JPS6040079B2 - Ultrasonic intrusion detector - Google Patents
Ultrasonic intrusion detectorInfo
- Publication number
- JPS6040079B2 JPS6040079B2 JP13533777A JP13533777A JPS6040079B2 JP S6040079 B2 JPS6040079 B2 JP S6040079B2 JP 13533777 A JP13533777 A JP 13533777A JP 13533777 A JP13533777 A JP 13533777A JP S6040079 B2 JPS6040079 B2 JP S6040079B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- detection
- sideband
- distribution
- ultrasonic waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Burglar Alarm Systems (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明はドップラ効果を利用した超音波式侵入検知器に
関するものであって、その目的とするところは人間の動
きに対する検知感度が良く、しかもそれ以外の物理現象
による謀検知動作の確率を少なくし特に、超音波音場を
大きく乱すベル等による誤動作防止であって、構成が簡
略化された超音波式侵入検知器を提供するにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic intrusion detector that utilizes the Doppler effect, and its purpose is to have high detection sensitivity for human movement, and to prevent detection due to other physical phenomena. It is an object of the present invention to provide an ultrasonic intrusion detector with a simplified configuration, which reduces the probability of detection operations and, in particular, prevents malfunctions due to bells or the like that greatly disturb the ultrasonic sound field.
以下本発明の一実施例を図面により詳述する。An embodiment of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例のブロックを示し、図中1は
発振回路、2は分周器、3は900位相差発生分周回路
、4は増幅回路、5は送波素子であり、また6は受波素
子、7は増中回路、8,9は第1及び第2の直角位相検
波回路、10,11は第1及び第2のローパスフィルタ
−、12,13は第1及び第2の増中整形回路、14,
15は第1及び第2の位相差検出回路、16は反転回路
、17,18は第1及び第2の検波積分回路、19は同
相成分徐去回路、20はD/A変換回路、21,22は
上限及び下限判定回路、23は出力回路である。第2図
は上記第1図ブロック図に基く具体回路例を示し、第2
図回路中第1図回路と同等の部分には同一の番号を付し
た。しかして送波素子5から放射された超音波は、今第
3図aに示すように超音波が放射される警戒区域内に何
らの変化もないとすると、放射された超音波の周波数f
と受波された超音波の周波数foとが一致し、同図bの
ように側波帯のない単一の周波数f=らの信号が受波素
子6で受波されることになる。FIG. 1 shows a block diagram of an embodiment of the present invention, in which 1 is an oscillation circuit, 2 is a frequency divider, 3 is a 900 phase difference generation frequency divider circuit, 4 is an amplifier circuit, and 5 is a wave transmitting element. , 6 is a wave receiving element, 7 is an amplifier circuit, 8 and 9 are first and second quadrature phase detection circuits, 10 and 11 are first and second low-pass filters, and 12 and 13 are first and second quadrature detection circuits. second enlarged shaping circuit, 14,
15 is a first and second phase difference detection circuit, 16 is an inversion circuit, 17 and 18 are first and second detection and integration circuits, 19 is an in-phase component removal circuit, 20 is a D/A conversion circuit, 21, 22 is an upper limit and lower limit determination circuit, and 23 is an output circuit. Figure 2 shows a specific circuit example based on the block diagram in Figure 1 above.
Parts in the circuit shown in the figure that are equivalent to those in the circuit shown in FIG. 1 are given the same numbers. Therefore, the ultrasonic wave emitted from the wave transmitting element 5 has a frequency f of the emitted ultrasonic wave, assuming that there is no change in the warning area where the ultrasonic wave is emitted, as shown in FIG. 3a.
The frequency fo of the received ultrasonic wave coincides with the frequency fo of the received ultrasonic wave, and a signal having a single frequency f= without sidebands is received by the wave receiving element 6, as shown in FIG.
