JPS6040109B2 - Current stretch bubble detection method - Google Patents

Current stretch bubble detection method

Info

Publication number
JPS6040109B2
JPS6040109B2 JP3874881A JP3874881A JPS6040109B2 JP S6040109 B2 JPS6040109 B2 JP S6040109B2 JP 3874881 A JP3874881 A JP 3874881A JP 3874881 A JP3874881 A JP 3874881A JP S6040109 B2 JPS6040109 B2 JP S6040109B2
Authority
JP
Japan
Prior art keywords
pulse
stretch
current
bubble
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3874881A
Other languages
Japanese (ja)
Other versions
JPS57154692A (en
Inventor
勉 宮下
和雄 松田
和成 米納
誠 大橋
良夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3874881A priority Critical patent/JPS6040109B2/en
Priority to EP81304301A priority patent/EP0048606B1/en
Priority to US06/303,588 priority patent/US4445200A/en
Priority to DE8181304301T priority patent/DE3176047D1/en
Publication of JPS57154692A publication Critical patent/JPS57154692A/en
Publication of JPS6040109B2 publication Critical patent/JPS6040109B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0866Detecting magnetic domains

Description

【発明の詳細な説明】 本発明は磁気バブルメモリデバイスの磁気バブル検出器
における磁気バブル検出方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a magnetic bubble detection method in a magnetic bubble detector for a magnetic bubble memory device.

最近、磁気バブルを利用した磁気バブルメモリデバイス
にも記憶密度の増加が要求されるため、一つの方法とし
て高密度化が可能なイオン注入法による転送パターンの
形成法が開発されている。
Recently, magnetic bubble memory devices that utilize magnetic bubbles are also required to increase their storage density, so one method that has been developed is to form a transfer pattern using ion implantation, which allows for higher density.

