JPS6040152B2 - Insulating material for embedding heating wires - Google Patents

Insulating material for embedding heating wires

Info

Publication number
JPS6040152B2
JPS6040152B2 JP15710579A JP15710579A JPS6040152B2 JP S6040152 B2 JPS6040152 B2 JP S6040152B2 JP 15710579 A JP15710579 A JP 15710579A JP 15710579 A JP15710579 A JP 15710579A JP S6040152 B2 JPS6040152 B2 JP S6040152B2
Authority
JP
Japan
Prior art keywords
weight
particle size
insulating material
talc
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15710579A
Other languages
Japanese (ja)
Other versions
JPS5679880A (en
Inventor
幸一 竹迫
泰三 日比野
正 田村
慶樹 浜
進 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15710579A priority Critical patent/JPS6040152B2/en
Publication of JPS5679880A publication Critical patent/JPS5679880A/en
Publication of JPS6040152B2 publication Critical patent/JPS6040152B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、コンロ、ホットプレート、コーヒー沸し器等
の熱盤に用いられる埋込型ヒータやシーズヒータにおけ
る電熱線埋込用の絶縁材料に関し、特に絶縁粉末の欠落
およびクラックの発生を防止するとともに高価な結合剤
の使用量を少なくし絶縁性能を向上させようとするもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulating material for embedding heating wires in embedded type heaters and sheathed heaters used in heating plates such as stoves, hot plates, coffee boilers, etc. The purpose is to prevent the occurrence of cracks, reduce the amount of expensive binder used, and improve insulation performance.

一般に、この種の埋込型ヒータは金属製熱盤に溝を形成
し、この溝の中央に電熱線を位置させるように絶縁材料
で埋設してなるものである。従来上記埋込型ヒータに用
いられる絶縁材料はシリカ、タルク、マグネシアの混合
絶縁粉末に水溶性のリン酸アルミニウムおよびシリコー
ンワニスを添加したものが用いられていた。シリカ、マ
グネシアは高価なうえ、この絶縁粉末は混合種類が多く
各種類ごとの計量が必要なため工数が多くなり、また高
価なリン酸アルミニウムとシリコーンワニスの2種類の
結合剤を必要とするうえ水溶性のリン酸アルミニウムと
不水溶性のシリコーンワニスを混合する必要もあったの
で、さらに複雑な工数を必要とするため全体として高価
になるという欠点があった。またシリコーンワニスの使
用量が多いと焼成時シリコーン樹脂特有の焼きしまりに
よる収縮が大きく、熱盤の熱膨張率との差が大となり絶
縁粉末にクラックが生じ、このクラック発生部分の電熱
線が大気と接触するので電熱線の酸化が進み断線、絶縁
抵抗の低下の原因となっていた。また絶縁材料は、クラ
ックが入ることにより細切れとなり熱盤より剥離しやす
くなる欠点もあった。本発明は上記従来の埋込型ヒータ
等における電熱線埋込用の絶縁材料の欠点を解消するも
ので以下に本発明の実施例について添付図面を参照して
説明する。
Generally, this type of embedded heater is made by forming a groove in a metal heating plate, and embedding a heating wire in the center of the groove with an insulating material. Conventionally, the insulating material used in the above-mentioned embedded heater has been a mixture of insulating powder of silica, talc, and magnesia to which water-soluble aluminum phosphate and silicone varnish have been added. Silica and magnesia are expensive, and this insulating powder has many types of mixtures, requiring measurement for each type, which increases man-hours.Also, it requires two types of binders: aluminum phosphate and silicone varnish, which are expensive. Since it was also necessary to mix water-soluble aluminum phosphate and water-insoluble silicone varnish, there was a drawback that the process required more complicated steps and was therefore more expensive overall. In addition, if a large amount of silicone varnish is used, the shrinkage due to the shrinkage peculiar to silicone resin during firing will be large, and the difference between the coefficient of thermal expansion of the heating plate will be large, causing cracks in the insulating powder, and the heating wire at the cracked part will be exposed to the atmosphere. Due to contact with the heating wire, oxidation of the heating wire progresses, causing wire breakage and a drop in insulation resistance. Another drawback of the insulating material is that cracks cause it to break into small pieces, making it more likely to peel off than a hot plate. The present invention eliminates the drawbacks of the insulating material for embedding heating wires in the conventional embedded heaters, etc., and embodiments of the present invention will be described below with reference to the accompanying drawings.

