JPS6039121B2 - How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions - Google Patents

How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions

Info

Publication number
JPS6039121B2
JPS6039121B2 JP56183218A JP18321881A JPS6039121B2 JP S6039121 B2 JPS6039121 B2 JP S6039121B2 JP 56183218 A JP56183218 A JP 56183218A JP 18321881 A JP18321881 A JP 18321881A JP S6039121 B2 JPS6039121 B2 JP S6039121B2
Authority
JP
Japan
Prior art keywords
blast furnace
power generation
gas
furnace
generation equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56183218A
Other languages
Japanese (ja)
Other versions
JPS5884910A (en
Inventor
良雄 戸田
洋三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56183218A priority Critical patent/JPS6039121B2/en
Publication of JPS5884910A publication Critical patent/JPS5884910A/en
Publication of JPS6039121B2 publication Critical patent/JPS6039121B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は高炉の高圧操業に伴って排出される高炉ガスに
よって発電を行なう高炉ガスヱネルギ回収発電設備の運
転方法に関し、特に高炉スリップ発生などの炉況不安定
時においても運転を継続して行なう高炉ガスェネルギ回
収発電設備(以下高炉炉頂圧力回収発電設備とも言う)
の運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a blast furnace gas energy recovery power generation facility that generates power using blast furnace gas discharged during high-pressure operation of a blast furnace, and in particular, to a method for operating a blast furnace gas energy recovery power generation facility that can operate even when furnace conditions are unstable such as when blast furnace slip occurs. Continuous blast furnace gas energy recovery power generation equipment (hereinafter also referred to as blast furnace top pressure recovery power generation equipment)
This relates to how to drive a car.

周知のように、高炉の生産性を高めかつ燃料比の低下を
図るために、炉頂圧力を高めて行なう所譜高圧操業が一
般的になってきており、それに伴って高圧ガスェネルギ
の有効利用を図るうえから、高圧の高炉排ガスによりタ
ービン発電機を駆動して圧力ェネルギを電気ヱネルギと
して回収することが一般に行なわれるようになっている
As is well known, in order to increase the productivity of blast furnaces and reduce the fuel ratio, high-pressure operation in which the top pressure of the furnace is increased has become commonplace. For this purpose, it has become common practice to drive a turbine generator with high-pressure blast furnace exhaust gas and recover the pressure energy as electrical energy.