以下本発明の詳細はイオン注入デバイスを例にとって説
明する。この方法は、第1図の平面図および第2図の断
面図に示す如くガドリニウム・ガリウム・ガーネット(
GGG)基板1の上に磁性ガーネットの薄膜2を液相ェ
ピタキシャル成長させて形成し、この磁性薄膜2に対し
パターン3以外の部分4に水素、ネオン、ヘリウム等の
イオンを注入するのである。このようにパターン3を形
成した素子はイオンを注入された部分4の磁化容易軸方
向が矢印aの如く面内方向と一致し、パ夕ーン部分3の
磁化容易軸方向は矢印bの如くもとのままの面内方向と
垂直である。従ってバブル5は回転磁界によってパター
ン3の周辺に沿って矢印cの如く転送される。そしてこ
のパターン3は円形のパターンを一部づつ重ねて連接さ
せた形状であり、従来のパーマロィパターンの如くギャ
ップを必要としないため寸法精度が緩くとも良く、従っ
てパターンが4・さくでき高密度化が実現される。この
ようなイオン注入磁気バブルメモリ素子においてはバブ
ルの検出に従来の如きパーマロィパターンによるストレ
ツチャ検出器が用いられないので、第3図に示す如きス
トレッチコンダク夕を用いた検出器を用いている。図の
符号6は転送パターン、7はストレッチコンダクタ、8
は磁気抵抗効果を利用するパーマロイディテクタである
。この検出器の動作を説明するとバブル9は回転磁界H
rにより矢印の如く転送パターン6の左から右へ転送さ
れるが、バブルがストレッチコンダク夕7のヘアピンル
ーブに位置するカスプ10に滞在している間にストレッ
チコンダク夕7にストレッチパルス電流を流しバブルを
引伸してストライプドメインとなし、このストライプド
メインによるパーマロィディテクタ8の抵抗変化を検出
するのである。この場合、従来は回転磁界の1周期する
間にバブルを伸ばし、次に消去あるいはバブルに戻す検
出方法が用いられていたが、この方法は高速駆動になる
とバブルを伸ばす時間が充分にとれなくなることと、検
出器と駆動磁界の方向の関係から検出電圧が低下する欠
点があった。このため1つの方法としてメジャーマィナ
構成のバブルの論出しが回転磁界の2周期に1回である
のを利用して、回転磁界が2周期する間に第4図に示す
如くストレッチパルス11を印加してバブルを伸ばし、
次いでデイストレツチパルス12を印加して消去あるい
はバブルに戻す検出方法が提案されている。この方法は
前者の欠点を補ない検出電圧が大きくなるが、ストレッ
チ電流のパルス幅及び電流値の大きさが検出器の位置す
る転送パターンの前のビットのバブルへ影響してバイア
スマージンの上限が顕著に変動する欠点がある。本発明
はこの欠点を改良するために案出されたものである。こ
のため本発明においては、イオン注入磁気バブルメモリ
デバイスのストレッチコンダクタを備えた検出器のバブ
ル検出方法において、ストレッチコンダクタに印加する
ストレッチ電流を台座付きパルス電流としたことを特徴
とするものである。
The details of the present invention will be explained below by taking an ion implantation device as an example. This method uses gadolinium gallium garnet (
GGG) A thin film 2 of magnetic garnet is formed on a substrate 1 by liquid phase epitaxial growth, and ions of hydrogen, neon, helium, etc. are implanted into a portion 4 of the magnetic thin film 2 other than the pattern 3. In the device in which the pattern 3 is formed in this way, the direction of the easy axis of magnetization of the ion-implanted portion 4 coincides with the in-plane direction as shown by arrow a, and the direction of the easy axis of magnetization of the patterned portion 3 is as shown by arrow b. It is perpendicular to the original in-plane direction. Therefore, the bubble 5 is transferred along the periphery of the pattern 3 as shown by the arrow c by the rotating magnetic field. This pattern 3 has a shape in which circular patterns are overlapped and connected one by one, and unlike conventional permalloy patterns, it does not require gaps, so the dimensional accuracy does not need to be loose. will be realized. In such an ion-implanted magnetic bubble memory element, a conventional stretch detector using a permalloy pattern is not used to detect bubbles, so a detector using a stretch conductor as shown in FIG. 3 is used. Reference numeral 6 in the figure is a transfer pattern, 7 is a stretch conductor, and 8
is a permalloid detector that uses magnetoresistive effect. To explain the operation of this detector, the bubble 9 is exposed to a rotating magnetic field H
r, the bubble is transferred from left to right in the transfer pattern 6 as shown by the arrow, but while the bubble is staying at the cusp 10 located at the hairpin loop of the stretch conductor 7, a stretch pulse current is applied to the stretch conductor 7 and the bubble is is enlarged to form a stripe domain, and the change in resistance of the permalloid detector 8 due to this stripe domain is detected. In this case, the conventional detection method used was to stretch the bubble during one cycle of the rotating magnetic field and then erase or return it to a bubble, but this method has the disadvantage that when driven at high speeds, there is not enough time to stretch the bubble. However, there was a drawback that the detection voltage decreased due to the relationship between the direction of the detector and the driving magnetic field. For this reason, one method is to apply the stretch pulse 11 as shown in Fig. 4 during two cycles of the rotating magnetic field, taking advantage of the fact that bubbles with a major-minor configuration are generated once every two cycles of the rotating magnetic field. and stretch the bubble,
A detection method has been proposed in which the distortion pulse 12 is then applied to erase or restore the bubble. This method does not compensate for the drawbacks of the former and increases the detection voltage, but the pulse width and current value of the stretch current affect the bubble of the bit in front of the transfer pattern where the detector is located, causing the upper limit of the bias margin to increase. The disadvantage is that it varies significantly. The present invention has been devised to remedy this drawback. Therefore, in the present invention, in a bubble detection method for a detector equipped with a stretch conductor of an ion-implanted magnetic bubble memory device, the stretch current applied to the stretch conductor is a pedestal pulse current.

