JPS603955A - Detection of slag outflow - Google Patents

Detection of slag outflow

Info

Publication number
JPS603955A
JPS603955A JP11142383A JP11142383A JPS603955A JP S603955 A JPS603955 A JP S603955A JP 11142383 A JP11142383 A JP 11142383A JP 11142383 A JP11142383 A JP 11142383A JP S603955 A JPS603955 A JP S603955A
Authority
JP
Japan
Prior art keywords
slag
nozzle
outflow
mirror
thermal radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142383A
Other languages
Japanese (ja)
Inventor
Tetsuo Hatono
鳩野 哲男
Sumio Kobayashi
純夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11142383A priority Critical patent/JPS603955A/en
Priority to EP84304142A priority patent/EP0132296B1/en
Priority to DE8484304142T priority patent/DE3462858D1/en
Publication of JPS603955A publication Critical patent/JPS603955A/en
Priority to US06/861,110 priority patent/US4693614A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/001Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the slag appearance in a molten metal stream

Abstract

PURPOSE:To detect the outflow of slag with the accuracy of the same level as in the prior art and to assure various operations without trouble during continuous casting by using a reflection mirror for receiving the thermal radiation energy of the molten metal flowing down in an immersion nozzle. CONSTITUTION:A reflection mirror 9 having an elliptical shape is horizontally installed on the outside of an immersion nozzle 5 attached to a sliding nozzle 3 installed in the bottom of a ladle 1 in such a way that the one focus thereof is positioned at the axial center of the nozzle where the molten metal flows. A receiving antenna 10 of which the detecting direction is directed to the center of the mirror 9 is installed at the other focus of the mirror 9. The thermal radiation energy of the molten steel (m) and slag S flowing down in the nozzle 5 are received by such mirror 9, the antenna 10 and a radiometer 11 connected to the antenna 10. The outflow of the slag S is detected from the change in the thermal radiation energy thereof.

Description

【発明の詳細な説明】 本発明は、連続鋳造操業におけるシール鋳込みにおいて
、取鍋からタンディツシュへ又はタンディツシュから鋳
型へノズルを介して溶鋼を鋳込む際に、溶鋼湯面上に浮
遊した溶融スラグの流出を遠隔より検出する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce the amount of molten slag floating on the surface of the molten steel when pouring the molten steel from the ladle to the tundish or from the tundish to the mold through a nozzle during seal casting in continuous casting operation. The present invention relates to a method for remotely detecting a leak.

近年鋳片内の介在物減少対策として、取鍋からタンディ
ツシュへの溶鋼鋳込流周辺全耐火シール材で覆い、該耐
火シール社内をArガス等の不活性ガスで充満させて前
記溶鋼鋳込流の酸化防止を図ったシ、またはスライディ
ングノズルの下端に長寸の浸漬ノズルを取付け、この浸
漬ノズルの下端をタンディツシュ内の溶鋼中に浸漬せし
めて取鍋からの溶鋼鋳込流が大気と接触するのを回避し
て溶鋼鋳込流の空気酸化を抑制するシール鋳込みが採用
されてきている。しかし、このような鋳込み方法では鋳
片品質の低下を招く取鍋からタンディツシュへの溶鋼流
下末期におけるスラグの流出を目視で行なうことは困難
であった。
In recent years, as a measure to reduce inclusions in slabs, the area around the molten steel pouring from the ladle to the tundish is covered with a fireproof sealant, and the inside of the fireproof seal is filled with an inert gas such as Ar gas to prevent the molten steel pouring. A long immersion nozzle is attached to the lower end of the sliding nozzle, and the lower end of the immersion nozzle is immersed in the molten steel in the tundish, so that the molten steel pouring flow from the ladle comes into contact with the atmosphere. Seal casting has been adopted to prevent air oxidation of the molten steel pouring flow. However, in such a casting method, it is difficult to visually check the flow of slag at the end of the flow of molten steel from the ladle to the tundish, which causes deterioration in slab quality.

