JPS6039459B2 - Bumping prevention method during continuous or semi-continuous casting - Google Patents

Bumping prevention method during continuous or semi-continuous casting

Info

Publication number
JPS6039459B2
JPS6039459B2 JP16322581A JP16322581A JPS6039459B2 JP S6039459 B2 JPS6039459 B2 JP S6039459B2 JP 16322581 A JP16322581 A JP 16322581A JP 16322581 A JP16322581 A JP 16322581A JP S6039459 B2 JPS6039459 B2 JP S6039459B2
Authority
JP
Japan
Prior art keywords
metal
coin
casting
continuous
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16322581A
Other languages
Japanese (ja)
Other versions
JPS5865545A (en
Inventor
寿 高田
孝道 伊藤
敏正 坂本
正雄 平井
徹 高橋
芳宏 美蔦
裕 柴田
克之 吉川
優一 安堂
健 島内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16322581A priority Critical patent/JPS6039459B2/en
Publication of JPS5865545A publication Critical patent/JPS5865545A/en
Publication of JPS6039459B2 publication Critical patent/JPS6039459B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/08Accessories for starting the casting procedure
    • B22D11/088Means for sealing the starter bar head in the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続又は半連続鋳造時のバンピング防止法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing bumping during continuous or semi-continuous casting.

AIやCu等の金属溶湯を連続又は半連続鋳造(以下単
に連続鎌造という)する方法として広く利用されている
のは、第1図(概略縦断面説明図)の様な方法である。
A widely used method for continuous or semi-continuous casting (hereinafter simply referred to as continuous casting) of molten metals such as AI and Cu is the method shown in FIG. 1 (schematic vertical cross-sectional view).