以下添付図面に基づいて本発明法を詳細に説明する。The method of the present invention will be explained in detail below based on the accompanying drawings.

第5図は本発明のカレントストレッチバブル検出法に用
いるパルスの波形を示す。
FIG. 5 shows the waveform of a pulse used in the current stretch bubble detection method of the present invention.

図の符号13はストレッチ/ぐルス、14はデイストレ
ツチ/ひレスである。ストレッチパルス13は電流1,
の主パルスに電流12の台座パルスを付加したものであ
る。またディストレッチバブル13は従来と同様な形状
である。本発明法はこのようなパルスを検出器のストレ
ッチコンダクタに印加するのである。第6図はストレッ
チパルスの如点を回転磁界の−110oに一定にしたと
き主パルスの位置が電流マージンに及ぼす影響を調べた
線図であって縦軸に主パルス電流を、横軸に界転磁界の
角度(基準はバブルが転送パターンのカスプにいるとき
の向きをooとする。
The reference numeral 13 in the figure is a stretch/gust, and the reference numeral 14 is a destretch/finger. The stretch pulse 13 has a current of 1,
A pedestal pulse of current 12 is added to the main pulse of . Further, the destretch bubble 13 has the same shape as the conventional one. The method of the invention applies such pulses to the stretch conductor of the detector. Figure 6 is a diagram that examines the influence of the main pulse position on the current margin when the stretching pulse point is kept constant at -110° of the rotating magnetic field.The vertical axis represents the main pulse current, and the horizontal axis represents the field field. The angle of the magnetic field (the reference is the direction when the bubble is at the cusp of the transfer pattern is oo).

)をとり両者の関係を曲線Aにより示した。なお本パル
スの全パルス幅は2仏S、主パルスの幅は0.4山S、
台座の電流値は3印hAとした。図より主パルスの位置
は台座の前方に位置する方が良いことがわかる。従って
以下は主パルスを台座の前方とした。第7図および第8
図は台座付きパルスの幅を2ムSに一定し、主パルスの
幅を0.2,0.4,0.8山Sとしたときの位相(0
)−電流特性図及び電流−バイアス特性図を示したもの
であり、第7図は縦軸に主パルスの電流を、横軸に回転
磁界角度をとり、曲線Bにより主パルスの幅が0.2u
Sの場合を、曲線Cにより主パルスの幅が0.4rSの
場合を、曲線Dにより主パルスの幅が0.8山Sの場合
を示した。
) and the relationship between the two is shown by curve A. In addition, the total pulse width of this pulse is 2 mm S, the width of the main pulse is 0.4 mm S,
The current value of the pedestal was 3 hA. The figure shows that it is better to position the main pulse in front of the pedestal. Therefore, in the following, the main pulse is set in front of the pedestal. Figures 7 and 8
The figure shows the phase (0
)-current characteristic diagram and current-bias characteristic diagram. In Fig. 7, the vertical axis represents the current of the main pulse, and the horizontal axis represents the rotating magnetic field angle, and curve B indicates that the width of the main pulse is 0. 2u
Curve C shows the case where the main pulse width is 0.4 rS, and curve D shows the case where the main pulse width is 0.8 rS.