第1,2図において、1はアルミダィキャスト製または
、鉄鋳物製の熱盤であり一側表面には断面略U字状の溝
2が形成されている。3は絶縁材料であり、溝2の中央
位置に電熱線4が埋設されている。
In FIGS. 1 and 2, reference numeral 1 denotes a heating plate made of die-cast aluminum or cast iron, and a groove 2 having a substantially U-shaped cross section is formed on one side surface. 3 is an insulating material, and a heating wire 4 is buried in the center of the groove 2.

なお、絶縁材料3の充填後、例えば100k9′仇の圧
力でプレスされ、さらに380005時間の焼成が行わ
れる。材料を安価なタルク(乳Mg0,4Si02,日
20)と金属酸化物(A夕203またはMg○)とシリ
コーンワニスに限定し配合割合を種々変化させて実験を
行った。まず、粉末の混合時やプレス成形時に若干粒度
が変化することを考慮し、成形、焼成された状態で粒度
100仏mのアルミナ7の重量%と、粒度30仏mのタ
ルク30重量%となるように混合し、この混合した絶縁
粉末に対しシリコーンワニスの量を変化させた。
After filling with the insulating material 3, it is pressed at a pressure of, for example, 100 k9', and is further fired for 380,005 hours. Experiments were conducted by limiting the materials to inexpensive talc (milk Mg0,4Si02, day 20), metal oxide (A203 or Mg○), and silicone varnish, and varying the blending ratio. First, considering that the particle size changes slightly during powder mixing and press molding, the weight percent of alumina 7 with a particle size of 100 French m in the molded and fired state and 30 weight percent of talc with a particle size of 30 French m. The amount of silicone varnish was varied with respect to the mixed insulating powder.