このようなことから、すてにスラグ流出の検出方法とし
て、放射温度計による方法やコイルインピーダンス測定
方法等が提案さnてムるが、こnらの方法では近年浸漬
ノズルの材質として多用さnている電気伝導度が高く不
透明なアルミナグラファイト質のものでは溶融スラグの
流出を高精度に検出することは不可能である。なおノズ
ル外周面を鉄皮で覆っである場合も同様である。また上
記した事情は連続鋳造設備のタンディツシュから鋳型へ
の溶鋼のシール鋳込みについてモ同様である。
For this reason, methods using radiation thermometers and coil impedance measurement methods have been proposed as methods for detecting slag outflow, but in recent years these methods have been based on materials that have been frequently used for immersion nozzles. It is impossible to detect the outflow of molten slag with high precision using alumina graphite, which has high electrical conductivity and is opaque. The same applies to the case where the outer peripheral surface of the nozzle is covered with an iron shell. Further, the above-mentioned circumstances are similar to those regarding seal casting of molten steel from a tundish into a mold in continuous casting equipment.

そこで本出願人は上記欠点?解決する方法を特開昭57
−121864号にて開示した。すなわち、ノズル外側
からノズルを通流する溶湯より発せらルるマイクロ波帯
の放射エネルギを捉え、溶鋼とスラグとの放射率の違い
に起因する前記放射エネルギの変化からスラグの流出を
検出する方法である。すなわち、輝度温度T(’K)の
物体から発せらnる微小周波数帯域幅Δf(1/秒)あ
1ζりの熱放射エネルギPC@は下記式の妬く表わされ
る。
Therefore, does the applicant have the above-mentioned drawbacks? Japanese Patent Application Laid-Open No. 1987 (1983) on how to solve the problem
It was disclosed in No.-121864. That is, a method of capturing microwave band radiant energy emitted from the molten metal flowing through the nozzle from outside the nozzle, and detecting slag outflow from changes in the radiant energy caused by the difference in emissivity between molten steel and slag. It is. That is, the thermal radiation energy PC@ with a minute frequency bandwidth Δf (1/sec) and 1ζ emitted from an object having a brightness temperature T ('K) is expressed by the following equation.

P==に−T啼ΔI ・・・■ 但し、K:ボルツマン定数(= L38X10−”J/
6K ) また、高温物体の輝度温度T(0K)は、物体の物理的
温度′frTA(0K)放射率をε(さく1)とすると
下記式の如く表わさnる。
P==−T啼ΔI ・・・■ However, K: Boltzmann constant (= L38X10−”J/
6K) Furthermore, the brightness temperature T (0K) of a high-temperature object is expressed as in the following equation, where the physical temperature 'frTA (0K) of the object and the emissivity are ε (1).

T=ε・TA ・・・0 以上のことから、スラグと溶鋼の放射率の差を熱放射エ
ネルギの差として検出でき、そしてこのような熱放射エ
ネルギは耐火物を透過する(特にアルミナやア、ルミナ
・シリカ系の耐火物はマイクロ波透過性が良い)から、
ノズル内を通流する溶湯から放射される熱放射エネルギ
をノズルの局面を介してその外側から検出でき、よって
スラグの流出を検知することができるのである。
T=ε・TA...0 From the above, the difference in emissivity between slag and molten steel can be detected as a difference in thermal radiation energy, and such thermal radiation energy passes through refractories (especially alumina and aluminum). , lumina-silica-based refractories have good microwave transparency),
Thermal radiant energy radiated from the molten metal flowing through the nozzle can be detected from the outside through the nozzle surface, and therefore the outflow of the slag can be detected.

本出願人が開示した上記方法は、シール鋳込みのように
溶鋼鋳込流が露出していないときでもノズルの外側から
スラグの流出を検知できる有益なる発明であるが、通常
良く用いら几るホーン形状のアンテナを使用した高感度
受1δ器(以下[ラジオメータ]と云う)を用いて前記
したマイクロ波帯の熱放射エネルギを測定する場合には
、受信感 l1 庇上、前記アンテナを鋳込流から遠ざけることは好まし
く々い。
The above method disclosed by the present applicant is a useful invention that can detect the outflow of slag from the outside of the nozzle even when the molten steel casting flow is not exposed as in seal casting. When measuring the thermal radiation energy in the microwave band described above using a high-sensitivity receiver 1δ device (hereinafter referred to as a radiometer) using a shaped antenna, the antenna is cast on the eaves. It is better to keep it away from the flow.