しかしそこで第4図aに示すように警戒区域内に人間な
どの移動体Mが存在すると、△fをドップラ周波数、c
を超音波の音速、vを移動体Mの速度、fを前述と同様
に放射超音波周波数としたとき、△f;くびf)/cの
関係が成立することになる。これは速度方向によって正
又は負となるが、これは受波信号中に側波帯として含ま
れ、第4図bに示すように移動体Mが近ずくときは上側
波帯成分が生じ、移動体Mが遠ざかるときは下側波帯成
分が生じることになるものであり、通信方式でいうとこ
ろの単側波帯波(SSB波)として受波信号が得られる
ことになる。ところが一方これとは別に空間に放射され
た超音波は放射区域内の各種多様な部分で反射されたも
のの合成として受波素子6で受波されるものであるため
、検出されるべきでない動きを有する物体があったり、
超音波の伝ぱん媒体である空気に動きがあると、第5図
aに示すようにこれら各経路からの超音波信号ィ,ロ,
ハ,ニを合成した信号は同図ホのような刻一刻と変化す
る振幅変化のある信号として受波されることになり、従
って同図bに示すように両側波帯波(DSB波)として
のAM波であり、側波帯は上下両側に分布することにな
る。かくて移動体Mが存在するときの実際の受波信号は
第3〜第5図bを合成した第6図図示のような合成スベ
クトラムを有することになる。上記において明らかにな
ったように移動体Mを検知を行なうには、上下二つの側
波帯の分布が不均等になったとき検知動作をするように
すれば良い。そこで上下の夫々一つの側波帯を取り出す
ために、第1図回路において直角位相検波回路8,9、
ローパスフィルタ10,11、増中整形回路12,13
、位相差検出回路14,15を設けているものであるが
、直角位相検波回路8,9は、入力が単側波帯信号のと
きは900の位相差があって信号の取り出しが可能であ
る反面、両方の側波帯があるDSB波のときには同相出
力となる。ところがこの同相成分は移動体Mを検知する
ためには不要であり、またベルB等の音波の強いものは
、第7図aのように超音波の媒体である空気を乱し、同
図bのように受波信号中に強いDSB信号を作るのでカ
ットする必要がある。この場合第1図回路の位相差検出
回路14,15は2個増中整形回路12,13の一方が
Hレベル出力のときにしか出力を生じないため、逆相分
離は可能であるが同相成分の除去ができず、この同相成
分の除去はD/A変換回路20を抵抗結合することによ
り可能となる。位相差検出回路14,15の出力が両方
とも同時に発生しても非反転出力と反転出力を抵抗分圧
するためVcc/2となるからである。一方ベルの音の
スベクトラムは可聴周波帯城のみならず超音波帯域まで
分布するのであるが、この分布状態は常に一定のもので
はなく、ある一瞬には第8図aのようなスベクトラム分
布を示すが別の一瞬には同図bのようなスベクトラム分
布となり、刻々と変化する非常にランダムなスベクトラ
ム分布となる。送波信号に対してのスベクトラムを側波
帯として上下にランダムに分布することになるのである
。そこでこのようなランダムな分布がバランス良く分布
すれば問題はないが、刻々と変化するスベクトラム分布
が平均的に不均衡になると、検知器回路において検知動
作を生じることになる。そこで本発明においては、人間
の動きは一方向の動きが一定時間持続し、従って人間の
動きによる受波信号は上下何れかの側波帯が一定時間持
続することになるが、ベル等に含まれる超音波成分は上
下にランダムに側波帯を生じることに着目し、このよう
な場合は各々反対側の側波帯のレベルに応じて検知限界
レベルを打消す側に動作させるようにし、ベル等による
誤動作を防止している。すなわち、第1図において位相
差検出回路14は、上側波帯成分がパルスとなって出力
され、他方の位相差検出回路15は、下側波帯成分がパ
ルスとなって出力される。However, if there is a moving object M such as a human being in the warning area as shown in Figure 4a, △f is the Doppler frequency, and c
When is the sound speed of the ultrasonic wave, v is the speed of the moving body M, and f is the radiated ultrasonic frequency as described above, the relationship Δf; neck f)/c holds true. This becomes positive or negative depending on the speed direction, but it is included as a sideband in the received signal, and as shown in Figure 4b, when the moving object M approaches, an upper sideband component occurs, When the body M moves away, a lower sideband component is generated, and the received signal is obtained as a single sideband wave (SSB wave) in the communication system. However, on the other hand, the ultrasonic waves radiated into the space are received by the wave receiving element 6 as a composite of the waves reflected from various parts within the radiation area, so movements that should not be detected are detected. There is an object that has
When there is movement in the air, which is the propagation medium of ultrasonic waves, the ultrasonic signals from each of these paths are emitted as shown in Figure 5a.