ところで、高炉炉頂圧力回収発電設備の運転は、火力発
電所におけるタービン発電機と同様にタービン入力条件
、つまりタービンの入口蒸気圧力や蒸気流量によって左
右されるが、高炉炉頂圧力回収発電設備におけるタービ
ンの入口ガス圧力あるいはガス流量は、高炉大スリップ
や中スリップあるいは減圧減風等高炉炉況によって頻繁
かつ大幅に変動し、本発電設備の危急停止を余儀なくさ
れている。すなわち、タービンへの入力ェネルギが過大
になったり、あるいは逆に過小になった場合、設備の保
護や発電機の電動機化などを防止するために、発電設備
を緊急停止している。これを高炉スリップ現象を例にと
って説明すると、スリップ発生と同時に炉頂圧力、ガス
発生量が急増し、発電出力はスリップ発生前の1.2〜
1.7倍程度まで急増するが、次の瞬間プリーダ弁が開
放し、次いでセプタン弁が全開するので、炉頂圧力およ
びガス発生量が激減し、その結果発電出力がこれにほぼ
比例して激減し、発電出力が霧あるいは負出力となる。
し兆蜂、炉頂圧力およびガス発生量が次第に元の状態に
回復するが、炉頂圧力回収発電設備は一般に、火力発電
設備に準拠して設備されており、したがって前記のよう
な高炉スリップ時におけるタービン入口ガス圧力低トリ
ップや高炉ガス流量低トリップ等は、火力発電設備にお
ける急激な蒸気圧力・蒸気流量低下あるいは真空低トリ
ップ等に対応し、その結果高炉スリップが発生すると、
逆電力1,2段、タービン入口ガス圧力低2段タービン
入力ガス流量低2段を検出し、直ちにタービン・発電機
トリップを行なわせて緊急停止しているのが通常である
。しかるに、高炉炉況の不調時には、大小の高炉スリッ
プが生じることは稀れではなく、それに伴って高炉ガス
流量の低下やガス圧力の低下等が比較的頻繁に起こるこ
とがあるが、前圧制御あるし、は流量制御方式を採用し
た従来の発電設備では、高炉スリップの発生の都度、前
述したように緊急停止を行なうことになり、しかも発電
設備が緊急停止した場合、原因調査や運転再開のための
連絡等に運転員が多大な労力と手間暇をかけているのが
現状であり、そのため復旧には、高炉スリップ1回当り
、少なくとも20〜3び分を要している。
By the way, the operation of blast furnace top pressure recovery power generation equipment is influenced by the turbine input conditions, that is, the turbine inlet steam pressure and steam flow rate, similar to the turbine generator in a thermal power plant. The gas pressure or gas flow rate at the inlet of the turbine frequently and significantly fluctuates depending on the conditions of the blast furnace, such as large blast furnace slip, medium slip, or reduced air pressure, forcing an emergency shutdown of the power generation equipment. That is, when the input energy to the turbine becomes too large or too small, the power generation equipment is brought to an emergency stop in order to protect the equipment and prevent the generator from becoming an electric motor. To explain this using the blast furnace slip phenomenon as an example, as soon as the slip occurs, the furnace top pressure and the amount of gas generated increase rapidly, and the power generation output decreases from 1.2 to 1.2
The pressure increases rapidly to about 1.7 times, but the next moment the pleeder valve opens, and then the septan valve opens fully, so the furnace top pressure and the amount of gas generated drastically decrease, and as a result, the power generation output decreases almost proportionally. However, the power output becomes foggy or negative.
However, the top pressure recovery power generation equipment is generally installed in accordance with thermal power generation equipment, and therefore the furnace top pressure and gas generation amount will gradually recover to their original state. Turbine inlet gas pressure low trips and blast furnace gas flow rate low trips, etc. in , correspond to sudden steam pressure/steam flow rate drops or vacuum low trips in thermal power generation equipment, and as a result, when blast furnace slip occurs,
Normally, the first and second stages of reverse power, the second stage of low turbine inlet gas pressure, and the second stage of low turbine input gas flow rate are detected and the turbine/generator is immediately tripped for an emergency stop. However, when blast furnace furnace conditions are poor, it is not uncommon for blast furnace slips of various sizes to occur, and as a result, reductions in blast furnace gas flow rate and gas pressure may occur relatively frequently. However, with conventional power generation equipment that uses a flow rate control method, an emergency shutdown is required each time blast furnace slip occurs, as described above.Moreover, when the power generation equipment makes an emergency shutdown, it is difficult to investigate the cause and restart operations. Currently, operators are spending a great deal of effort and time in communication, etc., and as a result, it takes at least 20 to 3 hours for each blast furnace slip to recover.

このように従釆の高炉炉頂圧力回収発電設備の運転方法
では、緊急停止する場合が多く、しかもその復旧に時間
を要するので、稼動率が低く、また電力供給の信頼性に
劣る等の問題があった。本発明は上記の事情に鑑みてな
されたもので、高炉炉況に伴う緊急停止を可及的に少な
くし、稼動率および発電供給信頼度の向上を図ることの
できる高炉ガスェネルギ回収発電設備の運転方法を提供
することを目的とするものである。
As described above, with the operating method of the blast furnace top pressure recovery power generation equipment, there are many cases where emergency shutdowns are required, and it takes time to restore them, resulting in problems such as low operating rates and poor reliability of power supply. was there. The present invention has been made in view of the above circumstances, and is capable of operating blast furnace gas energy recovery power generation equipment that can minimize emergency shutdowns due to blast furnace furnace conditions and improve operating efficiency and power supply reliability. The purpose is to provide a method.