即ち鋳造開始時には鋳型1内に底金(或いはダミーバー
)2と称される金属製ブロックを挿入し、この中に、鋳
造樋3からノズル4を通して金属溶傷Mを鋳込み、適正
な凝固殻を形成させながら底金2を所定速度で降下させ
る。ことにDC鋳造法では鋳型1の下端部に穴(又はス
リット)laを穿設し、凝固した銭塊の表面に鋳型冷却
水を直接かけることによって稀塊の冷却を促進している
。また底金2の上面は、法傷初期の金属溶湯が溜り易く
且つ凝固殻が形成され易くすると共に銭魂を鋳型1内か
ら抜出し易くする為、図示した様に凹面状に形成するの
が一般的である。ところがこの様な凹面状の底金を使用
した場合、以下に述べる様な問題がいよいよ発生する。
即ち稀造開始直後底金2の上部で凝固した凝固殻は、第
2図に示す如く凝固及び冷却による収縮(以下単に収縮
という)によって上側へ反り上り、底金2と鉾城底部の
間に隙間Sができる。その為鋳型1から放出された冷却
水が直薮或いは鉾塊表面を伝ってこの隙間Sへ流入する
が、この時点では銭塊の下面及び腰金2の表面が十分に
冷却しておらず冷却水が狭い隙間S内で急激に沸騰或い
は気化して爆発的な体積膨張が起こる。この操発現象が
連続的に起こる結果銭塊が上下、左右に振動し、はなは
だしい場合には飛び跳ねる様な状況を呈する。この様な
現象は所謂バンピソグと呼ばれ、鋳型1内で形成されつ
つある薄い脆弱な凝固殻が機械的に破壊されて湯洩れ等
の重大事故を誘発することがある。また鏡塊と底金の相
対的位置がずれて真直ぐな銭塊が得られなくなり、その
後の頭底部切捨て及び面削工程で歩蟹りを低下させる大
きな原因になる。しかも振動等によって銭魂の凝固組織
が変化し、銭塊割れ或いは傷境やメニスカス近傍の酸化
物の落下による酸化物の巻込み等、銭塊自体の品質も著
しく劣化させる。この様な問題を回避する為、従来は冷
却水量の減少、鋳造速度の低下等、主として鋳造条件を
制御して処理していたが、生産性の低下が生じしかもバ
ンピング現象を完全に防止することもできなかった。ま
た特公昭51−9168号に開示されている如く底金に
排水用ドレンを設けて前記隙間に流入した冷却水及び蒸
気を抜き出す方法も知られているが、底金の形状が複雑
になるという難点がある。また比較的小径のビレット等
を鋳造する場合には、底金表面に蟻溝若しくはボルト状
の突起を形成しておいて銭塊に鋳ぐるませ、鏡塊と底金
を相互に固定することによって隙間が生じない様にする
ことも行なわれている。
That is, at the start of casting, a metal block called a bottom metal (or dummy bar) 2 is inserted into the mold 1, and a metal melt M is cast into this through a nozzle 4 from a casting gutter 3 to form an appropriate solidified shell. While doing so, the bottom metal 2 is lowered at a predetermined speed. In particular, in the DC casting method, a hole (or slit) la is bored in the lower end of the mold 1, and mold cooling water is directly applied to the surface of the solidified coin coin to promote cooling of the coin coin. In addition, the upper surface of the base metal 2 is generally formed into a concave shape as shown in the figure, in order to make it easier for the molten metal to accumulate in the early stages of damage and to form a solidified shell, as well as to make it easier to extract the Zentama from the mold 1. It is true. However, when such a concave bottom plate is used, the following problems occur.
That is, the solidified shell solidified at the top of the bottom metal 2 immediately after the start of rare production warps upward due to contraction (hereinafter simply referred to as contraction) due to solidification and cooling, as shown in Figure 2, and forms a part between the bottom metal 2 and the bottom of the hoko castle. A gap S is created. For this reason, the cooling water released from the mold 1 flows along the surface of the coin coin or the float block and flows into this gap S, but at this point, the lower surface of the coin coin and the surface of the waist metal 2 have not been sufficiently cooled, and the cooling water flows into the gap S. rapidly boils or vaporizes within the narrow gap S, causing explosive volumetric expansion. As a result of this continuous firing phenomenon, the coin coin vibrates up and down, left and right, and in extreme cases, it appears to bounce. Such a phenomenon is called bumpisog, and the thin, brittle solidified shell that is being formed within the mold 1 is mechanically destroyed, which may lead to serious accidents such as leakage. In addition, the relative positions of the mirror block and the base metal are misaligned, making it impossible to obtain a straight coin coin, and this becomes a major cause of a decrease in walking speed in the subsequent cutting and shaving processes. Moreover, the coagulation structure of the coin coin changes due to vibrations, etc., and the quality of the coin coin itself is significantly deteriorated, such as cracking of the coin coin or entrainment of oxide due to fall of oxide near the scar or meniscus. In order to avoid such problems, conventional methods mainly controlled casting conditions, such as reducing the amount of cooling water and slowing down the casting speed, but this resulted in a decrease in productivity and it was difficult to completely prevent the bumping phenomenon. I couldn't do it either. There is also a known method, as disclosed in Japanese Patent Publication No. 51-9168, in which the bottom metal is provided with a drainage drain to extract the cooling water and steam that have flowed into the gap, but this method requires a complicated shape of the bottom metal. There are some difficulties. In addition, when casting relatively small diameter billets, dovetail grooves or bolt-like protrusions are formed on the surface of the bottom metal and cast into the coin coin, and the mirror block and bottom metal are fixed to each other. Efforts are also being made to prevent gaps from forming.

ところがこの方法では冷却凝固時の収縮力を銭ぐるみ部
で拘束している為、残留応力が発生したら銭ぐるみ部を
起点に割れを起こすことがあり、或いは銭塊の鋳型から
の円滑な抜き出しが困難になることもある。しかも鋳造
終了後は銭塊と底金との離脱に手数を要したりまた底金
とその都度成形しなければならない場合が発生する等の
問題がある。本発明者等は上記の様な事情に着目し、蟻
溝や突起を設けない表面の滑らかな底金を使用し且つ前
述の様なバンピング現象を確実に防止し得る様な技術を
確立すべ〈研究を進めてきた。
However, in this method, the shrinkage force during cooling and solidification is restrained by the coin holder, so if residual stress occurs, cracks may occur starting from the coin holder, or the coin may not be pulled out smoothly from the mold. It can be difficult. Moreover, there are problems such as it takes time and effort to separate the coin coins from the bottom coins after the coin is minted, and the bottom coins may have to be shaped each time. The inventors of the present invention have focused on the above-mentioned circumstances, and have established a technique that uses a bottom metal with a smooth surface without dovetail grooves or protrusions, and that can reliably prevent the bumping phenomenon described above. I have been conducting research.

