JPS6039809Y2 - oxygen sensor - Google Patents

oxygen sensor

Info

Publication number
JPS6039809Y2
JPS6039809Y2 JP1979070582U JP7058279U JPS6039809Y2 JP S6039809 Y2 JPS6039809 Y2 JP S6039809Y2 JP 1979070582 U JP1979070582 U JP 1979070582U JP 7058279 U JP7058279 U JP 7058279U JP S6039809 Y2 JPS6039809 Y2 JP S6039809Y2
Authority
JP
Japan
Prior art keywords
detection part
exhaust gas
solid electrolyte
thermal shock
zirconia solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979070582U
Other languages
Japanese (ja)
Other versions
JPS55170660U (en
Inventor
徹男 渡辺
俊三 間瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP1979070582U priority Critical patent/JPS6039809Y2/en
Priority to DE19803020078 priority patent/DE3020078C2/en
Publication of JPS55170660U publication Critical patent/JPS55170660U/ja
Application granted granted Critical
Publication of JPS6039809Y2 publication Critical patent/JPS6039809Y2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【考案の詳細な説明】 本考案は主として内燃機関等より排出される排ガス中の
酸素分圧を測定する酸素センサの耐熱衝撃性の改良に関
するものである。
[Detailed Description of the Invention] The present invention mainly relates to improving the thermal shock resistance of an oxygen sensor that measures the partial pressure of oxygen in exhaust gas discharged from an internal combustion engine or the like.

内燃機関等より排出される排ガスの浄化システムに用い
られる排ガス中の酸素分圧を測定する酸素センサとして
は、第1図に示すような一端が閉じられた管状形状を有
するジルコニア固体電解質1の内外両面に電極2,3を
付与し、その検出部4を排ガス5中に挿入して外面電極
3を排ガスに接触させ、内面電極2を基準ガス、例えば
大気に接触させて酸素濃淡電池の原理により排ガス5中
の酸素分圧を測定する酸素センサが知られている。
As an oxygen sensor for measuring the partial pressure of oxygen in exhaust gas used in a purification system for exhaust gas emitted from an internal combustion engine, etc., a zirconia solid electrolyte 1 having a tubular shape with one end closed as shown in Fig. 1 is used. Electrodes 2 and 3 are provided on both sides, and the detection part 4 is inserted into the exhaust gas 5 so that the outer electrode 3 is brought into contact with the exhaust gas, and the inner electrode 2 is brought into contact with a reference gas, such as the atmosphere, according to the principle of an oxygen concentration battery. Oxygen sensors that measure oxygen partial pressure in exhaust gas 5 are known.

このような酸素センサにおいては、排ガス5中に挿入さ
れる検出部4は排ガス5による加熱、冷却の熱衝撃を受
けるものであり、その熱衝撃が大きい場合にはジルコニ
ア固体電解質1が破損するという重大な欠点があるもの
であった。
In such an oxygen sensor, the detection part 4 inserted into the exhaust gas 5 is subjected to thermal shock due to heating and cooling by the exhaust gas 5, and if the thermal shock is large, the zirconia solid electrolyte 1 will be damaged. It had serious shortcomings.

このため、検出部4の熱衝撃を少しでも緩和するために
検出部4の外周に、円孔又はスリット状の多数の開口6
を有する金属製の保護カバー7が設置されているのが一
般的である。
Therefore, in order to alleviate the thermal shock of the detection part 4, a large number of openings 6 in the form of circular holes or slits are provided on the outer periphery of the detection part 4.
Generally, a protective cover 7 made of metal is installed.

しかしながら保護カバー7を用いても最も苛酷な排ガス
条件下においては検出部4の受ける熱衝撃は最大毎秒5
0°Cにもおよび熱衝撃によるジルコニア固体電解質の
破損を完全に防止することはできないものであった。
However, even with the protective cover 7, under the most severe exhaust gas conditions, the detection unit 4 receives a thermal shock of up to 5 per second.
It was not possible to completely prevent damage to the zirconia solid electrolyte due to thermal shock even at 0°C.