すなわち本発明者等が鋭意検討した結果、タービン入口
ガス圧力低2段トリップおよび高炉ガス流量低2段トリ
ップを惹起する高炉スリップは通常20〜5の砂・程度
で回復することに着目し、時限タイマーを用いてタービ
ン入口ガス圧力低2段あるいは高炉ガス流量低2段発生
後5〜2の砂、程度継電器を閉止・ロックして緊急停止
信号の送出を停止し、かつその間の保護および保安対策
を講ずれば、発電設備を緊急停止させることなく継続運
転させることができ、かつ時限タイマーの設定時間を適
宜選定することにより、タービン入口ガス圧力低2段あ
るいは高炉ガス流量低2段が設定時間を超えて継続して
いる場合には、重故障と判定して運転を停止し、設備の
保護を図ることができるとの認識を得、この発明をなす
に到ったのである。
In other words, as a result of intensive study by the present inventors, we focused on the fact that the blast furnace slip that causes the turbine inlet gas pressure low 2-stage trip and the blast furnace gas flow rate low 2-stage trip usually recovers at a sand level of 20 to 5. Use a timer to close and lock the sand relay at 5 to 2 degrees after the turbine inlet gas pressure low stage 2 or blast furnace gas flow rate low stage 2 occurs to stop sending out the emergency stop signal, and take protection and security measures during that time. By taking these steps, the power generation equipment can be operated continuously without an emergency stop, and by appropriately selecting the set time of the timer, the turbine inlet gas pressure low stage 2 or the blast furnace gas flow rate low stage 2 can be maintained for the set time. This invention was developed based on the recognition that if the failure continues beyond this time, it can be determined to be a serious failure and the operation can be stopped to protect the equipment.

以下本発明をより詳細に説明すると、本発明は高炉スリ
ップ時等高炉炉況不安定時に、継電器を数秒ないし十数
秒閉止・ロックして運転を継続する方法であるが、その
際の保護・保安対策として以下に述べる対策を講ずる。
To explain the present invention in more detail below, the present invention is a method of continuing operation by closing and locking a relay for several seconds to tens of seconds when the blast furnace condition is unstable such as when a blast furnace slips. As a countermeasure, take the following measures.

まず、高炉ガス流量低下とタービン入口ガス圧力低下に
伴う入力低下に対しての保護対策としては、逆電力継電
器を定格出力の2〜10%の範囲の最適なりレー整定で
20〜6頂砂程度時限タイマーで閉止・ロックして対処
するとともに、第2の逆電力継電器を追加装備し、その
第2の逆電力継電器により前記第1の逆電力継電器の保
護範囲以外を保護するようにし、その第2の逆電力継電
器を、定格出力の15〜60%の範囲の最適なりレー整
定で定格出力の30〜110%の範囲で限時トリップさ
せるものとする。なお、この第2の逆電力の検出方法と
しては、タービンガバナー弁を制御する電気ガバナー内
の発電機出力信号を比較器で比較検出する方法でも同等
の作用をなさしめることができる。第1および第2の逆
電力継電器を以上のように整定することにより、タービ
インベラ或は、回転羽根および発電機の風損や軸受損分
の総和に相当する継電器整定することにより後備保護と
することができるとともに、これらの逆電力継電器は、
高炉ガスというダストおよびミスト分を多量に含有した
ガスの流入に伴う電動機化と、タービンへ異物が流入し
てィンベラあるいは回転羽根の破損事故や界磁喪失事故
に対する保護継電器としても作用する。また、発電機お
よび励磁装置側の対策として、高炉スリップの如き急峻
な大入力とそれに続く入力激減による電動機化に対して
も発電機短絡比を0.45〜0.56程度に設計してあ
るので、急峻な大入力に対して十分な定態安定度(定態
安定極限電力とも言う)を保持させることが出釆る。加
えて励磁器の運用面は、通常AQR運転もしくはAPF
R運転をして比較的増励磁(定格力率程度又はそれ以上
)をし、もって安態安定度を補強すると同時に、配電系
統に無効電力を供給することとする。なおここで、AQ
R運転とは一般に一定励磁運転Cを意味するが広義には
無効電力Qと有効電力Pとの間にQ=(士bP)十C(
b,C;定数)の関係を保って運転することをいい、ま
たAPFR運転とはQ=bPの関係を保って運転するこ
とをし、つoなお前述の場合、発電機容量に十分余裕の
ある時を説明したが、もしも、発電機容量に余裕がなく
一定励磁運転(や一定力率運転)でほぼ100%力率に
て運転していて増励磁すると出力限界曲線範囲外となる
場合は、高炉スリップ開始を検出(図示せず)して、出
力増加時のみ遠応励磁や定格力率程度に相当する励磁を
1定時限の間パルス状にして強励磁を与えて定態安定度
を補強してもよい。
First, as a protective measure against the input drop caused by the drop in blast furnace gas flow rate and the drop in turbine inlet gas pressure, a reverse power relay is installed at an optimum relay setting of 20 to 6 peaks in the range of 2 to 10% of the rated output. In addition to closing and locking with a timer, a second reverse power relay is additionally installed, and the second reverse power relay protects areas other than the protection range of the first reverse power relay. The reverse power relay of No. 2 shall be timed tripped in the range of 30 to 110% of the rated output with an optimum relay setting in the range of 15 to 60% of the rated output. Note that as the second reverse power detection method, the same effect can be obtained by comparing and detecting the generator output signal in the electric governor that controls the turbine governor valve using a comparator. By setting the first and second reverse power relays as described above, backup protection is provided by setting the relays corresponding to the sum of the wind losses and bearing losses of the turbine inverter or rotating blades and generator. These reverse power relays can also
It also functions as a protective relay to protect against the inflow of blast furnace gas, a gas containing a large amount of dust and mist, as well as damage to the impeller or rotary blades or loss of field caused by foreign matter entering the turbine. In addition, as a countermeasure for the generator and exciter, the short-circuit ratio of the generator is designed to be around 0.45 to 0.56 in order to protect against sudden large inputs such as blast furnace slips and subsequent drastic decreases in input. Therefore, it is possible to maintain sufficient steady-state stability (also referred to as steady-state stable limit power) against steep large inputs. In addition, the exciter operation is usually AQR operation or APF operation.
R operation will be performed to relatively increase the excitation (at or above the rated power factor), thereby reinforcing the state stability and at the same time supplying reactive power to the power distribution system. In addition, here, AQ
R operation generally means constant excitation operation C, but in a broader sense, the relationship between reactive power Q and active power P is Q=(shibP)0C(
b, C: constant), and APFR operation means operating while maintaining the relationship Q = bP. I explained a certain case, but if the generator does not have enough capacity and is operating at almost 100% power factor in constant excitation operation (or constant power factor operation), if you increase the excitation, it will fall outside the output limit curve range. , the start of blast furnace slip is detected (not shown), and steady state stability is achieved by applying strong excitation by pulsing distant excitation or excitation equivalent to the rated power factor for one fixed time period only when the output increases. May be reinforced.