なおこれらの台座の電流値は3肌Aとした。また比較の
ために従来の幅20.0山Sの矩形パルスの場合を曲線
Eにより示した。第8図は縦軸にバイアス磁界を、機軸
に主パルスの電流値をとり、主パルスの幅0.2,0.
4,0.8rSの場合をそれぞれ曲線F,G,日で示し
、また比較のため従来の幅0.2一Sの矩形パルスの場
合を曲線Kで示した。なおこの場合の台座の電流値は3
仇hAとた。両図より本発明の台座付きパルスは従釆の
矩形パルスに比し電流マージンは大となり、バイアスマ
ージンの上限が著しく改善されることがわかる。第9図
は従釆の矩形パルスと本発明の台座付きパルスによる位
相(8)−検出電圧特性を示したものであり、本発明の
全パルス幅2山S、主パルス幅0.4ムS、主パルス電
流7皿A、台座電流3仇hAの場合を曲線Lにより示し
、従来の矩形パルスのパルス幅2山S、電流55mAの
場合を曲線Mで示した。
Note that the current value of these pedestals was 3 skin A. For comparison, the case of a conventional rectangular pulse with a width of 20.0 peaks S is shown by a curve E. In FIG. 8, the vertical axis represents the bias magnetic field, the axis represents the current value of the main pulse, and the width of the main pulse is 0.2, 0.
The cases of 4 and 0.8 rS are shown by curves F, G and 1, respectively, and for comparison, the case of a conventional rectangular pulse with a width of 0.21 S is shown by curve K. In addition, the current value of the pedestal in this case is 3
The enemy was hA. From both figures, it can be seen that the pedestal pulse of the present invention has a larger current margin than the subordinate rectangular pulse, and the upper limit of the bias margin is significantly improved. FIG. 9 shows the phase (8)-detection voltage characteristics of the secondary rectangular pulse and the pedestal pulse of the present invention, where the total pulse width of the present invention is 2 peaks S and the main pulse width is 0.4 mm The case where the main pulse current is 7 A and the pedestal current is 3 hA is shown by curve L, and the case where the conventional rectangular pulse width is 2 peaks S and the current is 55 mA is shown by curve M.

図の如く検出電圧は両者とも殆んど同様であり、本発明
によるパルス波形を用いても高速駆動で大きな検出電圧
、検出効率を得ることができる。以上イオン注入バブル
デバイスを例にして説明した如く本発明法は磁気バブル
メモリデバイスのストレッチコソダクタを備えた検出器
に印加するストレッチ電流を台座付きパルスとすること
により電流マージン及びバイアスマージンの改善を可能
としたものであり、磁気バブルメモリデバイスバブル検
出の信頼性向上に寄与するのである。
As shown in the figure, the detection voltages are almost the same in both cases, and even if the pulse waveform according to the present invention is used, a large detection voltage and detection efficiency can be obtained with high-speed driving. As explained above using an ion-implanted bubble device as an example, the method of the present invention improves the current margin and bias margin by making the stretching current applied to the detector equipped with the stretch conductor of the magnetic bubble memory device into a pedestal pulse. This contributes to improving the reliability of bubble detection in magnetic bubble memory devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン注入法により形成される磁気バブルメモ
リ素子の平面図、第2図は第1図のローロ線における断
面図、第3図はストレッチコンダクタを有するバブル検
出器の平面図、第4図はバブル検出器に印加する従釆の
パルス波形を示した波形図、第5図は本発明にかかるカ
レントストレッチバブル検出法に用いるパルス波形を示
した波形図、第6図は台座付きパルスの主パルスの位置
が電流マージンに及ぼす影響を示した線図、第7図及び
第8図は台座付きパルスの主パルスの幅を変えたときの
、位相−電流特性図及び電流ーバィァス特性図、第9図
は本発明法の台座付きパルスと従釆の矩形パルスを用い
たときの位相−検出電圧特性図である。 6・・・・・・転送パターン、7・・・・・・ストレッ
チコンダクタ、8……パーマロイデイテクタ、9……バ
フル、10……カスプ、11,13……ストレッチパル
ス、12,14……デイストレツチパルス。 第1図第2図 第3図 第4図 第5図 第8図 第6図 第7図 第9図
FIG. 1 is a plan view of a magnetic bubble memory element formed by ion implantation, FIG. 2 is a sectional view taken along the Rolo line in FIG. 1, FIG. 3 is a plan view of a bubble detector having a stretch conductor, and FIG. The figure is a waveform diagram showing the slave pulse waveform applied to the bubble detector, FIG. 5 is a waveform diagram showing the pulse waveform used in the current stretch bubble detection method according to the present invention, and FIG. Figures 7 and 8 are diagrams showing the influence of the position of the main pulse on the current margin; FIG. 9 is a phase-detection voltage characteristic diagram when a pedestal pulse and a subordinate rectangular pulse according to the present invention are used. 6... Transfer pattern, 7... Stretch conductor, 8... Permalloy detector, 9... Baffle, 10... Cusp, 11, 13... Stretch pulse, 12, 14... Destretch pulse. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 8 Figure 6 Figure 7 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 磁気バブルメモリデバイスのストレツチコンダクタ
を備えた検出器のバブル検出法において、ストレツチコ
ンダクタに印加するストレツチ電流を台座付きパルス電
流としたことを特徴とするカレントストレツチバブル検
出法。
1. A current stretch bubble detection method for a detector equipped with a stretch conductor of a magnetic bubble memory device, characterized in that the stretch current applied to the stretch conductor is a pedestal pulse current.
JP3874881A 1980-09-20 1981-03-19 Current stretch bubble detection method Expired JPS6040109B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3874881A JPS6040109B2 (en) 1981-03-19 1981-03-19 Current stretch bubble detection method
EP81304301A EP0048606B1 (en) 1980-09-20 1981-09-18 Magnetic bubble memory device
US06/303,588 US4445200A (en) 1980-09-20 1981-09-18 Magnetic bubble memory detection method and device
DE8181304301T DE3176047D1 (en) 1980-09-20 1981-09-18 Magnetic bubble memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3874881A JPS6040109B2 (en) 1981-03-19 1981-03-19 Current stretch bubble detection method

