08-17 1983-08-17 Control method for magnetic bearing device

Country Status (1)

Country Link
JP (1) JPS6040820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211521A (en) * 1985-03-15 1986-09-19 Koyo Seiko Co Ltd Omnidirectional bearing control device using pid compensation element
JPS61211523A (en) * 1985-03-15 1986-09-19 Koyo Seiko Co Ltd 5-degree of freedom control type magnetic bearing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989821A (en) * 1982-11-11 1984-05-24 Seiko Instr & Electronics Ltd Control-type magnetic bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989821A (en) * 1982-11-11 1984-05-24 Seiko Instr & Electronics Ltd Control-type magnetic bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211521A (en) * 1985-03-15 1986-09-19 Koyo Seiko Co Ltd Omnidirectional bearing control device using pid compensation element
JPS61211523A (en) * 1985-03-15 1986-09-19 Koyo Seiko Co Ltd 5-degree of freedom control type magnetic bearing device

Similar Documents

Publication Publication Date Title
JP4276381B2 (en) Singularity avoidance in satellite attitude control
CN109483591B (en) Robot joint friction force identification method based on LuGre friction model
Montoya–Cháirez et al. Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom
JPH0371568B2 (en)
JP2005242794A (en) Robot control device and robot control method
CN114291295A (en) Satellite double-axis attitude measurement and control integrated method for single-magnetic suspension control sensitive gyroscope
JPS6040820A (en) Control method for magnetic bearing device
JPH06249238A (en) Magnetic bearing device
JPS59148588A (en) Controlling method for speed of motor
JP2019046336A (en) Multi-copter and control method therefor
JP4929442B2 (en) Vehicle motion control apparatus and automobile
Yongming et al. Research on elastic dynamic model of trolley system for anti-sway control system of bridge crane
JPS61224012A (en) Driving system of manipulator
JPH05272965A (en) Method and apparatus for displaying moving body posture angle
JP4183316B2 (en) Suspension control device for suspended loads
JPS60168915A (en) Control method of magnetic bearing device
JP2017148913A (en) Robot, control device, and control method for robot
JPH11255475A (en) Traveling crane with cargo deflection preventing device
JPS61211521A (en) Omnidirectional bearing control device using pid compensation element
Li et al. BMP: A self-balancing mobile platform
JP4120190B2 (en) Space stabilization controller
CN116172715A (en) Active reverse driving control method and system for high-sensitivity surgical robot
JP2002340925A (en) Acceleration rate sensor
CN114964308A (en) Compensation method, device and equipment for railway building clearance detection system
JP3261210B2 (en) Crane runout prevention method and crane device with runout prevention function