さらに、急激な入力減少には、定格出力の5〜20%の
出力点でAVR運転へ切替える機能を付加して運転中に
電力系統の短絡・地絡事故発生に対しても過渡安定度(
過渡安定極限電力とも言う)を向上させる。上述の各保
護・保安対策を講ずれば、最近の静止励磁系の(過渡)
応答性の向上、発電設備機器の高信頼性や高性能化、さ
らにはタービンガバナー系の制御性の向上、油圧制御機
器の性能向上などと相まって、高炉スリップ等の悪条件
にも十分耐え、継続運転をすることができる。
In addition, we have added a function to switch to AVR operation at an output point of 5 to 20% of the rated output in case of a sudden decrease in input, and we have also added a function to ensure transient stability (
(also known as transient stability limit power). If the above protection and security measures are taken, the (transient)
Coupled with improved responsiveness, higher reliability and higher performance of power generation equipment, improved controllability of the turbine governor system, and improved performance of hydraulic control equipment, it can withstand adverse conditions such as blast furnace slip and continue to operate. Can drive.

つぎに、本発明の実施例を添付の図面を参照して説明す
ると、第1図は高炉排ガス系統を示し、高炉1から発生
する高圧排ガスを、乾式集塵器2および湿式集塵器3を
順次経てセプタム弁装置4に導き、このセプタム弁装置
4を構成する手動弁4M、レンジ弁4Rおよびコントロ
ール弁4Cにより所定の炉頂圧力Psに制御・調整する
と共に減圧し、しかる後電気集塵器5を経てガスホルダ
ー6から各所に分配するようになっている。
Next, an embodiment of the present invention will be described with reference to the attached drawings. FIG. 1 shows a blast furnace exhaust gas system, and the high pressure exhaust gas generated from the blast furnace 1 is passed through a dry dust collector 2 and a wet dust collector 3. The furnace top pressure is controlled and adjusted to a predetermined pressure Ps by the manual valve 4M, range valve 4R, and control valve 4C that constitute this septum valve device 4, and the pressure is reduced, and then the pressure is reduced to an electrostatic precipitator. 5 and then distributed to various locations from a gas holder 6.