本発明はかかる研究の結果完成されたものであって、そ
の構成は、縦型連続鋳造を開始するに当り、底金の鋳造
材との接触面に環状金属部村を配置し、底金面に当接し
た鋳造材が前記金属部材の一部と融合した後凝固し、鋳
造材の凝固収縮に伴って環状金属部材の非融合部を鋳造
材側へ引き上げることにより、前記非溶融部が立上つて
鋳造材と底金の間に冷却水流入防止壁を形成させるとこ
ろに要旨があり、これによりバンピング現象を確実に防
止することに成効した。以下実施例を示す図面に基づい
て本発明の構成及び作用効果を説明するが、下記は代表
例であって本発明を限定する性質のものではなく、前・
後記の趣旨に適合し得る範囲で鋳型や底金の形状や構造
等を変更することはすべて本発明の範囲に含まれる。
The present invention was completed as a result of such research, and its configuration is such that, when starting vertical continuous casting, an annular metal part is placed on the contact surface of the bottom metal with the casting material, and the bottom metal surface is The cast material in contact with the annular metal member solidifies after being fused with a part of the metal member, and as the cast material solidifies and shrinks, the unfused portion of the annular metal member is pulled up toward the cast material, causing the unfused portion to stand up. The key point is to form a cooling water inflow prevention wall between the cast material and the bottom metal, which is effective in reliably preventing the bumping phenomenon. The configuration and effects of the present invention will be explained below based on drawings showing examples, but the following are representative examples and do not limit the present invention.
All changes in the shape, structure, etc. of the mold and the bottom metal are included within the scope of the present invention to the extent that the purpose described below is met.

また本発明は湾曲型連続鋳造の場合にも適用可能な方法
であり、本明細書における縦型連続鋳造とは湾曲型連続
鋳造を含めた広い意味に解すべきである。第3〜5図は
本発明の実施例を示す概略縦断面説明図で、鋳型1及び
底金2の構造及び銭塊の抜き出し手順は第1,2図の例
と実質的に同一である。
The present invention is also a method applicable to curved continuous casting, and the term "vertical continuous casting" in this specification should be understood in a broad sense to include curved continuous casting. 3 to 5 are schematic vertical cross-sectional explanatory views showing an embodiment of the present invention, and the structure of the mold 1 and the bottom metal 2 and the procedure for extracting the coin coins are substantially the same as the examples shown in FIGS. 1 and 2.