本考案の酸素センサは、従来のこれらの酸素センサの欠
点を改良した最も苛酷な排ガス条件に晒しても熱衝撃に
よって固体電解質が破損することのほとんどない耐熱衝
撃性に優れた酸素センサであり、一端が閉じた管状形状
を有するジルコニア固体電解質の内外両面にそれぞれ電
極を付与し、内面の電極部を基準ガスに接触させるとと
もに外面の電極部を排ガスに接触させて、酸素濃淡電池
の原理により排ガス中の酸素分圧を測定する酸素センサ
において、排ガス中に挿入されるジルコニア固体電解質
の検出部の外表面積と該部の体積との比率が10a+!
/cI1以上であり、かつ該検出部の外径がいずれの部
分においても6wn以下である酸素センサである。
The oxygen sensor of the present invention improves the shortcomings of conventional oxygen sensors and has excellent thermal shock resistance, with the solid electrolyte hardly being damaged by thermal shock even when exposed to the most severe exhaust gas conditions. Electrodes are provided on both the inner and outer surfaces of a zirconia solid electrolyte that has a tubular shape with one end closed, and the inner electrode part is brought into contact with the reference gas while the outer electrode part is brought into contact with the exhaust gas. In an oxygen sensor that measures the partial pressure of oxygen in the exhaust gas, the ratio of the outer surface area of the detection part of the zirconia solid electrolyte inserted into the exhaust gas to the volume of the part is 10a+!
/cI1 or more, and the outer diameter of the detection part is 6wn or less in any part.

すなわち、本考案は固体電解質の熱衝撃破壊現象を詳し
く検討腰検出部の形状、受熱面積、熱容量と検出部が熱
衝撃を受けたときの加熱、冷却速度、温度分布等による
検出部の破損との関係等を詳細に調べた結果、従来はと
んど考慮の払われていなかった固体電解質検出部の受熱
面積、熱容量および形状が検出部の破損率と密接な関係
を持つことを見出したことに基づくものである。
In other words, the present invention examines in detail the thermal shock destruction phenomenon of solid electrolytes, and examines the shape, heat-receiving area, heat capacity of the detection part, and the damage to the detection part due to heating, cooling rate, temperature distribution, etc. when the detection part receives thermal shock. As a result of a detailed study of the relationship between It is based on

換言すれば従来検出部の昇温又は冷却速度が大であるほ
ど熱衝撃は大であり、破損しやすいとの考え方が一般的
であったが、この考え方は検出部の表面のみに対しては
適用できるが、検出部全体としては昇温又は冷却速度が
大で表面の温度変化に追随しやすい方が破損しにくいこ
と、このためには検出部の受熱面積に対する検出部の体
積の比率が重要であり、最も苛酷な排ガス条件下でも破
損しないためには上記比率が一定値以上であることが必
要であることを究明した。
In other words, the conventional idea was that the higher the temperature rise or cooling rate of the detection part, the greater the thermal shock, and the more likely it would be damaged. However, for the detection part as a whole, it is less likely to be damaged if the temperature rise or cooling rate is high and it can easily follow the temperature change on the surface, and for this purpose, the ratio of the volume of the detection part to the heat receiving area of the detection part is important. It was determined that the above ratio must be above a certain value in order to prevent damage even under the most severe exhaust gas conditions.

更にこのような形状の酸素センサにおいては耐熱衝撃性
におよぼす形状の効果が大であることも究明した。
Furthermore, it has been found that in oxygen sensors with such a shape, the shape has a large effect on thermal shock resistance.

次に、本考案の数値限定の理由を具体例にもとづ′いて
説明する。
Next, the reason for the numerical limitation of the present invention will be explained based on a specific example.