The signal obtained by combining C and D will be received as a signal with amplitude changes that change moment by moment as shown in E of the figure, and therefore as a double sideband wave (DSB wave) as shown in B of the figure. This is an AM wave with sidebands distributed on both the upper and lower sides. In this way, the actual received signal when the mobile object M is present has a composite spectrum as shown in FIG. 6, which is a composite of FIGS. 3 to 5b. As clarified above, in order to detect the moving body M, the detection operation may be performed when the distribution of the upper and lower sidebands becomes uneven. Therefore, in order to extract one upper and lower sideband, quadrature detection circuits 8, 9,
Low-pass filters 10, 11, Masanaka shaping circuits 12, 13
, phase difference detection circuits 14 and 15 are provided, but when the input is a single sideband signal, the quadrature phase detection circuits 8 and 9 have a phase difference of 900 and can extract the signal. On the other hand, when the DSB wave has both sidebands, the output is in-phase. However, this in-phase component is not necessary to detect the moving object M, and a strong sound wave such as a bell B disturbs the air, which is the medium of ultrasonic waves, as shown in Figure 7a, and This creates a strong DSB signal in the received signal, so it is necessary to cut it. In this case, the phase difference detection circuits 14 and 15 of the circuit shown in FIG. However, this in-phase component can be removed by resistance-coupling the D/A conversion circuit 20. This is because even if the outputs of the phase difference detection circuits 14 and 15 are both generated at the same time, the voltage will be Vcc/2 because the non-inverted output and the inverted output are divided by resistance. On the other hand, the spectrum of the bell's sound is distributed not only in the audio frequency band but also in the ultrasonic band, but this distribution is not always constant, and at a certain moment it shows the spectrum distribution as shown in Figure 8a. However, at another instant, the spectrum distribution becomes as shown in b in the same figure, resulting in a very random spectrum distribution that changes every moment. The spectrum of the transmitted signal is randomly distributed vertically as sidebands. There is no problem if such a random distribution is distributed in a well-balanced manner, but if the ever-changing spectrum distribution becomes unbalanced on average, a detection operation will occur in the detector circuit. Therefore, in the present invention, the human movement continues in one direction for a certain period of time, and therefore, the received signal due to the human movement has either the upper or lower sideband lasting for a certain period of time, but it is not included in the bell etc. We focused on the fact that the ultrasonic components generated randomly generate sidebands on the upper and lower sides, and in such cases, the detection limit level is canceled depending on the level of the opposite sideband, and the bell This prevents malfunctions caused by such factors. That is, in FIG. 1, the phase difference detection circuit 14 outputs the upper sideband component as a pulse, and the other phase difference detection circuit 15 outputs the lower sideband component as a pulse.
そして、人間等の移動体Mが検知器に向って近ずく動作
をしたときには、位相差検出回路14に出力され、また
、反対に人間が検知器より遠ざかる動作をしたときは、
他方の位相差検出回路15に出力される。このとき片側
波帯成分時は、同相成分除去回路19、D/A変換回路
20を通して上限判定回路21又は下限判定回路22、
即ち、上側波帯成分が存在する時は上限判定回路21で
判定し、下側波帯成分が存在する時は下限判定回路22
で判定して出力回路23が動作するようになっている。
しかし、ベル等のように両側波帯成分がランダムに存在
する時には、同相成分除去回路19、D/A変換回路2
0で打消すことができず、上、下限判定回路21,22
が判定して出力回路23へ信号が出力されて誤動作して
しまう。そこで、この誤動作を防止するために、位相差
検出回路14からの出力パルスが存在する時は、検波積
分回路17で直流電圧にして下限判定回路22の判定レ
ベルを上げる側に移動させ、また同様に、位相差検出回
路15の出力が存在する時は、検波積分回路18で直流
電圧にして上限判定回路21の判定レベルを引き上げる
側に移動させるようにしている。つまり、第9図に示す
ように、D/A変換回路20から上側波帯成分が出力さ
れると、その成分のレベルは上限判定回路21の上限判
定レベルを超えて検知される。(第9図A)。この時、
位相差検出回路14の出力により検波積分回路17にて
第9図Bに示すように下限判定回路22の判定レベルが
引き上げられる。また、下側波帯成分のときは、第9図
Cに示すように下限判定回路22の下限判定レベルを超
えて検知される。この時、位相差検出回路14の出力パ
ルスにより検波積分回路18にて第9図Dに示すように
上限判定回路21の判定レベルが引き上げられる。この
ように、片側波帯成分が存在する時には、反対側の側波
帯の判定回路の判定レベルを変え且つ、検知しようとす
る方の判定回路の判定レベルは変わらないから、側波帯