但し本例では底金2の上方部外周を取り囲む様に筒状の
金属箔5を被装し、且つ金属箔5の上方部を少なくとも
底金2の上縁よりも上方へ延在させつつ上縁面側へ折り
込んだ状態で注入を開始する(第3図)。金属箔5の材
質は特に制限されないが、金属熔傷Mの融点と同程度か
或いはそれよりも若干低融点の材料を使用する場合は、
鋳造が開始された溶湯が底金2上に入ると、底金周綾部
の金属箔5は金属熔濠Mに−旦融合された後金属総湯M
と共に凝固する(第4図)。尚金属箔5として金属塔湯
Mよりも高融点の材料を使用する場合は金属箔5の上端
部を稼ぐるんだ状態で金属溶湯Mが凝固する。次いで底
金2を所定速度で降下させて綾塊を抜き出していくと、
前述の如く銭塊は収縮して底金2の表面との間に隙間S
ができるが、第5図に示す如く底金2の外周側に垂れ下
がらせた筒状金属箔5の非溶融部は、鋳塊のたわみに応
じて上方にスライドし、隙間Sの外周側にスカート状の
遮断膜を形成する。従って銭塊の外周側に冷却水を噴出
させても、冷却水は金属箔5に遮断されて隙間S内へ流
入する恐れがなく、バンピング現象を完全に防止するこ
とができる。ところで上記の方法であれば隙間S内への
冷却水の流入を防止することができ、バンピング防止の
目的が達成されるが、実際には鋳型1と底金2との隙間
が狭い為相当薄肉の金属箔5を使用しなければならす、
底金2への被装時或いは冷却水が衝突した時点で金属箔
5が破れて冷却水遮断効果が不十分になる恐れがある。
第6〜8図はこの様な問題を発生させない実施例を示す
概略縦断説明図で、底金2の上面周縁部に環状の垂直溝
6を形成し、これに轍状の遮断板7を遊鼓すると共に上
端は底金2の表面よりも上方に突出させておく(第6図
)。
However, in this example, the cylindrical metal foil 5 is covered so as to surround the outer periphery of the upper part of the bottom plate 2, and the upper part of the metal foil 5 is extended at least above the upper edge of the bottom plate 2. Start injection with the tube folded toward the edge (Figure 3). The material of the metal foil 5 is not particularly limited, but when using a material with a melting point similar to or slightly lower than the melting point of the metal scar M,
When the molten metal from which casting has started enters the bottom metal 2, the metal foil 5 on the periphery of the bottom metal is fused to the metal molten moat M, and then transferred to the metal molten metal M.
It also coagulates (Fig. 4). If a material having a higher melting point than the metal tower M is used as the metal foil 5, the molten metal M solidifies with the upper end of the metal foil 5 remaining loose. Next, when the bottom metal 2 is lowered at a predetermined speed and the twill lump is extracted,
As mentioned above, the coin coin shrinks and there is a gap S between it and the surface of the bottom coin 2.
However, as shown in FIG. 5, the unmelted part of the cylindrical metal foil 5 hanging down on the outer circumference of the bottom plate 2 slides upward in response to the deflection of the ingot, and the unfused part hangs down on the outer circumference of the gap S. Forms a skirt-like barrier membrane. Therefore, even if the cooling water is spouted to the outer circumferential side of the coin coin, there is no fear that the cooling water will be blocked by the metal foil 5 and flow into the gap S, and the bumping phenomenon can be completely prevented. By the way, with the above method, it is possible to prevent the cooling water from flowing into the gap S, and the purpose of preventing bumping is achieved, but in reality, the gap between the mold 1 and the bottom metal 2 is narrow, so the wall is quite thin. metal foil 5 must be used,
When the metal foil 5 is applied to the bottom metal 2 or when the cooling water collides with it, the metal foil 5 may be torn and the cooling water blocking effect may become insufficient.
Figures 6 to 8 are schematic longitudinal sectional views showing an embodiment that does not cause such problems, in which an annular vertical groove 6 is formed on the periphery of the upper surface of the bottom plate 2, and a rut-shaped blocking plate 7 is inserted into the groove. At the same time, the upper end is made to protrude above the surface of the bottom plate 2 (FIG. 6).