市販ジルコニア固体電解質の内、曲げ強度が約1700
ka/artの比較的高強度のジルコニア固体電解質A
および曲げ強度が約1200kg/ctlの比較的低強
度のジルコニア固体電解質Bの2種のジルコニア固体電
解質を用い、第1表に示す検出部形状を有する5渇の酸
素センサを試作し、内燃機関の排気管に装着して排ガス
により毎秒約5000の熱衝撃を10サイクル与えて、
固体電解質の破損率を比較測定した。
Among commercially available zirconia solid electrolytes, the bending strength is approximately 1700.
ka/art's relatively high strength zirconia solid electrolyte A
Using two types of zirconia solid electrolytes, zirconia solid electrolyte B and zirconia solid electrolyte B, which have a relatively low bending strength of about 1200 kg/ctl, we prototyped a 5-gas oxygen sensor with the detection part shape shown in Table 1. It is attached to the exhaust pipe and subjected to 10 cycles of approximately 5,000 thermal shocks per second by exhaust gas.
The failure rate of solid electrolytes was comparatively measured.

検出部の固体電解質の破損率は第1表に示すとおりであ
った。
The failure rate of the solid electrolyte in the detection part was as shown in Table 1.

第1表より明らかなように、検出部の表面積と体積の比
率と破損率の関係をグラフに示せば固体電解質Aについ
ては第4図、固体電解質Bについては第5図に示すとお
りであり、検出部の表面積と体積の比率および検出部の
外径と、破損率との間には、相関関係のあることが判明
した。
As is clear from Table 1, the relationship between the surface area and volume ratio of the detection part and the failure rate is shown in Figure 4 for solid electrolyte A and Figure 5 for solid electrolyte B. It has been found that there is a correlation between the ratio of surface area to volume of the detection part, the outer diameter of the detection part, and the failure rate.

すなわち、本考案の数値限定の理由を説明すれば、第4
図および第5図より明らかなとおり検出部の表面積と体
積の比率が10cJ/−未満の場合には、ジルコニア固
体電解質の種類、検出部の外径寸法の如何にかかわらす
、熱衝撃による破損率を実質上零にすることはできない
ものであり、そのため検出部の表面積と体積の比率は1
0c+I!/cJ以上が必要である。
In other words, if we explain the reason for the numerical limitation of the present invention, the fourth
As is clear from Fig. 5 and Fig. 5, when the ratio of the surface area to the volume of the detection part is less than 10 cJ/-, the damage rate due to thermal shock increases regardless of the type of zirconia solid electrolyte or the outer diameter of the detection part. cannot be reduced to zero, so the ratio of the surface area to the volume of the detection part is 1.
0c+I! /cJ or more is required.

又該比率が10cy#/cr1以上の場合にも破損率を
実質上零にするためには、検出部の外径が6wIt以下
であることが必要である。
Further, even when the ratio is 10 cy#/cr1 or more, the outer diameter of the detection part must be 6 wIt or less in order to make the failure rate substantially zero.

このように、検出部の表面積と体積の比率および検出部
の外径が耐熱衝撃性と明確な相関を持つ理由は、検出部
の表面積すなわち受熱面積が相対的に大であるほど検出
部の温度変化速度は大でありかつ検出部のジルコニア固
体電解質の体積すなわち熱容量が相対的に小であるほど
検出部の温度変化速度が大になり、検出部全体の温度変
化速度が大であれば、検出部の温度分布による歪の応力
が少なくなって熱衝撃による破損を起しにくいものと考
えられ、これに形状因子としての外径寸法が寄与して熱
衝撃破損を起す限界値が定まるものと考えられる。
The reason why the surface area to volume ratio of the detection part and the outer diameter of the detection part have a clear correlation with thermal shock resistance is that the larger the surface area of the detection part, that is, the heat receiving area, the higher the temperature of the detection part. The larger the rate of change is, and the smaller the volume, or heat capacity, of the zirconia solid electrolyte in the detection part, the faster the temperature change in the detection part becomes.If the rate of temperature change in the entire detection part is large, the detection It is thought that the strain stress due to the temperature distribution of the part is reduced, making it difficult to cause damage due to thermal shock, and the outer diameter dimension as a shape factor contributes to this, determining the limit value at which thermal shock damage occurs. It will be done.