Publications (2)

Publication Number Publication Date
JPS57154692A JPS57154692A (en) 1982-09-24
JPS6040109B2 true JPS6040109B2 (en) 1985-09-09

Family

ID=12533919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3874881A Expired JPS6040109B2 (en) 1980-09-20 1981-03-19 Current stretch bubble detection method

Country Status (1)

Country Link
JP (1) JPS6040109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864691A (en) * 1981-10-14 1983-04-18 Nec Corp Detector and eraser for continuous disk bubble
JPS62219291A (en) * 1986-03-19 1987-09-26 Nec Corp Method for driving current stretch type magnetic bubble expander/eraser

Also Published As

Publication number Publication date
JPS57154692A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
JP2619365B2 (en) Bloch line memory writing method
EP0011137B1 (en) Manufacture of a magnetic bubble domain chip with enhanced propagation margins
JPS6040109B2 (en) Current stretch bubble detection method
JPS6040110B2 (en) magnetic bubble device detector
US4143419A (en) Magnetic bubble memory with single level electrically-conducting, drive arrangement
JPS6134639Y2 (en)
US4434476A (en) Magnetic bubble memory device and method for operating the same
US4357683A (en) Magnetic bubble memory with ion-implanted layer
JPS622388B2 (en)
JPS5856188B2 (en) Bubble detection method for magnetic bubble memory device
JPS58166586A (en) Ion implanted magnetic bubble device
JPS6338795B2 (en)
JPS6038796B2 (en) Contiguous disk type magnetic bubble element
US4745578A (en) Magnetic bubble memory device
JPS6037547B2 (en) Gate driving method for ion-implanted magnetic bubble memory device
JPS5916189A (en) Transfer path of bubble magnetic domain
JPS6029115Y2 (en) magnetic bubble memory package
Cosimini et al. Cross‐tie/Bloch line detection
JPH0668420A (en) Thin film magnetic head and its manufacture
JPS645395B2 (en)
JPS59227079A (en) Magnetic bubble memory element
JPS58143485A (en) Magnetic bubble generator
JPH01159885A (en) Bubble magnetic domain detector
JPS592991B2 (en) Minor loop construction method for magnetic bubble device
JPS5990285A (en) Bidirectional gate of ion implanted magnetic bubble device