遮断板7の材質は第6〜8図で使用した金属箔5の材質
と同様である。この底金2を鋳型1内に装入して金属溶
傷Mを鋳込むと、底金2の上端突出部が金属熔濠Mと一
旦融合した後一体になって凝固し或いは金属熔傷Mが底
金2の上端突出部を銭ぐるんだ状態で凝固する(第7図
)。次いで底金2を所定速度で降下させて銭塊を抜き出
すが、このとき第8図の様に鰭塊が収縮いまじめており
、底金2との間に隙間Sができるが、遮断板7は隙間S
が拡大するにつれて環状溝6内を上方にスライドし、隙
間Sの外周側に遮断壁を形成するから、隙間S内への冷
却水の流入が防止されバンピングを防止することができ
る。この場合遮断板7としては相当厚肉のものを使用す
るから、金属箔を使用したときの様に装着時或いは冷却
水の噴射圧によって破れる恐れがなく、バンピングを確
実に防止することができる。尚環状溝6と筒状遮断板7
は鍵造時に遮断板7が容易に上方へスライドし得る程度
の鉄め合いにしておく必要があるが、両者の隙間が大き
すぎると冷却水が環状溝6をまわり込んで隙間S内へ流
入する恐れがあるので目一杯の隙間で遊鉄するのがよい
。また環状溝6の深さ及び遮断板7の高さは、銭塊の収
縮によって生じる隙間Sの最大長さよりも若干長めにす
べきことは言うまでもない。第9図は底金2における遮
断板7校合部の外周縁側に下り勾配の傾斜面2′を形成
し、冷却水がこの部分に溜るのを防止したもので、冷却
水が環状雌6を回り込んで隙間S内へ流入するのを防止
するうえで有効である。
The material of the shielding plate 7 is the same as that of the metal foil 5 used in FIGS. 6-8. When this bottom metal 2 is inserted into the mold 1 and the metal flaw M is cast, the upper end protrusion of the bottom metal 2 is once fused with the metal flaw M and solidified as one, or the metal flaw M is solidifies while encircling the upper protrusion of the bottom metal 2 (Fig. 7). Next, the bottom coin 2 is lowered at a predetermined speed to pull out the coin coin, but at this time, as shown in FIG. is the gap S
As it expands, it slides upward in the annular groove 6 and forms a blocking wall on the outer circumferential side of the gap S, which prevents cooling water from flowing into the gap S and prevents bumping. In this case, since the shielding plate 7 is made of a fairly thick material, there is no fear that it will be torn during installation or by the jet pressure of cooling water, unlike when metal foil is used, and bumping can be reliably prevented. Furthermore, the annular groove 6 and the cylindrical blocking plate 7
It is necessary to have an iron fitting that allows the shielding plate 7 to easily slide upward during key making, but if the gap between the two is too large, cooling water will go around the annular groove 6 and flow into the gap S. To prevent this, it is better to use the loose iron with as much clearance as possible. It goes without saying that the depth of the annular groove 6 and the height of the blocking plate 7 should be slightly longer than the maximum length of the gap S caused by the contraction of the coin coin. In Fig. 9, a downwardly sloping slope 2' is formed on the outer peripheral edge side of the connecting part of the shielding plate 7 in the bottom metal 2 to prevent cooling water from collecting in this part, and the cooling water circulates around the annular female 6. This is effective in preventing the liquid from flowing into the gap S.

また場合によっては第9図に破線で示した如く環状確6
の下面に抜出孔8を形成しておき、溝6内に流入した冷
却水を外部へ排出させることも有効である。遮断板7は
第10図に示す如く一体物として成形したものが最も一
般的であるが、第11,12図に示す如く1組の分割片
を組付けて遮断板7を礎成することもでき、この場合は
分割片岡志の組付け部から冷却水が侵入するのを防止す
る為図示した様なコーナ板7′を挿入することが望まれ
る。また図例の様な遮断板7を底金2の上面から相当高
〈突設ごせたときは、鋳造開始時に金属溶濠Mが遮断板
7に堰止められ、鋳型内全域に金属落陽Mが行き亘る時
間が遅れるという不都合を生じる恐れがあるが、第13
,14図に示す如く遮断板7の上方に貫通孔7aや切込
み7b等を形成しておけばこの様な不都合も容易に解消
される。第15図は本発明の更に他の実施例を示すもの
で、底金部分を示す一部破断見取り図、第16図は遮断
板7を遊舷した状態を示す縦断面図で、底金2の外周側
に適当な隙間S′をあげて枠体9を配置すると共に連結
リプ10で底金2と一体的に固定し、全体として底金と
する。
In addition, in some cases, as shown by the broken line in FIG.
It is also effective to form an extraction hole 8 in the lower surface of the groove 6 and discharge the cooling water that has flowed into the groove 6 to the outside. The blocking plate 7 is most commonly molded as a single piece as shown in FIG. 10, but the blocking plate 7 may also be formed by assembling a set of divided pieces as shown in FIGS. 11 and 12. In this case, it is desirable to insert a corner plate 7' as shown in the figure in order to prevent cooling water from entering from the assembly portion of the divided Kataokashi. In addition, when the shielding plate 7 as shown in the figure is installed at a considerable height from the top surface of the base plate 2, the metal weld moat M is dammed by the shielding plate 7 at the start of casting, and the metal melting moat M is dammed over the entire area inside the mold. There is a risk of inconvenience caused by a delay in the time it takes for the
, 14, if a through hole 7a, a notch 7b, etc. are formed above the blocking plate 7, such inconveniences can be easily solved. FIG. 15 shows still another embodiment of the present invention. FIG. 16 is a partially cutaway diagram showing the bottom metal part, and FIG. A frame body 9 is arranged with an appropriate gap S' on the outer circumferential side, and is integrally fixed to the bottom metal 2 with a connecting lip 10, thereby forming the bottom metal as a whole.