一方、連続鋳造操業では取鍋、タンディツシュの交換が
頻繁に行なわ1、また鋳込み中においてはサンプリング
作業等の取鍋、タンディツシュ近傍での作業が多い為、
前記したアンテナやラジオメータ等の検出器が作業の障
害となったり、また他の装置や付帯設備と干渉するとい
う問題がある。
On the other hand, in continuous casting operations, the ladle and tundish are frequently replaced1, and during casting, sampling work and other work is often done near the ladle and tundish.
There are problems in that the above-mentioned antennas, radiometers, and other detectors obstruct work or interfere with other devices and incidental equipment.

本発明は上記照点に鑑みて成されたものであり、連続鋳
造操業中における各種作業の障害となるアンテナやラジ
オメータ等の検出器を鋳込流から可及的に遠ざけ、かつ
良好な熱放射エネルギの測定によるスラグの流出を検出
する方法を提供せんとするものである。
The present invention has been made in view of the above-mentioned points, and it is possible to keep detectors such as antennas and radiometers that impede various operations during continuous casting operations as far away from the casting flow as possible, and to provide a good heat source. It is an object of the present invention to provide a method for detecting slag outflow by measuring radiant energy.

すなわち本発明方法は、−の容器から他の容器へノズル
を介して溶湯を通流させる際のスラグの流出を、前記ノ
ズルを通流する溶湯から発せら几るマイクロ波帯の熱放
射エネルギを捉え、溶鋼とスラグとの放射率の違いに起
因する前記熱放射エネルギの変化からスラグの流出全検
知する方法に分いて、楕円面形状を有する反射鏡を、そ
の一方の焦点が前記溶湯の通流位1にくるよう配置せし
めると共に、この反射鏡の他方の焦点には受信アンテナ
を配設し、こ几ら反射鏡と受信アンテナを用いて前記マ
イクロ波帯の熱放射エネルギの変化を遠隔よ)測定しス
ラグの流出を検知することを要旨とするスラグ流出検知
方法である。
That is, the method of the present invention suppresses the outflow of slag when the molten metal is passed from one container to another via a nozzle by absorbing microwave band thermal radiant energy emitted from the molten metal flowing through the nozzle. A method of detecting all the outflow of slag from the change in the thermal radiation energy caused by the difference in emissivity between molten steel and slag has been developed. At the same time, a receiving antenna is placed at the other focal point of this reflecting mirror, and changes in the thermal radiation energy in the microwave band can be detected remotely using the reflecting mirror and the receiving antenna. ) This is a method for detecting slag outflow, the gist of which is to measure and detect the outflow of slag.

以下本発明方法を添付図面に基づいて詳細に説明する。The method of the present invention will be explained in detail below based on the accompanying drawings.

第1図は本発明方法の実施状態を示す模式図であり、連
続鋳造設備の取鍋から流出する溶融スラグを検知する場
合についてのものである。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention, in which molten slag flowing out from a ladle of continuous casting equipment is detected.

図面において、(1)ilt取鍋、(2)はタンディツ
シュであシ、こnら取鍋(1)とタンディツシュ(2)
間には取鍋(1)の底部に嵌着設置さする例えばスライ
ディングノズル(3)、および該スライディングノズル
(3)の下端部にシール材(4)を介して取付けられ下
端部が前記タンディツシュ(2)内の溶鋼の湯面下に位
置すべく設置さ几た浸漬ノズル(5)が連続して設けら
n1取鍋(1)内の溶鋼に)を無酸化状態でタンディツ
シュ(2)に流下させるようになさnている。なお、取
鍋(1)内の溶鋼湯面上には溶融スラグ(S)が浮遊せ
しめられており、溶u4場面の空気酸化の防止および保
温が図ら几て匹る。
In the drawing, (1) is the ladle, (2) is the tandish, and these are the ladle (1) and the tandish (2).
For example, a sliding nozzle (3) is fitted into the bottom of the ladle (1), and the lower end of the sliding nozzle (3) is attached to the lower end of the tundish (3) via a sealing material (4). 2) A series of immersion nozzles (5) installed to be located below the surface of the molten steel in the n1 ladle (1) flow the molten steel in the n1 ladle (1) into the tundish (2) in a non-oxidized state. I'm trying to make it work. In addition, molten slag (S) is suspended on the surface of the molten steel in the ladle (1) to prevent air oxidation of the molten steel and to keep it warm.