なお、ここで示す粒度は中心粒度であり実際の粒度は各
々の土10仏mの範囲の粒度のものが95重量%以上含
まれている。以下の説明にでてくる粒度は同一の考え方
である。また、以後に用いられるシリコーンワニスは樹
脂分を一定割合としたものを用いた。この結果、シリコ
ーンワニスの樹脂分が絶縁粉末に対し、3重量%未満に
なるとシリコーンワニスの量が少ないので全絶縁粉末粒
子間に浸透せず結合剤として作用しない。そのため形成
はできるが耐久テストを行うと絶縁材料が欠落し使用に
供し得なかった。またシリコーンヮニスの樹脂分が絶縁
粉末に対し、15重量%を越えると、後工程の焼成によ
りシリコーン樹脂特有の焼きしまりによる収縮が大きく
なり熱盤の熱膨張率との差が大となるので絶縁材料にク
ラックが生じてしまった。上記実験の結果より、シリコ
ーンワニスの樹脂分が絶縁粉末に対し5〜15重量%の
範囲が適当であることが判明し、9重量%が最適であっ
た。なお、後で説明する粒度、配合割合の限界内でタル
ク、アルミナの粒度、配合割合を変化させてもシリコー
ンワニスの添加量を変える必要はなかった。次に発明者
らは、シリコーンワニスの樹脂分が絶縁粉末に対し9重
量%となるようにしてタルク、アルミナの配合割合を種
々検討した。まず、プレス成形、焼成された状態で粒度
100仏mのアルミナ7の重量%と、以下の第1表に示
す各種粒度の夕ルクを3の重量%となるように種々混合
し、この混合した絶縁粉末に対し9重量%の樹脂分とな
るようにシリコーンワニスを添加した。この結果を第1
表に示す。第 1 表 この第1表に示す結果より明らかなように、粒度100
仏mのァルミナ7の重量%に対し、3の重量%のタルク
の粒度は40仏m以下であることが必要であり、望まし
くは30仏mであった。
Note that the particle size shown here is the center particle size, and the actual particle size includes 95% by weight or more of particles with a particle size in the range of 10 cm for each soil. The granularity that appears in the following explanation is the same idea. In addition, the silicone varnish used later had a resin content in a fixed proportion. As a result, when the resin content of the silicone varnish is less than 3% by weight based on the insulating powder, the amount of silicone varnish is so small that it does not penetrate between all the insulating powder particles and does not act as a binder. Therefore, although it could be formed, when a durability test was conducted, the insulating material was missing and it could not be used. In addition, if the resin content of silicone varnish exceeds 15% by weight based on the insulating powder, the shrinkage due to the shrinkage peculiar to silicone resin will increase during the subsequent firing process, and the difference between the coefficient of thermal expansion of the hot plate and the insulating material will increase. A crack has occurred. From the results of the above experiments, it was found that the appropriate resin content of the silicone varnish was in the range of 5 to 15% by weight based on the insulating powder, and 9% by weight was optimal. Note that even if the particle size and blending ratio of talc and alumina were changed within the limits of the particle size and blending ratio that will be explained later, there was no need to change the amount of silicone varnish added. Next, the inventors examined various blending ratios of talc and alumina so that the resin content of the silicone varnish was 9% by weight based on the insulating powder. First, various weight percent of alumina 7 having a particle size of 100 m in the press-formed and fired state and 3 weight percent of alumina having various particle sizes shown in Table 1 below were mixed. Silicone varnish was added to the insulating powder so that the resin content was 9% by weight. This result is the first
Shown in the table. Table 1 As is clear from the results shown in Table 1, particle size 100
The particle size of the 3 weight % talc was required to be 40 mm or less, and preferably 30 mm, compared to the weight % of Alumina 7 of 3 mm.

次に成形、焼成された状態で粒度30rmのタルク3の
重量%と、以下の第2表に示す各種粒度のアルミナ7の
重量%とを種々混合し、この混合した絶縁粉末に対し、
9重量%の樹脂分となるようにシリコーンワニスを添加
して調べた。この結果を第2表に示す。第 2 表なお
、7の重量%のアルミナの粒度は2000仏m以上とし
ても問題ないが、電熱線を埋設いこくいので実用的では
ない。
Next, various weight % of talc 3 with a particle size of 30 rm in the molded and fired state and weight % of alumina 7 with various particle sizes shown in Table 2 below are mixed, and with respect to this mixed insulating powder,
The study was conducted by adding silicone varnish so that the resin content was 9% by weight. The results are shown in Table 2. Table 2 It should be noted that although there is no problem if the particle size of the alumina containing 7% by weight is 2,000 m or more, it is not practical because it would be difficult to bury the heating wire.

この第2表の結果より粒度30山mのタルク3の重量%
に対し7の重量%のアルミナの粒度は80仏mであるこ
とが必要であり、100仏mが最適であった。なお、3
堰雲量%のタルクの粒度が40仏m以下であれば7の重
量%のアルミナの粒度は100ムmと限定されず80ム
m以上であればよい。
From the results in Table 2, the weight percent of talc 3 with a particle size of 30 m
The particle size of the alumina containing 7% by weight was required to be 80 French m, and 100 French m was optimal. In addition, 3
If the particle size of the talc in the weir cloud content is 40 mm or less, the particle size of the alumina in the 7% by weight is not limited to 100 mm, but may be 80 mm or more.