そして隙間S′に遮断板7を遊賊する。この場合遮断板
7と枠材9又は底金2の間に空隙があるとこの空隙から
金属溶濠Mが洩れ出す恐れがあるので、空隙S1の上方
を耐熱性のシール材11で封鎖しておくべきである。こ
の様な構成であれば冷却水が空隙S′内へ侵入した場合
でも下方の関口部から流出するので、遮断板7の内側へ
冷却水が侵入する恐れはない。尚上記図例では何れも矩
形状のスラブを連続鋳造する場合を示したが、勿論これ
に限定される訳ではなく、円形若しくは楕円形等のビレ
ットを連続鋳造する場合にも同様に適用することができ
る。本発明は概略以上の様に構成されており、比較的簡
単な操作でバソピング現象を未然に防止することができ
、鋳造開始時に生じる湯洩れ等の事故を解消し得ること
になった。
Then, the blocking plate 7 is inserted into the gap S'. In this case, if there is a gap between the shielding plate 7 and the frame material 9 or the bottom metal 2, there is a risk that the molten metal moat M will leak from this gap, so the upper part of the gap S1 is sealed with a heat-resistant sealing material 11. should be kept. With such a configuration, even if the cooling water enters into the gap S', it will flow out from the lower entrance, so there is no fear that the cooling water will enter the inside of the shielding plate 7. In addition, although the above-mentioned examples show cases in which rectangular slabs are continuously cast, the present invention is of course not limited to this, and can similarly be applied to cases in which circular or elliptical billets are continuously cast. I can do it. The present invention is roughly constructed as described above, and can prevent the bathoping phenomenon with relatively simple operations, and can eliminate accidents such as melt leakage that occur at the start of casting.

しかも鋳型内における落陽のゆれが殆んどなくなるから
湯境等の表面欠陥や酸化物の混入及び凝固組識の不均一
等が解消され、更には凝固時の銃塊の収縮も全く拘束さ
れないから鉢塊が割れを生じる恐れもなく、また凝固収
縮時の反りや曲りがほぼ均一になるから両削歩留りが向
上する等、多くの効果を得ることができる。
Furthermore, since there is almost no vibration caused by the rising sun inside the mold, surface defects such as hot water boundaries, contamination of oxides, uneven solidification structure, etc. are eliminated, and furthermore, the shrinkage of the gun mass during solidification is not restricted at all. There is no fear that the pot mass will crack, and since the warping and bending during solidification and shrinkage are almost uniform, many effects can be obtained, such as an improved double-cutting yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従釆の連続鋳造法を示す概略縦断面説明図
、第3〜8図は本発明の実施例を示す概略縦断面図、第
9図は底金及び環状滋の好適例を示す要部断面図、第1
0〜12図は遮断板を例示する見取り図、第13,14
図は遮断板の他の例を示す側面図、第15図は本発明の
他の実施例を示すもので底金を示す一部被断見取り図、
第16図は第15図の底金に遮断板を遊舷した状態を示
す断面図である。 1・…・・鋳型、2…・・・底金、3・・・・・・鋳造
樋、4・・・・・・注湯ノズル、5・・・・・・金属箔
、6・・・・・・環状溝、7・・・・・・遮断板、M・
…・・金属溶湯、S・・・・・・隙間。 第1図第2図 第3図 第4図 第5図 第6図 第了図 第8図 第9図 10図 第11図 第12図 第13図 第14図 第15図 第16図‐
Figures 1 and 2 are schematic vertical cross-sectional views showing the continuous casting method of the secondary tank, Figures 3 to 8 are schematic vertical cross-sectional views showing embodiments of the present invention, and Figure 9 is a preferred example of the bottom plate and the annular caster. 1st cross-sectional view of main parts showing
Figures 0 to 12 are sketch diagrams illustrating the blocking plate, 13th and 14th
FIG. 15 is a side view showing another example of the blocking plate; FIG. 15 is a partially cutaway sketch showing another embodiment of the present invention;
FIG. 16 is a cross-sectional view showing a state in which a blocking plate is placed loosely on the bottom plate of FIG. 15. 1... Mold, 2... Bottom metal, 3... Casting gutter, 4... Pouring nozzle, 5... Metal foil, 6... ...Annular groove, 7...Block plate, M.
...Molten metal, S...Gap. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16-

