JPS6038998B2 - Method for regenerating porous conductive materials - Google Patents

Method for regenerating porous conductive materials

Info

Publication number
JPS6038998B2
JPS6038998B2 JP7690279A JP7690279A JPS6038998B2 JP S6038998 B2 JPS6038998 B2 JP S6038998B2 JP 7690279 A JP7690279 A JP 7690279A JP 7690279 A JP7690279 A JP 7690279A JP S6038998 B2 JPS6038998 B2 JP S6038998B2
Authority
JP
Japan
Prior art keywords
conductive material
porous conductive
acid
ions
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7690279A
Other languages
Japanese (ja)
Other versions
JPS561404A (en
Inventor
俊雄 沢
昌良 久保田
燦吉 高橋
芳光 三原
肇 飯沼
忠勝 山元
勝男 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7690279A priority Critical patent/JPS6038998B2/en
Publication of JPS561404A publication Critical patent/JPS561404A/en
Publication of JPS6038998B2 publication Critical patent/JPS6038998B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多孔質導電怪物質の再生方法に関し、詳しくは
、多孔質導電性物質の電解処理により排水中の金属イオ
ン、無機性イオン及び有機物を吸着した多孔質導電性物
質を効果的に再生する多孔質導電性物質の再生方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating porous electrically conductive materials, and more specifically, the present invention relates to a method for regenerating porous electrically conductive materials, and more specifically, the present invention relates to a porous electrically conductive material that has adsorbed metal ions, inorganic ions, and organic matter in wastewater by electrolytic treatment of porous electrically conductive materials. The present invention relates to a method for regenerating a porous conductive material that effectively regenerates the material.

排水処理用吸着剤としての多孔質導電怪物質としては、
活性炭のような多孔質でかつ導電性を有する吸着剤及び
ゼオラィトのような多孔質でかつ導電性を有する選択的
イオン交換剤等が用いられ、それらの形状及び大きさは
特に限定されず通常ほぼ球状粒状物として適用されてい
る。
Porous conductive materials used as adsorbents for wastewater treatment include:
Porous and electrically conductive adsorbents such as activated carbon and porous and electrically conductive selective ion exchange agents such as zeolite are used, and their shapes and sizes are not particularly limited and are usually about the same size. It is applied as spherical granules.

就中、活性炭特に粒状活性炭は、吸着剤として多くの優
れた特性を有することから排水の浄化工程に広く利用さ
れているが、費用の関係から使用済活性炭は再生して使
用する必要がある。
In particular, activated carbon, particularly granular activated carbon, has many excellent properties as an adsorbent and is therefore widely used in wastewater purification processes, but used activated carbon must be recycled for use due to cost considerations.

活性炭再生方法は、大別して加熱再生方法及び薬品再生
方法に分けられる。前者は高温ガスあるいは水蒸気によ
り被吸着物質を分解除去するものであるが、操作上の取
扱いが複灘であったり、再生時に活性炭が消耗したり、
更には被吸着物質中の不揮発性成分が蓄積したりする等
の問題点を残している。又、後者は、酸、アルカリ及び
酸化剤等の薬剤に浸潰して被吸着物質を反応により溶出
させる方法であるが、再生効率に限界があること及び溶
出薬剤の処理に難点がある等の問題がある。ところで、
最近、活性炭等の多孔質導電性物質を支持電極間に充填
し、通電下において排水を処理する方法が脚光を浴びて
いる。この排水処理方法では、多孔質導電怪物質の各粒
子が陰、陽に分極し、本釆持っている性質(活性炭であ
れば吸着能、ゼオラィトであれば選択的イオン交換能)
を高める他、多孔質導電性物質の各粒子の周囲すなわち
界面で生ずる電解反応により活性な塩素及び酸素を発生
してCOD等の有機物成分及び陽イオン成分を分解、除
去し、更に無機性イオンは陰性、陽性共にクーロン力に
より粒子の紬孔内に吸蔵し、金属はイオン化されもし〈
は炭酸塩となって粒子表面に露析する。この方法により
、無機性イオンとしてN03‐及びNH+等の窒素含有
イオンを有効に除去すことができる。この吸着現象につ
き詳述すると、排水中に含まれるカルシウムイオン等の
金属イオンは露析により、硝酸イオン及び亜硝酸イオン
等の無機陰イオン及びアンモニウムイオン等の無機陽イ
オンは吸蔵により、そして有機物は吸着により多孔質導
電性物質の粒子に桶集される。
Activated carbon regeneration methods can be broadly divided into heating regeneration methods and chemical regeneration methods. The former method uses high-temperature gas or water vapor to decompose and remove adsorbed substances, but it requires multiple handling operations, and the activated carbon is consumed during regeneration.
Furthermore, there remain problems such as accumulation of non-volatile components in the adsorbed substance. In addition, the latter is a method in which the adsorbed substance is eluted by reaction by soaking it in chemicals such as acids, alkalis, and oxidizing agents, but there are problems such as limitations in regeneration efficiency and difficulties in processing the eluted chemicals. There is. by the way,
Recently, a method of filling porous conductive materials such as activated carbon between supporting electrodes and treating wastewater while applying electricity has been in the spotlight. In this wastewater treatment method, each particle of the porous conductive material is polarized negatively and positively, and has the properties (adsorption ability if activated carbon is used, selective ion exchange ability if it is made of zeolite).
In addition, active chlorine and oxygen are generated by the electrolytic reaction that occurs around each particle of the porous conductive material, that is, at the interface, decomposing and removing organic components such as COD and cation components, and inorganic ions. Both negative and positive particles are occluded in the pores of particles by Coulomb force, and the metal may be ionized.
becomes carbonate and is exposed on the particle surface. By this method, nitrogen-containing ions such as N03- and NH+ can be effectively removed as inorganic ions. To explain this adsorption phenomenon in detail, metal ions such as calcium ions contained in wastewater are absorbed by exposure, inorganic anions such as nitrate ions and nitrite ions, and inorganic cations such as ammonium ions are absorbed by occlusion, and organic substances are absorbed by occlusion. It is collected into particles of porous conductive material by adsorption.