また、7の重量%のアルミナの粒度が80仏m以上であ
れば3の重量%のタルクの粒度は30〆mと限定されず
40仏m以下であればよいことが別の実験で確認できた
。更に、発明者らは、粒度の異なる粉末の配合割合につ
いて検討した。この結果を第3表に示す。なお、粉末に
対して、9重量%の樹脂分となるようにシリコーンワニ
スを添加した。第 3表 なお、混入物として例えば40山m以上のタルク、80
仏m以下の金属酸化物等が5重量%以下含まれても40
山m以下のタルクが15重量%以上、80一m以上の金
属酸化物が1の重量%以上で両者の合計が95重量%以
上であれば性能には何ら影響はなかった。
In addition, it was confirmed in another experiment that if the particle size of alumina containing 7% by weight is 80mm or more, the particle size of talc containing 3% by weight is not limited to 30mm and may be 40mm or less. Ta. Furthermore, the inventors investigated the blending ratio of powders with different particle sizes. The results are shown in Table 3. Note that silicone varnish was added to the powder so that the resin content was 9% by weight. Table 3 Note that contaminants include, for example, talc of 40 m or more, 80
40 even if it contains less than 5% by weight of metal oxides etc.
There was no effect on the performance if the talc with a diameter of m or less was 15% by weight or more, the metal oxide with a diameter of 801m or more was 1% by weight or more, and the total of both was 95% by weight or more.

この第3表に示す結果より粒度100ムmのアルミナの
量が少なくとも1の重量%以上、30〃mのタルクの量
が少なくとも15重量%以上あることが必要であるとと
もにアルミナ粗粒子とタルク微粒子の総量が95重量%
以上必要であると判明した。また、粗粒子が80〜10
00仏m、微粒子が0.1〜40一mの範囲の粒度にし
た場合にも同一の配合割合で同等の性能がでることを確
認した。なお、この範囲外では、粒子間に空隙が形成さ
れ、粒度上昇に伴い、この空隙が膨張しクラックが発生
する。また、粒度100〆mのアルミナの量が70重量
%、粒度30山mのタルクの量が3の重量%の場合が最
適であった。アルミナに代えマグネシアを用いたり、鱗
片状構造をもったタル外こ代え同一結晶構造をもつ蝋石
、雲母、カオリナィト、ナクラィト、デフカィト、ハロ
ィサィト等の材料を用いても同様な結果が得られた。ま
た、第6図は、従釆のシリカ、タルク、マグネシアを混
合した絶縁材料Bと本実施例の絶縁材料Aを用いた各埋
込型ヒータを温度4000、湿度90%中において、絶
縁性能を比較したものである。本実施例の絶縁材料を用
いた埋込型ヒータは粒子が密着しやすい鱗片状結晶構造
の粉末を使用し、粒子間空隙が埋るように粒度配合を行
ない、さらに、シリコーンワニスを混合しているため、
微細な空隙にシリコーン樹脂が入りこみ絶縁性能も向上
し高温高温中においても、ほとんど絶縁劣化のない埋込
型ヒータとなる。なお、第7図は粒度loAmの夕ルク
30重量%と、粒度100仏mのアルミナ7の重量%と
、これらタルクとアルミナに対し9重量%の樹脂分とな
るように添加されたシリコーンワニスとを有し、溝2に
充填後、100kg′地の圧力でプレスし、380℃5
時間の焼成を行った絶縁材料の断面の電子顕微鏡写真で
ある。
From the results shown in Table 3, it is necessary that the amount of alumina with a particle size of 100mm is at least 1% by weight or more, and the amount of talc with a particle size of 30mm is at least 15% by weight, as well as coarse alumina particles and fine talc particles. The total amount of is 95% by weight.
It turned out that this was necessary. In addition, coarse particles are 80 to 10
It was confirmed that the same performance can be obtained with the same blending ratio even when the fine particles have a particle size in the range of 0.00 French m and 0.1 to 401 m. Note that outside this range, voids are formed between particles, and as the particle size increases, these voids expand and cracks occur. Further, the optimum case was that the amount of alumina with a particle size of 100 mm was 70% by weight, and the amount of talc with a particle size of 30 m was 3% by weight. Similar results were obtained by using magnesia instead of alumina, or by using materials with the same crystal structure, such as rouseite, mica, kaolinite, nacrite, defukite, and halloysite, instead of a tar with a scale-like structure. FIG. 6 also shows the insulation performance of each embedded heater using insulating material B, which is a mixture of silica, talc, and magnesia, and insulating material A of this example, at a temperature of 4,000 ℃ and humidity of 90%. This is a comparison. The embedded heater using the insulating material of this example uses a powder with a scaly crystal structure that allows particles to adhere easily, the particle size is mixed so that the gaps between particles are filled, and silicone varnish is mixed. Because there are
The silicone resin penetrates into the minute voids, improving insulation performance, resulting in an embedded heater with almost no insulation deterioration even in high temperatures. In addition, Figure 7 shows 30% by weight of talc with a particle size of loAm, % by weight of alumina 7 with a particle size of 100 fm, and silicone varnish added to these talc and alumina so that the resin content is 9% by weight. After filling the groove 2, it was pressed with a pressure of 100 kg' and heated at 380℃5.
This is an electron micrograph of a cross section of an insulating material that has been fired for a period of time.