(6)は前記タンディツシュ(2)の他端側の底部に嵌
111gれたタンディツシュノズルであり、該タンディ
ツシュノズル(6)の下端部には前記と同様、その下端
部が鋳型(7)内の溶鋼の湯面下に位置すべく設@ざn
た浸漬ノズル(8)−41設置され、タンディツシュ(
2)からの溶鋼が鋳型(γ)にシール鋳込みさ几るよう
に成さ几ている。
(6) is a tundish nozzle 111g fitted into the bottom of the other end of the tundish (2), and the lower end of the tundish nozzle (6) has a mold (7) in the same manner as above. Built to be located below the surface of the molten steel inside
The immersion nozzle (8)-41 was installed, and the tanditshu (
The molten steel from 2) is poured into the mold (γ) as a seal.

而して取鍋(1)の底部に設置したスライプイングツス
ル(3)に取付けらnた浸漬ノズル(5)の外側に、そ
の一方の焦点がノズル軸心の溶湯通流位置にくるよう楕
^状を有する反射鏡(9)全水平に設置し、かつこの反
射鏡(9〕の他方の焦点にはその検出方向全反射鏡(9
)の中心に向けた受信アンテナ叫を設置して、これら反
射鏡(9)および受信アンテナαψと、この受信アンテ
ナaψに接続ざnたラジオメータ03)Kより、浸漬ノ
ズル(5)内を流下する溶鋼(ホ)やスラグ(S)の熱
放射エネルギを受信し、こ几ら熱放射エネルギの変化か
らスラグ(S)の流出を検知するのである。なお、前記
ラジオメータ(ロ)は、例えばケース内に格納さ1て常
時一定温度に保持さn1連続鋳造操業時の溶鋼熱等によ
って温度変化しないようになさnている。また、(財)
は前記ラジオメータ(ロ)に接続ざnて、ラジオメータ
αυの出力を記録する記録計である。
Then, one of the focal points of the immersion nozzle (5) attached to the sliding gusset (3) installed at the bottom of the ladle (1) comes to the molten metal flow position on the outside of the nozzle (5). A reflecting mirror (9) having an elliptical shape is installed completely horizontally, and at the other focal point of this reflecting mirror (9) there is a totally reflecting mirror (9) in the detection direction.
), and from the reflecting mirror (9) and the receiving antenna αψ, and the radiometer 03) K connected to this receiving antenna aψ, the water flows down inside the immersion nozzle (5). Thermal radiant energy of the molten steel (E) and slag (S) is received, and the outflow of the slag (S) is detected from changes in the thermal radiant energy. The radiometer (b) is housed in a case, for example, and is kept at a constant temperature at all times so as not to change in temperature due to heat of molten steel during continuous casting operation. Also, (Foundation)
is a recorder that is connected to the radiometer (b) and records the output of the radiometer αυ.

前記反射鏡(9)および受信アンテナ(至)としては例
えば第2図に示すようなものが用いられる。すなわち、
同図(イ)は反射鏡(9)として回転楕円面形状のもの
を、また受信アンテナ噌としてホーン型のものを用いた
ものを示しており、同図(ロ)は円筒楕円面形状の反射
鏡(9)を使用し、ピル・ボックス型の受信アンテナ(
至)を用いたものを示している。
As the reflecting mirror (9) and the receiving antenna (to), for example, those shown in FIG. 2 are used. That is,
Figure (a) shows a reflector (9) with a spheroidal shape and a receiving antenna with a horn type, while figure (b) shows a reflection mirror with a cylindrical ellipsoidal shape. Using a mirror (9), a pill box type receiving antenna (
(to) is shown.

次に上記し念ような反射鏡(9)および受信ア[ジヅナ
(至)を用いて〔第3図参照)本発明方法を実施した場
合の具体例を以下に示す。
Next, a specific example will be shown below in which the method of the present invention is carried out using the above-mentioned reflecting mirror (9) and receiving aperture (see FIG. 3).

0反射鏡(9〕の形状 口径1400瓢の回転楕円面形状のもので鉛直方向幅は
240mのものを使用。焦点位置1は3 m (溶湯流
位[)と114m(受信アンチナ位置)である。
0 Reflector (9) Shape: An ellipsoid of revolution with an aperture of 1400 mm and a vertical width of 240 m is used.Focus position 1 is 3 m (molten metal flow level) and 114 m (receiving antenna position). .