前記セプタム弁装置4に対して炉項圧力回収発電設備7
が並設されており、前記湿式集塵器3から排出される高
炉ガスを遮断弁8およびガバナー弁9を介してタービン
lOTに導き、このタービン1OTで発電機10Gを駆
動し、タービン10Tの排出ガスを出口止弁11を介し
て前記電気集塵器5並びにガスホルダー6に導くように
なっている。前記高炉1に炉頂圧検出器12が付設され
、のこの炉頂圧検出器12の検出信号を炉頂圧調節器1
3に入力し、炉頂圧調節器13が出力する制御信号によ
り、セプタム弁装置4のコントロール弁4Cを制御して
ある範囲内の圧力を制御し、かつレンジ弁4Rを制御し
て適正な圧力範囲に制御するようになっており、さらに
前記炉頂圧調節器13が出力する制御信号をタービン電
気ガバナー14に入力し、ここで演算処理した制御出力
信号により前記ガバナー弁9の開度を調整し、もって炉
頂圧力をここで大部分制御するとともに、高炉ガスのほ
ぼ全量をタービン10Tに流入させて前圧制郷を行なう
ようになっている。また、タービンが緊急停止する際に
は電気ガバナー14のフィードフオアード出力信号によ
りセプタム弁装置4の手動弁4Mを開制御するようにな
っている。さらに、前記発電設備7は保安インターロッ
ク装置15が装備され、この保安インターロック装贋1
5により前記遮断弁8および遮断器16を遮断するよう
になっている。第2図に保安インターロックシステムの
要部を示す。
A furnace pressure recovery power generation equipment 7 is connected to the septum valve device 4.
are installed in parallel, the blast furnace gas discharged from the wet precipitator 3 is guided to the turbine 1OT via the cutoff valve 8 and the governor valve 9, and this turbine 1OT drives the generator 10G, and the exhaust gas of the turbine 10T is Gas is led to the electrostatic precipitator 5 and gas holder 6 via an outlet stop valve 11. A furnace top pressure detector 12 is attached to the blast furnace 1, and the detection signal of the furnace top pressure detector 12 is transmitted to the furnace top pressure regulator 1.
3 and output from the furnace top pressure regulator 13, the control valve 4C of the septum valve device 4 is controlled to control the pressure within a certain range, and the range valve 4R is controlled to maintain an appropriate pressure. Furthermore, the control signal output from the furnace top pressure regulator 13 is input to the turbine electric governor 14, and the opening degree of the governor valve 9 is adjusted by the control output signal processed here. Therefore, the furnace top pressure is largely controlled here, and almost the entire amount of blast furnace gas is allowed to flow into the turbine 10T to perform pre-pressure control. Further, when the turbine comes to an emergency stop, the manual valve 4M of the septum valve device 4 is controlled to open by the feedforward output signal of the electric governor 14. Furthermore, the power generation equipment 7 is equipped with a security interlock device 15, and this security interlock device 15 is equipped with a safety interlock device 15.
5 to shut off the shutoff valve 8 and circuit breaker 16. Figure 2 shows the main parts of the security interlock system.

すなわち、タービン重故障、発電機重故障、タービン発
電機停止および発電機中故障の各信号に基づいてタービ
ン発電機を停止させるとともに電気ガバナーがガバナー
弁に全閉指令を送出するようになっており、またタービ
ン入口ガス圧力低2段トリップ、高炉ガス流量低2段ト
リップおよび第1逆電力トリップの各信号はそれぞれ時
限タイマーで所定時間閉止ロックし、時限タイマーによ
る設定時間以上状況が継続している場合、タービン発電
機を停止させるとともに遮断弁8を全閉にし電気ガバナ
−14よりガバナー弁9に全閉指令を送出するようにな
っており、さらに第2逆電力トリップの信号で直ちにタ
ービン発電機を停止させるとともに、電気ガバナー全閉
指令を送出するようになっている。上記のように構成し
た炉頂圧力回収発電設備の動作すなわち本発明の運転方
法を高炉スリップ時を例にとって説明する。
In other words, the turbine generator is stopped based on signals such as serious turbine failure, serious generator failure, turbine generator stop, and mid-generator failure, and the electric governor sends a fully close command to the governor valve. In addition, each signal of the turbine inlet gas pressure low 2nd stage trip, the blast furnace gas flow rate low 2nd stage trip, and the first reverse power trip is closed and locked for a predetermined time by a timer, and the situation continues for more than the time set by the timer. In this case, the turbine generator is stopped, the isolation valve 8 is fully closed, and the electric governor 14 sends a full close command to the governor valve 9, and the turbine generator is immediately shut off by the second reverse power trip signal. It is designed to stop the electric governor and send out a command to fully close the electric governor. The operation of the top pressure recovery power generation equipment configured as described above, that is, the operating method of the present invention, will be explained by taking the case of blast furnace slip as an example.