以上の説明から明らかなように、本発明によれば粒度が
40仏m以下の鱗片状結晶構造をもつ微粒子を少なくと
も15重量%以上と、粒度80仏m以上の金属酸化物の
粗粒子を少なくとも1の重量%以上を混合して微粒子と
粗粒子を95重量%以上とした混合絶縁粉末に対し3〜
15重量%の樹脂分となるようにシリコーンワニスを添
加した絶縁材料を用いると、絶縁材料の欠落、クラック
の発生がなく、且つ、絶縁性能が向上した良好な電熱線
埋設状態の埋込型ヒータが得られる。
As is clear from the above description, according to the present invention, at least 15% by weight of fine particles having a scale-like crystal structure with a particle size of 40 mm or less and at least 15% by weight or more of coarse particles of a metal oxide with a particle size of 80 mm or more are contained. 3 to 3 for mixed insulating powder with fine particles and coarse particles of 95% by weight or more by mixing 1% by weight or more.
By using an insulating material to which silicone varnish is added to have a resin content of 15% by weight, an embedded heater with good insulation performance and improved heating wire embedding can be achieved without missing or cracking of the insulating material. is obtained.

また、ァルミナは熱的に安定で、水とも反応しにくく粒
度配合も容易であり、さらに、従来使用していたマグネ
シア等に比べ約1/2〜1/8のコストであるアルミナ
、タルク等を使っているうえ、絶縁粉末の種類が少なく
計量等の工数が宵なくなるとともに鱗片状結晶構造で粒
子間の密着のよい粉末を使っているので結合材はシリコ
ーンワニスー種類でよく、その必要量も少なくてすみ、
安価な製品を提供できる。なお、本発明の絶縁材料をシ
ーズヒータに用いてもクラックの発生を防止できるなど
、同等の効果を奏することは言うまでもない。
In addition, alumina is thermally stable, does not react with water, and is easy to mix in particle size.Furthermore, it is free from alumina, talc, etc., which is about 1/2 to 1/8 the cost of conventionally used magnesia, etc. In addition, there are only a few types of insulating powder, which eliminates the need for measuring and other man-hours, and since the powder has a scaly crystal structure and has good adhesion between particles, the binder can be silicone varnish, and the amount required is also small. Less is needed,
We can provide inexpensive products. It goes without saying that the insulating material of the present invention can also be used in a sheathed heater to achieve similar effects, such as preventing the occurrence of cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す埋込型ヒータの断面図
、第2図は同要部拡大断面図、第3図は本発明の一実施
例における絶縁材料の模式図、第4図および第5図は他
の実施例における絶縁材料の模式図、第6図は本発明の
一実施例を示す埋込型ヒータおよび従来の埋込型ヒータ
の絶縁抵抗の時間特性図、第7図は本発明の一実施例を
示す絶縁材料の電子顕微鏡写真である。 3・・・絶縁材料。 第1図 第2図 第3図 第4図 第5図 第6図 第7図
FIG. 1 is a sectional view of an embedded heater showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the same essential part, FIG. 3 is a schematic diagram of an insulating material in an embodiment of the invention, 5 and 5 are schematic diagrams of insulating materials in other embodiments, FIG. 6 is a time characteristic diagram of insulation resistance of an embedded heater according to an embodiment of the present invention and a conventional embedded heater, and FIG. The figure is an electron micrograph of an insulating material showing one embodiment of the present invention. 3...Insulating material. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 鱗片状結晶構造を有し、粒度が40μm以下の微粒
子が15重量%以上であり、粒度が80μm以上の金属
酸化物粗粒子が10重量%以上であり、かつ前記微粒子
と前記粗粒子が95重量%以上である絶縁粉末に対し、
3〜15重量%のシリコーン樹脂を含有してなる電熱線
埋込用の絶縁材料。