■受信アンテナ(至) 角錐ホーンアンテナ 1ノd口サイズ: 95mX112m ■ラジオメータ(ロ) 周波数帯域: 8〜12h4 GHz トータルパワー型ラシラジオメ ータ波部利得:約50 dB 上記した反射鏡(9)、受信アンテナα0)およびラジ
オメータ(9)を用い、浸漬ノズル(5)の軸心より3
m離扛た位置に前記反射鏡(9)を設置して溶鋼−およ
びスラグ(S)より発せられる熱放射エネルギを澗定し
た。
■Receiving antenna (to) Pyramid horn antenna 1 nod size: 95m x 112m ■Radiometer (b) Frequency band: 8 to 12h4 GHz Total power type Lassi radiometer Wave section gain: Approximately 50 dB The above-mentioned reflector (9), Using the receiving antenna α0) and radiometer (9),
The reflective mirror (9) was installed at a distance of m to measure the thermal radiant energy emitted from the molten steel and slag (S).

本発明方法により受信した受信エネルギの変化量は浸漬
ノズル(5)内部より放射されるエネルギの変化t(溶
鋼とスラグで約500°にの輝度温度差)O約40%(
輝度温度差200°K)であり、ラジオメータ(ロ)に
より十分精度良くスラグ(S)の流出開始を検出できた
The amount of change in the received energy received by the method of the present invention is the change in energy radiated from inside the immersion nozzle (5) t (brightness temperature difference of about 500° between molten steel and slag) O about 40% (
The brightness temperature difference was 200°K), and the start of outflow of slag (S) could be detected with sufficient accuracy using a radiometer (b).

なお、第4図は本具体例の反射鏡(9)と受信アンテナ
0句による指向性分布を示したもの、第5図は鋳込時の
ラジオメータ(ロ)の出力変化を示したものであり、図
中矢印で示す時点がスラグ(S)の流出開始点である。
In addition, Fig. 4 shows the directivity distribution of the reflector (9) and receiving antenna of this specific example with 0 clauses, and Fig. 5 shows the change in the output of the radiometer (b) during casting. The point indicated by the arrow in the figure is the point at which the slag (S) starts flowing out.

以上述べた如く本発明方法によnば、楕円面形状を有す
る反射鏡を用いて浸漬ノズルを流下する溶湯の熱放射エ
ネルギを受信する為、従来の如く受信アンテナやラジオ
メータを浸漬ノズルの近傍(30〜50m)ic設置し
なくても、従来と同程度の精度でスラグの流出を検知す
ることが出来、連続鋳造操業中における各種作業に支S
t−きたすことがないという大なる効果を有する。
As described above, according to the method of the present invention, in order to receive the thermal radiation energy of the molten metal flowing down the immersion nozzle using a reflecting mirror having an ellipsoidal shape, a receiving antenna or a radiometer is placed near the immersion nozzle as in the conventional method. (30-50m) Even without installing an IC, it is possible to detect slag outflow with the same accuracy as conventional methods, and it is useful for various operations during continuous casting operations.
It has the great effect of not causing any damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状in示す模式図、第2図は
本発明方法に用いる反射鏡と受信アンテナを示す斜視図
で、同図(イ)は第1実i例、同図(ロ)rat第2実
施例、第3図は本発明方法の具体例に用いた反射鏡と受
信アンテナを示す図面で、同図(イ)は平面図、同図(
I2)は正面図、第4図は第3図と同様の反射鏡と受信
アンテナによる指向性分布を示した図面、第5図は鋳込
時のラジオメータの出力変化を示した図面である。 (1)は取鍋、(2)はタンディツシュ、(5)は浸漬
ノズル、(7)は鋳型、(9]は反射鏡、uO)は受信
アンテナ、01)はラジオメータ。 (ほか1名) 第2図 第5図 鋳込時間 (T)
FIG. 1 is a schematic diagram showing the method of the present invention in practice, and FIG. 2 is a perspective view showing a reflecting mirror and a receiving antenna used in the method of the present invention. B) Rat 2nd Example, FIG. 3 is a drawing showing a reflecting mirror and a receiving antenna used in a specific example of the method of the present invention, and FIG.
I2) is a front view, FIG. 4 is a drawing showing the directivity distribution due to a reflecting mirror and receiving antenna similar to FIG. 3, and FIG. 5 is a drawing showing changes in the output of the radiometer during casting. (1) is a ladle, (2) is a tundish, (5) is an immersion nozzle, (7) is a mold, (9] is a reflector, uO) is a receiving antenna, and 01) is a radiometer. (1 other person) Figure 2 Figure 5 Casting time (T)