第3図は高炉スリップ時のガス圧、ガス流量および発電
電力の推移を示すグラフであって、高炉スリップ発生瞬
時には高炉ガス発生量、炉頂圧力の急増に伴って発電出
力も急激に上昇し、定常出力の1.2〜1.7倍程度に
なるが、通常発電機10GはAQR運転あるいはAPF
R運転(EXA)を行なっているので安定運転を維持す
る。また、炉項圧力がブリーダ弁開放圧力PB以上にな
るとブリーダ弁が放散し、タービン電気ガバナー14に
炉頂圧調節器13からの制御信号が入力されることによ
りガバナー弁9がタービン電気ガバナー14の出力信号
で全開上限へ動作し、次いでセプタム弁装置4のコント
ロール弁4Cおよびレンジ弁4Rが炉頂圧調節器13の
制御信号により全開となる。しかる後、ブリ−ダ弁およ
びセブタム弁装置4の全開と共に高炉の吹き抜けが終り
炉内通気抵抗の増大により、炉頂圧力、高炉ガス流量が
急激に減少し、それに伴い炉頂圧力が設定圧力Psから
更にタービン入口ガス圧力低2段トリップ圧PTを〆下
へと低下し、同時に高炉ガス流量もこれと同様な傾向を
示し、高炉ガス流量低2段トリップ点QT2以下となる
。他方、発電出力(WP)よりも急激に減少し、定格出
力の5〜20%内のある設定点以下になったことを自動
的に検出して(図示せず)AVR運転(EXV)に切替
わり、運転を継続する。この場合、発電機10Gは電動
機化し、その発電出力は負出力となり、第1逆電力トリ
ップ点WR,以下となる。そして、ガス圧がタービン入
口ガス圧低2段トリップ点PT炎〆下となっている高炉
が時限タイマーによる設定時間TPd〆内で、ガス流量
が高炉ガス流量低トリップ点Q,渉よ下となっている高
炉が時限タイマーによる設定時間TQ2以内で、さらに
発電出力が第1逆電力トリップ点WR,以下第2逆電力
トリップ点WR渉〆上でかつその継続時間が第1の逆電
力トリツプ点WR,の時間タイマーによる設定時間Tw
以内であれば、高炉スリップ時に−定時限の間は閉止ロ
ックして緊急停止、負荷遮断などの夕−ビン発電機重故
障としての停止指令の送出を中止して、運転を継続する
Figure 3 is a graph showing the changes in gas pressure, gas flow rate, and generated power during blast furnace slippage.At the moment when blast furnace slip occurs, the amount of blast furnace gas generated and the furnace top pressure rapidly increase, and the power generation output also increases rapidly. However, the output is about 1.2 to 1.7 times the steady output, but normally a 10G generator is operated in AQR mode or APF mode.
Since R operation (EXA) is performed, stable operation is maintained. Further, when the furnace pressure becomes equal to or higher than the bleeder valve opening pressure PB, the bleeder valve dissipates, and the control signal from the furnace top pressure regulator 13 is input to the turbine electric governor 14, so that the governor valve 9 is activated to open the turbine electric governor 14. The control valve 4C and the range valve 4R of the septum valve device 4 are then fully opened by the control signal from the furnace top pressure regulator 13. After that, when the bleeder valve and the septum valve device 4 are fully opened, the blow-through of the blast furnace ends and the furnace top pressure and blast furnace gas flow rate decrease rapidly due to an increase in the ventilation resistance in the furnace, and the furnace top pressure accordingly decreases to the set pressure Ps. Then, the turbine inlet gas pressure low second stage trip pressure PT is further lowered to below, and at the same time, the blast furnace gas flow rate also shows a similar tendency and becomes below the low second stage trip point QT2 of the blast furnace gas flow rate. On the other hand, it automatically detects (not shown) that the power generation output (WP) has suddenly decreased below a certain set point within 5 to 20% of the rated output and switches to AVR operation (EXV). Instead, continue driving. In this case, the generator 10G becomes an electric motor, and its generated output becomes a negative output, which is equal to or less than the first reverse power trip point WR. Then, in the blast furnace where the gas pressure is below the turbine inlet gas pressure low second trip point PT, the gas flow rate reaches the blast furnace gas flow rate low trip point Q, below the flame limit, within the time TPd set by the timer. The blast furnace that is in operation is within the time TQ2 set by the timer, and the power generation output is above the first reverse power trip point WR, hereinafter the second reverse power trip point WR, and the duration is above the first reverse power trip point WR. , the set time Tw by the timer
If the blast furnace slips, the closure is locked for a fixed period of time, and the sending of a stop command due to a serious generator failure, such as an emergency stop or load shedding, is stopped and operation is continued.