成分の検知動作には何ら影響がないものである。次に、
第9図Eに示すように、ベル等の両側波帯成分が存在す
る時には、両検波積分回路18,17を介して、F、G
に示すように上、下限判定回路21,22の判定レベル
が引き上げられ、判定レベルを超えないようにして誤動
作を防止している。本発明は上述のように、警戒区域に
超音波を放射する機構と、この放射された超音波の警戒
区域からの反射波を受波する機構とを具備し、受波され
た信号を前記放射された超音波の周波数に対して上側波
帯と下側波帯とに区分し、この分布の分布状態及び分布
量が一定時間以上不均等になったとき検知出力を生じる
ようにしたものであるから、人間のような検出すべき移
動体に対する検知性能を損うことはなくしかもベル音な
どの影響による誤動作を防止することができる効果を有
するものである。When a moving object M such as a human moves toward the detector, an output is output to the phase difference detection circuit 14, and conversely, when a moving object M moves away from the detector, the output is output to the phase difference detection circuit 14.
It is output to the other phase difference detection circuit 15. At this time, when the single-side band component is detected, the upper limit determination circuit 21 or the lower limit determination circuit 22 passes through the in-phase component removal circuit 19 and the D/A conversion circuit 20.
That is, when an upper sideband component exists, the upper limit determination circuit 21 determines, and when a lower sideband component exists, the lower limit determination circuit 22 determines the presence of the lower sideband component.
The output circuit 23 operates based on the determination.
However, when both sideband components exist randomly, such as in a bell etc., the common mode component removal circuit 19 and the D/A conversion circuit 2
0 cannot be canceled, and the upper and lower limit judgment circuits 21 and 22
is determined and a signal is output to the output circuit 23, resulting in malfunction. Therefore, in order to prevent this malfunction, when there is an output pulse from the phase difference detection circuit 14, the detection and integration circuit 17 converts it into a DC voltage and moves it to the side that raises the judgment level of the lower limit judgment circuit 22. When the output of the phase difference detection circuit 15 is present, the detection and integration circuit 18 converts it into a DC voltage and moves it to the side that raises the determination level of the upper limit determination circuit 21. That is, as shown in FIG. 9, when the upper sideband component is output from the D/A conversion circuit 20, the level of the component is detected to exceed the upper limit determination level of the upper limit determination circuit 21. (Figure 9A). At this time,
Based on the output of the phase difference detection circuit 14, the detection and integration circuit 17 raises the determination level of the lower limit determination circuit 22 as shown in FIG. 9B. Further, when it is a lower sideband component, it is detected as exceeding the lower limit judgment level of the lower limit judgment circuit 22, as shown in FIG. 9C. At this time, the output pulse of the phase difference detection circuit 14 causes the detection and integration circuit 18 to raise the determination level of the upper limit determination circuit 21 as shown in FIG. 9D. In this way, when a sideband component exists, the judgment level of the judgment circuit for the opposite sideband is changed, and the judgment level of the judgment circuit that is trying to detect it does not change. This has no effect on the detection operation. next,
As shown in FIG. 9E, when a double-side band component such as a bell exists, F, G
As shown in FIG. 3, the determination levels of the upper and lower limit determination circuits 21 and 22 are raised to prevent malfunctions from exceeding the determination levels. As described above, the present invention includes a mechanism that emits ultrasonic waves to a guarded area, and a mechanism that receives reflected waves of the emitted ultrasonic waves from the guarded area, and transmits the received signals to the The frequency of the ultrasonic waves generated is divided into an upper sideband and a lower sideband, and a detection output is generated when the distribution state and amount of this distribution become uneven for a certain period of time or longer. Therefore, the detection performance for moving objects to be detected such as humans is not impaired, and furthermore, it has the effect of preventing malfunctions due to the influence of bell sounds and the like.