なお、本考案において、検出部と称する部分は、第2図
および第3図に示すとおり電極を付与したジルコニア固
体電解質4の排ガスに挿入される部分で、かつ保護カバ
ー7に設けられた円孔およびルーバー状の開口6の最も
排気管壁に近い開口位置よりも先の部分、すなわち第2
図および第3図において破線を施した部分より先端部を
いう。
In the present invention, the part called the detection part is the part inserted into the exhaust gas of the zirconia solid electrolyte 4 provided with electrodes as shown in FIGS. and the part beyond the opening position closest to the exhaust pipe wall of the louver-shaped opening 6, that is, the second part.
The tip portion is indicated by a broken line in the figures and FIG. 3.

なお、破線より内側の排気管壁に近い部分では保護カバ
ーに開口6が存在しないので排気の流速がゆるやかにな
るため熱衝撃が少なくほとんど破損しない。
It should be noted that in the portion near the exhaust pipe wall inside the broken line, there is no opening 6 in the protective cover, so the flow velocity of the exhaust gas is slow, so there is little thermal shock and there is almost no damage.

従って除外して考えるものとする。以上詳述したとおり
本考案のジルコニア固体電解質の検出部の外表面積と該
部の体積との比率が10Cri/d以上でかつ該検出部
の外径が6咽以下である酸素センサは、内燃機関の排ガ
スによる最も苛酷な条件下による熱衝撃に対してもほと
んど破損を起さないものであり、長期間安定して使用で
きるものであって、産業上極めて有益なものである。
Therefore, we will exclude this from consideration. As detailed above, the oxygen sensor of the present invention in which the ratio of the outer surface area of the detection part of the zirconia solid electrolyte to the volume of the part is 10 Cri/d or more and the outer diameter of the detection part is 6 Cri/d or less is suitable for use in internal combustion engines. The material is hardly damaged even by thermal shock caused by exhaust gas under the most severe conditions, and can be used stably for a long period of time, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素センサの一具体例の断面構造を示す説明図
、第2図および第3図は酸素センサの検出部を説明する
ための要部一部断面説明図、第4図および第5図はジル
コニア固体電解質の検出部の表面積と体積の比率および
外径と、熱衝撃による破損率との関係を示す説明図であ
る。 1・・・・・・ジルコニア固体電解質、2,3・・・・
・・電極、4・・・・・・検出部、5・・・・・・排ガ
ス、6・・・・・・開口、7・・・・・・保護カバー
FIG. 1 is an explanatory diagram showing a cross-sectional structure of a specific example of an oxygen sensor, FIGS. The figure is an explanatory diagram showing the relationship between the surface area/volume ratio and outer diameter of the detection part of the zirconia solid electrolyte and the damage rate due to thermal shock. 1...zirconia solid electrolyte, 2,3...
...Electrode, 4...Detection section, 5...Exhaust gas, 6...Opening, 7...Protective cover

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一端が閉じた管状形状を有するジルコニア固体電解質の
内外両面にそれぞれ電極を付与し、内面の電極部を基準
ガスに接触させるとともに外面の電極部を排ガスに接触
させて、酸素濃淡電池の原理により排ガス中の酸素分圧
を測定する酸素センサにおいて、排ガス中に挿入される
ジルコニア固体電解質の検出部の外表面積と該部の体積
との比率がlOc!1!/C71以上であり、かつ該検
出部の外径がいずれの部分においても6wn以下である
ことを特徴とする酸素センサ。
Electrodes are provided on both the inner and outer surfaces of a zirconia solid electrolyte that has a tubular shape with one end closed, and the inner electrode part is brought into contact with the reference gas while the outer electrode part is brought into contact with the exhaust gas. In an oxygen sensor that measures the partial pressure of oxygen in the exhaust gas, the ratio of the outer surface area of the detection part of the zirconia solid electrolyte inserted into the exhaust gas to the volume of the part is lOc! 1! /C71 or more, and the outer diameter of the detection portion is 6wn or less in any part.
JP1979070582U 1979-05-28 1979-05-28 oxygen sensor Expired JPS6039809Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1979070582U JPS6039809Y2 (en) 1979-05-28 1979-05-28 oxygen sensor
DE19803020078 DE3020078C2 (en) 1979-05-28 1980-05-27 Oxygen detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979070582U JPS6039809Y2 (en) 1979-05-28 1979-05-28 oxygen sensor