Claims (1)

【特許請求の範囲】[Claims] 1 縦型連続又は半連続鋳造を開始するに当り、底金の
鋳造材との接触面に環状金属部材を配置し、底金面に当
接した鋳造材が前記金属部材の一部と融合した後凝固し
、鋳造材の凝固収縮に伴つて環状金属部材の非溶融部を
鋳造材側へ引き上げることにより、前記非溶融部が立上
つて鋳造材と底金の間に冷却水流入防止壁を形成するこ
とを特徴とする連続又は半連続鋳造時のバンピング防止
法。
1. When starting vertical continuous or semi-continuous casting, an annular metal member is placed on the contact surface of the bottom metal with the casting material, and the casting material in contact with the bottom metal surface fuses with a part of the metal member. After solidification, as the cast material solidifies and shrinks, the unfused part of the annular metal member is pulled up toward the cast material, so that the unfused part stands up and creates a cooling water inflow prevention wall between the cast material and the bottom metal. A method for preventing bumping during continuous or semi-continuous casting, characterized by forming.
JP16322581A 1981-10-12 1981-10-12 Bumping prevention method during continuous or semi-continuous casting Expired JPS6039459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16322581A JPS6039459B2 (en) 1981-10-12 1981-10-12 Bumping prevention method during continuous or semi-continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16322581A JPS6039459B2 (en) 1981-10-12 1981-10-12 Bumping prevention method during continuous or semi-continuous casting

Publications (2)

Publication Number Publication Date
JPS5865545A JPS5865545A (en) 1983-04-19
JPS6039459B2 true JPS6039459B2 (en) 1985-09-06

Family

ID=15769690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16322581A Expired JPS6039459B2 (en) 1981-10-12 1981-10-12 Bumping prevention method during continuous or semi-continuous casting

Country Status (1)

Country Link
JP (1) JPS6039459B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1187563B (en) * 1985-05-10 1987-12-23 Danieli Off Mecc FALSE HEAD BAR FOR CONTINUOUS CASTING AND FALSA CONTINUOUS CASTING BAR ADOPTING SUCH PROTECTOR
FR2582970A1 (en) * 1985-05-29 1986-12-12 Proizv Ob Ura Leaktight device for the dummy bar in an ingot mould
AT401148B (en) * 1993-03-30 1996-06-25 Voest Alpine Ind Anlagen GASKET FOR A START-UP HEAD FOR USE IN A CONTINUOUS CASTING SYSTEM
US20170274446A1 (en) * 2016-03-25 2017-09-28 Novelis Inc. Liquid metal jet optimization in direct chill casting

Also Published As

Publication number Publication date
JPS5865545A (en) 1983-04-19

Similar Documents

Publication Publication Date Title
JP2668329B2 (en) Continuous casting equipment for rolling billets
US3520352A (en) Continuous casting mold having insulated portions
JPS6039459B2 (en) Bumping prevention method during continuous or semi-continuous casting
US4157110A (en) Method of producing ingots of unalloyed and alloyed steels
US3702631A (en) Apparatus for continuous casting of metal ingots
US3990498A (en) Method of continuous casting
US3448790A (en) Molds for electroslag refining
US2093024A (en) Ingot mold stool
DE3669449D1 (en) CONTINUOUS CASTING METHOD.
US2944310A (en) Method of continuous casting
US3702152A (en) Procedures and apparatus for continuous casting of metal ingots
JPS6222705B2 (en)
US1961529A (en) Casting ingots
US4040596A (en) Protective device for casting molds
JPS5917475Y2 (en) Bottom metal for continuous casting
JP2003311376A (en) Apparatus and method for casting metallic ingot
JPH08141703A (en) Production of ingot having shrinkage cavity in center part
EP0185099B2 (en) Mold for horizontal continuous casting molten metal into cast metals
JPH0575499B2 (en)
JPH0341878Y2 (en)
JPS633731Y2 (en)
JPS6132105B2 (en)
JPS636309B2 (en)
SU1740123A1 (en) Method and apparatus for continuous ingot casting
JPH0626753B2 (en) Metal continuous casting equipment