Claims (1)

【特許請求の範囲】[Claims] (1)、−の容器から他の容器へノズル全弁して溶湯を
通流させる際のスラグの流出を、上記ノズルを通流する
溶湯から発せらnるマイクロ波帯の熱放射エネルギを捉
え、溶鋼とスラグとの放射率の違いに起因する上記放射
エネルギの変化からスラグの流出を検知する方法にお−
で、楕円面形状を有する放射鏡を、その一方の焦点が上
記溶湯の通流位jfVc<るよう配置せしめると共に、
この反射鏡の他方の焦点には受信アンテナを配設し、こ
れら反射鏡と受信アンテナを用いて上記マイクロ波帯の
熱放射エネルギの変化を遠隔より測定しスラグの流出検
知することを特徴とするスラグ流出検知方法。
(1) The outflow of slag when the molten metal flows from one container to another with all nozzles valved is captured by the thermal radiation energy in the microwave band emitted from the molten metal flowing through the nozzle. , a method for detecting slag outflow from the change in radiant energy described above due to the difference in emissivity between molten steel and slag.
Then, a radiation mirror having an ellipsoidal shape is arranged so that one focal point thereof is at the flow point of the molten metal jfVc<, and
A receiving antenna is disposed at the other focal point of the reflecting mirror, and the reflecting mirror and receiving antenna are used to remotely measure changes in the thermal radiation energy in the microwave band to detect slag outflow. Slag outflow detection method.
JP11142383A 1983-06-20 1983-06-20 Detection of slag outflow Pending JPS603955A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11142383A JPS603955A (en) 1983-06-20 1983-06-20 Detection of slag outflow
EP84304142A EP0132296B1 (en) 1983-06-20 1984-06-19 Apparatus for detecting slag outflow
DE8484304142T DE3462858D1 (en) 1983-06-20 1984-06-19 Apparatus for detecting slag outflow
US06/861,110 US4693614A (en) 1983-06-20 1986-05-06 Apparatus for detecting slag outflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142383A JPS603955A (en) 1983-06-20 1983-06-20 Detection of slag outflow

Publications (1)

Publication Number Publication Date
JPS603955A true JPS603955A (en) 1985-01-10

Family

ID=14560798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142383A Pending JPS603955A (en) 1983-06-20 1983-06-20 Detection of slag outflow

Country Status (1)

Country Link
JP (1) JPS603955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028033A (en) * 1988-03-09 1991-07-02 Kawasaki Steel Corporation Process for detecting outflow of slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028033A (en) * 1988-03-09 1991-07-02 Kawasaki Steel Corporation Process for detecting outflow of slag

Similar Documents

Publication Publication Date Title
RU2155948C2 (en) Probe submerged in melt of metal
EP1893959B1 (en) Device for continuous temperature measurement of molten steel in the tundish using an infra-red pyrometer
CN108225847B (en) Direct analysis sampler with heat sink
BE1020791A3 (en) METHOD AND DEVICE FOR MEASURING THE LEVELS OF CAST IRON AND DAIRY IN A HIGH-FURNACE
US4693614A (en) Apparatus for detecting slag outflow
KR20010032569A (en) A sampling device for thermal analysis
JP6574225B2 (en) Slag sampling equipment
JPS603955A (en) Detection of slag outflow
US3577886A (en) Device for immersion in molten material to sample and/or measure temperature
JPS603956A (en) Detection of slag outflow
US3364745A (en) Apparatus and method of measuring molten metal temperature
JP3358457B2 (en) Method and apparatus for predicting slag outflow of molten steel ladle
JPS5935710B2 (en) Slag detection method
JPH0224513Y2 (en)
JPH0234265B2 (en)
GB2120490A (en) Surface level of molten metal
JPH0481734B2 (en)
JPS6347409Y2 (en)
JPH05248959A (en) Continuous temperature measuring device for molten metal
BE1001104A5 (en) PROBE IMMERSION a molten metal bath.
JP2011183445A (en) Method for measuring the surface temperature of slab and slab surface temperature measuring apparatus
JPS62225913A (en) Method for measuring surface level of molten steel
CN217483621U (en) Radar level meter device for high-temperature scene
JPS6168520A (en) Microwave type level meter
JPS5822922A (en) Molten metal level gauge by microwave