Publications (2)

Publication Number Publication Date
JPS55170660U JPS55170660U (en) 1980-12-08
JPS6039809Y2 true JPS6039809Y2 (en) 1985-11-29

Family

ID=13435687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979070582U Expired JPS6039809Y2 (en) 1979-05-28 1979-05-28 oxygen sensor

Country Status (2)

Country Link
JP (1) JPS6039809Y2 (en)
DE (1) DE3020078C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514664B2 (en) * 1987-08-11 1996-07-10 日本特殊陶業株式会社 Oxygen sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266430A (en) * 1975-11-28 1977-06-01 Xerox Corp Transfer sheet and ink image fixing method using same
US4076608A (en) * 1976-11-04 1978-02-28 Nissan Motor Company, Limited Oxygen sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2504207C3 (en) * 1975-02-01 1981-12-24 Robert Bosch Gmbh, 7000 Stuttgart Electrochemical measuring sensor for the determination of the oxygen content in exhaust gases, especially in exhaust gases from internal combustion engines
JPS523440U (en) * 1975-06-24 1977-01-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266430A (en) * 1975-11-28 1977-06-01 Xerox Corp Transfer sheet and ink image fixing method using same
US4076608A (en) * 1976-11-04 1978-02-28 Nissan Motor Company, Limited Oxygen sensor

Also Published As

Publication number Publication date
JPS55170660U (en) 1980-12-08
DE3020078C2 (en) 1982-05-19
DE3020078A1 (en) 1980-12-04

Similar Documents

Publication Publication Date Title
US7413641B2 (en) Gas sensor with improved structure of protective cover
JP3531859B2 (en) Gas sensor
IT8020450A0 (en) ELECTROCHEMICAL MEASUREMENT PROBE TO DETERMINE THE OXYGEN CONTENT IN GAS, PARTICULARLY IN THE EXHAUST GASES OF INTERNAL COMBUSTION ENGINES.
IT1132838B (en) ELECTROCHEMICAL MEASUREMENT PROBE, FOR DETERMINING THE CONTENT OF OXYGEN IN GAS, IN PARTICULAR IN THE EXHAUST GASES OF INTERNAL COMBUSTION ENGINES
US20070277605A1 (en) Shield assembly for a gas sensor
US4076608A (en) Oxygen sensor
JPH0465339B2 (en)
GB2067294A (en) Electrochemical sensor with protective device for determining oxygen content in exhaust
JPS6039809Y2 (en) oxygen sensor
US4802369A (en) Sensor structure
US4152232A (en) Oxygen concentration detector
JP2001074686A (en) Protector for gas sensor
JPH0535327Y2 (en)
JPH0315693B2 (en)
CA1127871A (en) Ceramic insulator for an exhaust gas oxygen sensor
CN214096412U (en) Thermal resistor with protection function
JPH0233167Y2 (en)
JP3771018B2 (en) Gas concentration detection element
JPS5918356Y2 (en) oxygen concentration sensor
CN212988620U (en) Novel anticreep thermocouple
JPH065619Y2 (en) Probe transmitter
JPS5925003Y2 (en) Flammable gas detection sensor
JP2592525Y2 (en) Cylinder liner
JPS587328Y2 (en) oxygen sensor
CA1072633A (en) Oxygen sensor