また、両側波帯成分を除去するための同相除去回路、逆
相除去回路を具備しているために、両側波帯の信号によ
る同相出力であっても、同相除去回路でもつて、同相成
分を除去して誤動作を防止できるものであり、また、逆
相成分の場合にでも逆相除去回路で除去できる利点を有
する。In addition, since it is equipped with a common-mode removal circuit and a negative-phase removal circuit to remove both sideband components, even if the in-phase output is due to a signal in both sidebands, the common-mode removal circuit can remove the in-phase component. This feature has the advantage that even in the case of an anti-phase component, it can be removed by an anti-phase removal circuit.
更に、送波信号に対してのスベクトラムを側波帯として
上下にランダムにバランス良く分布する場合には、上記
同相除去回路によって除去できるものであるが、ベル等
による刻々と変化するスベクトラム分布が平均的に不均
衡になると、検知誤動作をしてしまうが、上下両側波帯
の信号の分布状態及び分布量に応じて反対側の側波帯の
検知限界レベルを打消す側に動作させる機構を具備して
いるために、つまり、側波帯成分の反対側の検知限界レ
ベルを動作ごせて、側波帯成分を検知しないようにする
ものであり、従って、上下に刻々と変化するベル等の両
側波帯成分の信号により誤動作しないという効果を奏し
、しかも、側波帯成分の反対側の検知限界レベルを移動
動作させることで、真の上若しくは下側波帯成分の検知
には何ら影響を与えない効果を奏するものであ。図面の
簡単な説明第1図は本発明の一実施例の回路ブロック図
、第2図は同上の具体回路図、第3図a,bは同上の移
動体が存在しない場合の超音波送受波状態を示す説明図
及び受波信号の周波数スベクトラム図、第4図a,bは
同上の移動体が存在する場合の超音波送受波状態を示す
説明図及び受波信号の周波数スベクトラム図、第5図a
,bは同上の複数の経路からの受波超音波の合成状態を
示す波形図及びその周波数スベクトラム図、第6図は同
上の移動体が存在するときの実際の周波数スベクトラム
図、第7図a,bは同上のベル等があるときの超音波送
受波状態を示す説明図及び受波信号の波形図、第8図a
,bは同上のベル等によるランダムスベクトラムの各異
なる時刻における周波数スベクトラム図、第9図は動作
説明図である。Furthermore, if the subspectrum for the transmitted signal is randomly distributed vertically and well-balanced as sidebands, it can be removed by the above-mentioned in-phase removal circuit, but the ever-changing subspectrum distribution due to Bell etc. If the signals are unbalanced, a detection error will occur, but the sensor is equipped with a mechanism that cancels the detection limit level of the opposite sideband depending on the distribution state and amount of distribution of the signals in the upper and lower sidebands. In other words, the detection limit level on the opposite side of the sideband component is set so that the sideband component is not detected. It has the effect of not malfunctioning due to signals of both sideband components, and by moving the detection limit level on the opposite side of the sideband components, there is no effect on the detection of true upper or lower sideband components. It is something that produces an effect that cannot be given. Brief Description of the Drawings Figure 1 is a circuit block diagram of an embodiment of the present invention, Figure 2 is a specific circuit diagram of the same as the above, and Figures 3 a and b are ultrasonic wave transmission and reception when the above moving body is not present. An explanatory diagram showing the state and a frequency spectrum diagram of the received signal, Figures 4a and b are an explanatory diagram and a frequency spectrum diagram of the received signal, Figure 5 Diagram a
, b is a waveform diagram and its frequency spectrum diagram showing the combined state of the received ultrasonic waves from the plurality of paths as above, FIG. 6 is an actual frequency spectrum diagram when the same as the above moving object is present, and FIG. 7 a , b is an explanatory diagram showing the state of ultrasonic wave transmission and reception when there is a bell etc. as above, and a waveform diagram of the received signal, Fig. 8a
, b are frequency vector diagrams at different times of the random vector obtained by Bell et al., and FIG. 9 is an explanatory diagram of the operation.