すなわち上述の方法では、高炉スリップおよびこれと同
様な現象が、前述の設定時限以内でかつ継電器設定値以
内であると、重故障でないと判定して運転を継続する。
That is, in the above-described method, if blast furnace slipping and similar phenomena occur within the above-mentioned set time period and within the relay set value, it is determined that there is no major failure and operation is continued.

このように、高炉炉況による入力条件を前述した保安イ
ンターロック項目(第2図の一点鎖線で囲んだ部分参照
)で判断しタービン発電機の許容範囲内で運転を継続す
る。以上説明したように本発明では、高炉スリップなど
高炉炉況不安定時特に高炉ガス圧、ガス流量が急激に減
少低下し、かつその継続時間が一定時間以内であれば、
その間のみ保護継電器あるいは保護装置を閉止・ロック
し、かつAQR運転あるいはAPFR運転からAVR運
転に切替えるので、高炉スリップ等炉況不安定時にも設
備の重大事故を招来することなく連続運転が可能となり
、その結果エネルギー回収率、稼動率あるいは発電供給
信頼度を飛躍的に向上させることができ、他方配電系統
への無効電力補給、力率改善を図ることができ、また高
炉炉況不安定時のタービントリップ指令中断に伴い、セ
プタム弁強制関に伴う高温、高圧舎塵ガス流を抑制でき
、その結果高炉排ガス系統特に乾視集塵器、湿式集塵器
、セプタム弁袋鷹および配管中へのダスト固着等を防止
するととができるなど、実用上優れた多くの効果を奏す
る。
In this way, the input conditions depending on the blast furnace furnace condition are determined by the above-mentioned safety interlock items (see the area surrounded by the dashed line in FIG. 2), and operation is continued within the allowable range of the turbine generator. As explained above, in the present invention, when the blast furnace furnace condition is unstable such as blast furnace slip, especially when the blast furnace gas pressure and gas flow rate suddenly decrease and the duration thereof is within a certain period of time,
Only during that time, the protective relay or protection device is closed and locked, and AQR operation or APFR operation is switched to AVR operation, so continuous operation is possible without causing serious equipment accidents even when furnace conditions are unstable such as blast furnace slippage. As a result, it is possible to dramatically improve the energy recovery rate, operation rate, and reliability of power generation supply, as well as to supply reactive power to the power distribution system and improve the power factor, as well as to trip the turbine during unstable blast furnace conditions. Due to the suspension of the command, the high temperature and high pressure dust gas flow associated with the forced septum valve can be suppressed, and as a result, dust adhesion in the blast furnace exhaust gas system, especially dry vision dust collectors, wet dust collectors, septum valve bags and pipes, has been suppressed. It has many excellent practical effects, such as preventing and cutting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を実施するための発電設備を組み込んだ
高炉排ガス系統の一例を示す略解図、第2図はその保安
ィンタ−ロックシステムの要部を示すブロック図、第3
図は高炉スリップ時におけるガス圧、ガス流量および発
電出力の推移を示すグラフである。 1・・・・・・高炉、4・・・・・・セプタム弁装置、
7・・・・・・炉頂圧力回収発電設備、10T・・・・
・・タービン、10G…・・・発電機、15…・・・保
安インターロック装置。 翁l図 第2図 第3図
Fig. 1 is a schematic diagram showing an example of a blast furnace exhaust gas system incorporating power generation equipment for carrying out the present invention, Fig. 2 is a block diagram showing the main parts of the safety interlock system, and Fig. 3
The figure is a graph showing changes in gas pressure, gas flow rate, and power generation output during blast furnace slip. 1... Blast furnace, 4... Septum valve device,
7...Furnace top pressure recovery power generation equipment, 10T...
...Turbine, 10G... Generator, 15... Security interlock device. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 高炉排ガス系統中に高炉ガス圧力エネルギを回収す
るガスタービン発電設備をセプタム弁装置と並設し、こ
れら発電設備とセプタム弁装置とにより炉頂圧力を制御
するとともに発電を行なう高炉ガスエネルギ回収発電設
備の運転方法において、高炉スリツプ発生等高炉炉況不
安定時における急激な出力増加時には、タービン発電機
を一定力率運転もしくか一定励磁運転あるいは増励磁と
して継続運転し、ついで高炉ガス発生量および炉頂圧力
減少時には、一定時限の間保護継電器および保護装置を
閉止・ロツクし、かつタービン発電機を自動電圧調整運
転に切替えて運転し、この間前記ガスタービン発電設備
に停止指令を出すことなく運転を継続することを特徴と
する高炉炉況不安定時における高炉ガスエネルギ回収発
電設備の運転方法。
1 Blast furnace gas energy recovery power generation in which gas turbine power generation equipment for recovering blast furnace gas pressure energy is installed in the blast furnace exhaust gas system in parallel with a septum valve device, and these power generation equipment and the septum valve device control the furnace top pressure and generate electricity. In the equipment operation method, when there is a sudden increase in output due to unstable blast furnace conditions such as the occurrence of blast furnace slip, the turbine generator is operated continuously in constant power factor operation, constant excitation operation, or increased excitation, and then the blast furnace gas generation amount and When the furnace top pressure decreases, the protective relay and protection device are closed and locked for a certain period of time, and the turbine generator is switched to automatic voltage adjustment operation and operated, and during this period, the gas turbine generator equipment is operated without issuing a stop command. A method of operating a blast furnace gas energy recovery power generation facility during unstable blast furnace furnace conditions, characterized by continuing.
JP56183218A 1981-11-16 1981-11-16 How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions Expired JPS6039121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183218A JPS6039121B2 (en) 1981-11-16 1981-11-16 How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183218A JPS6039121B2 (en) 1981-11-16 1981-11-16 How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions

Publications (2)

Publication Number Publication Date
JPS5884910A JPS5884910A (en) 1983-05-21
JPS6039121B2 true JPS6039121B2 (en) 1985-09-04

Family

ID=16131845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183218A Expired JPS6039121B2 (en) 1981-11-16 1981-11-16 How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions

Country Status (1)

Country Link
JP (1) JPS6039121B2 (en)

Also Published As

Publication number Publication date
JPS5884910A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
Park Fast turbine valving
JPS6411828B2 (en)
US4072006A (en) Chemical reaction furnace system
JP4734184B2 (en) Steam turbine control device and steam turbine control method
US4069660A (en) Chemical reaction furnace system
JPS6039121B2 (en) How to operate blast furnace gas energy recovery power generation equipment during unstable blast furnace conditions
JP2511007B2 (en) Auxiliary steam device
CN112657665B (en) Control method for preventing and coping with fan stall in RB process
US4053786A (en) Transducer out of range protection for a steam turbine generator system
JP3029440B2 (en) Steam turbine for power generation
JPS6014965B2 (en) How to control pump groups
JP4560481B2 (en) Steam turbine plant
JPH08260907A (en) Steam storing electric power plant
JPH0932508A (en) Combined cycle plant
CN217440120U (en) Steam power vacuum pumping system
CN115596525A (en) Emergency exhaust system control method based on working condition self-adaptive expansion generator set
JPH0346721B2 (en)
JP6841739B2 (en) Hydropower system
JPS629643B2 (en)
JPH0539901A (en) Method and device for automatically controlling boiler
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPS6189911A (en) Preventive measure against excessive speed of steam turbine
JPS6025608B2 (en) Reactor gas energy recovery power generation system
JPH0688504A (en) Turbine high speed valve control device
Schleif et al. Experiences With Hydraulic Prime Mover Controls