1. Fine particles having a scale-like crystal structure and a particle size of 40 μm or less account for 15% by weight or more, metal oxide coarse particles having a particle size of 80 μm or more account for 10% by weight or more, and the fine particles and the coarse particles contain 95% by weight or more. For insulating powder that is more than % by weight,
An insulating material for embedding heating wires containing 3 to 15% by weight of silicone resin.
JP15710579A 1979-12-03 1979-12-03 Insulating material for embedding heating wires Expired JPS6040152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15710579A JPS6040152B2 (en) 1979-12-03 1979-12-03 Insulating material for embedding heating wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15710579A JPS6040152B2 (en) 1979-12-03 1979-12-03 Insulating material for embedding heating wires

Publications (2)

Publication Number Publication Date
JPS5679880A JPS5679880A (en) 1981-06-30
JPS6040152B2 true JPS6040152B2 (en) 1985-09-09

Family

ID=15642334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15710579A Expired JPS6040152B2 (en) 1979-12-03 1979-12-03 Insulating material for embedding heating wires

Country Status (1)

Country Link
JP (1) JPS6040152B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202126A (en) * 1989-01-30 1990-08-10 Nec Ic Microcomput Syst Ltd Radio receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1298610C (en) * 1988-04-11 1992-04-07 Robert S. Mccallum Charge transfer imaging cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202126A (en) * 1989-01-30 1990-08-10 Nec Ic Microcomput Syst Ltd Radio receiver

Also Published As

Publication number Publication date
JPS5679880A (en) 1981-06-30

Similar Documents

Publication Publication Date Title
GB1488159A (en) Heater element
JP3550093B2 (en) New ceramic igniter with improved oxidation resistance and method of use thereof
JPS6040152B2 (en) Insulating material for embedding heating wires
CN110449546A (en) A kind of preparation process of riser precoated sand
CN102515694B (en) Preparation method for insulating fillers
US2010768A (en) Electric range heating unit
US2328644A (en) Heat insulating material
JPS6040151B2 (en) Insulating material for embedding heating wires
US2035707A (en) Electric heating device
US2102301A (en) Method of making electric heater elements
JPS6014784A (en) Ceramic heater
US5471737A (en) Method of manufacturing a radiant electric heater
US1442910A (en) Electrically-heated vessel
JPH0286086A (en) Manufacture of ceramic heater
JPS6021448B2 (en) Electrical insulating material for burying metal heater wires and method for manufacturing the same
JPS6048841B2 (en) Insulating material for embedding heating wires
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
US2276973A (en) Insulated electric heater and method of making the same
US3592771A (en) Tubular heating elements and magnesia insulation therefor and method of production
US3171173A (en) Composite slab for hot tops
US602227A (en) Louis parvilljeie
JPS6213302B2 (en)
JPH01231288A (en) Embedded heater
JPS6117358B2 (en)
JPS59232964A (en) Manufacture of mica composite ceramics