第3図第1図 第2図 第9図 第4図 第5図 第6図 第7図 第8図Figure 3 Figure 1 Figure 2 Figure 9 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8
Claims (1)
た超音波の警戒区域からの反射波を受波する機構と、受
波された信号を前記放射された超音波の周波数に対して
上側波帯と下側波帯とに区分し、この分布の分布状態及
び分布量が一定時間以上不均等になつたとき検知出力を
生じるようにした機構とを具備し、受波した両側波帯成
分を除去するための同相除去回路、逆相除去回路を設け
、上下両側波帯の信号の分布状態及び分布量に応じ反対
側の側波帯の検知限界レベルを打消す側に動作させる機
構を設けて成る超音波式侵入検知器。1 A mechanism that emits ultrasonic waves to a restricted area, a mechanism that receives reflected waves of the emitted ultrasonic waves from the restricted area, and a mechanism that transmits the received signals to a frequency higher than that of the emitted ultrasonic waves. The device is equipped with a mechanism that divides the wave band into a wave band and a lower side band, and generates a detection output when the distribution state and amount of the distribution become uneven for a certain period of time or more, and detects the received double side band component. A common-phase removal circuit and a negative-phase removal circuit are provided to remove the signal, and a mechanism is provided that operates to cancel the detection limit level of the opposite sideband depending on the distribution state and distribution amount of the signals in the upper and lower sidebands. An ultrasonic intrusion detector consisting of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13533777A JPS6040079B2 (en) | 1977-11-10 | 1977-11-10 | Ultrasonic intrusion detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13533777A JPS6040079B2 (en) | 1977-11-10 | 1977-11-10 | Ultrasonic intrusion detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5468199A JPS5468199A (en) | 1979-06-01 |
JPS6040079B2 true JPS6040079B2 (en) | 1985-09-09 |
Family
ID=15149400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13533777A Expired JPS6040079B2 (en) | 1977-11-10 | 1977-11-10 | Ultrasonic intrusion detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6040079B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2950626A1 (en) * | 1979-12-15 | 1981-06-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | DOPPLERRADAR MEASURING METHOD AND DEVICE FOR CARRYING OUT THIS METHOD |
JPS60205385A (en) * | 1984-03-30 | 1985-10-16 | Yokogawa Medical Syst Ltd | Distance observing device for echo signal |
-
1977
- 1977-11-10 JP JP13533777A patent/JPS6040079B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5468199A (en) | 1979-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6243507B2 (en) | ||
US4035798A (en) | Ultrasonic intrusion detection system | |
JPS6040079B2 (en) | Ultrasonic intrusion detector | |
US3803539A (en) | Method and apparatus for detecting motion | |
JP2003028949A (en) | Transmitting-receiving apparatus and radar apparatus | |
US2659878A (en) | Ranging system | |
US5696489A (en) | Wireless boundary monitor system and method | |
GB1600430A (en) | Ultrasonic type motion detector | |
JP2676533B2 (en) | Doppler sensor | |
JPS6031270B2 (en) | active sonar device | |
JPS5912372A (en) | Short-range radar | |
JPH09230038A (en) | Electronic monitoring device | |
US3435405A (en) | Ultrasonic vehicle presence detector | |
JPS61246686A (en) | Detector for moving object | |
JP3013919B2 (en) | Radar temporal sensitivity control method and apparatus | |
US4213196A (en) | Ultrasonic type motion detector | |
JPS6329263Y2 (en) | ||
JP2002269648A (en) | Burglar prevention device | |
JP2570899B2 (en) | Active sonar device | |
JP2674375B2 (en) | Stationary underwater acoustic simulation target device | |
RU2115960C1 (en) | Noise suppression device | |
JPS62293175A (en) | Ultrasonic measuring instrument | |
JP2024121784A (en) | MOBILE BODY DETECTION SYSTEM, MOBILE BODY DETECTION DEVICE, MOBILE BODY DETECTION METHOD USING MOBILE BODY DETECTION SYSTEM, AND MOBILE BODY DETECTION METHOD | |
US3108271A (en) | Stabilization of sensitivity in intruder detection systems | |
RU2050596C1 (en) | Guard signalling system |