本発明においては、便宜上、上記無機陰イオン及び無機
陽イオンを総称して無機性イオンといい、上記電析、吸
蔵及び吸着を総称して吸着という。このようにして排水
の電解処理に用いた多孔質導電性物質は、前記した加熱
又は薬品による再生方法によっては完全に再生すること
ができない。
In the present invention, for convenience, the above-mentioned inorganic anions and inorganic cations are collectively referred to as inorganic ions, and the above-mentioned electrodeposition, occlusion, and adsorption are collectively referred to as adsorption. The porous conductive material used in the electrolytic treatment of wastewater in this manner cannot be completely regenerated by the above-described regeneration methods using heating or chemicals.

これは、単なる狭義の意味の吸着物質を除去すれば足り
る上記二方法と異なり、雷折物質及び吸蔵物質をも除去
する必要があるからである。この観点にたって、電解再
生による再生方法が提案されている。
This is because, unlike the above two methods in which it is sufficient to simply remove the adsorbed substance in the narrow sense, it is necessary to also remove the lightning-induced substance and the occlusion substance. From this point of view, a regeneration method using electrolytic regeneration has been proposed.

その数例を以下に示す。{a} 特開昭53−3815
3号公報に記載された方法は、交流通電による活性炭使
用の充填電解法であり、非イオン性成分は酸化還元によ
りイオン化しこのイオン化された成分及び金属塩ならび
に金属イオン成分を活性炭に静電的に吸引、付着させて
除去する。
Some examples are shown below. {a} JP-A-53-3815
The method described in Publication No. 3 is a filling electrolysis method using activated carbon by applying AC current, in which nonionic components are ionized by redox, and the ionized components, metal salts, and metal ion components are electrostatically applied to activated carbon. It is removed by suction and adhesion.

活性炭の再生に当っては、排水の供給を停止し静止水中
で通電して付着物を微細孔内のものまでも放出させ、次
いで清浄な水で逆洗する手法をとっている。{bー 特
公昭48−14553号公報、袴公昭49−2072び
号公報及び特公昭48−41836号公報に記載された
方法又は装置は、いずれも吸着済の活性炭を電解質溶液
に浸潰し電極間に通電する手法をとっている。
To regenerate activated carbon, we stop the supply of wastewater and apply electricity in still water to release deposits even within the micropores, followed by backwashing with clean water. {b- The methods and devices described in Japanese Patent Publication No. 48-14553, Hakama Publication No. 49-2072, and Japanese Patent Publication No. 48-41836 all involve soaking adsorbed activated carbon in an electrolyte solution and discharging it between electrodes. The method is to energize the

電解質としては食塩、硫酸、硫酸ナトリウム及び酢酸ナ
トリウム等が用いられ、カチオン性に帯電したた物質及
びノニオンは陽極で、アニオン性に帯電した物質は陰極
で処理され、又、COD成分等の有機物は電気エネルギ
ーを受け取って雷気泳動的に脱着し、更に、電極部及び
界面部で生成するc12及びNaOH等のような物質と
反応して安定化する。特にカチオン性物質は陽極酸化さ
れ、脱看と同時に分解されるのでフロック化して安定な
物質となる。硫酸及び食塩等の電解質を用いて通電する
方法により、カルシウムイオン等の雷析物をある程度脱
着させることができる。
Salt, sulfuric acid, sodium sulfate, sodium acetate, etc. are used as electrolytes, and cationically charged substances and nonions are treated at the anode, anionically charged substances are treated at the cathode, and organic substances such as COD components are treated at the cathode. It receives electrical energy and is electrophoretically desorbed, and is further stabilized by reacting with substances such as c12 and NaOH generated at the electrode and interface. In particular, cationic substances are anodic oxidized and decomposed at the same time as they are removed, forming flocs and becoming stable substances. Lightning deposits such as calcium ions can be desorbed to some extent by a method of applying electricity using electrolytes such as sulfuric acid and common salt.

対金属イオン処理に関しては、塩よりも酸の方が有利で
あるが、次のような弊害を伴う。金属としてカルシウム
、酸として硫酸を例にとると、亀折は主に炭酸カルシウ
ムの形態で行なわれ、炭酸カルシウムと硫酸又は硫酸塩
水溶液は良く反応して硫酸カルシウムとなる。したがっ
て、酸を電解質として通電すると、多孔質導電性物質の
表面にカルシウム又は硫酸カルシウムの形で再度電折す
ることになる。なお、これに関し、後記する実験例で酸
処理と酸通電処理を比較した結果を示す。多孔質導電性
物質への被吸着物の吸着状態は、陽極側及び陰極側の各
紬孔内に無機性イオンが吸蔵され、その周囲にCOD成
分等の有機物及び塩型の金属電析物が吸着され、更にそ
の周囲において特に陰極側に金属単体型及び塩型の雷析
物が吸着される。
Although acids are more advantageous than salts in treating metal ions, they have the following disadvantages. If calcium is used as a metal and sulfuric acid is used as an acid, the crystallization is mainly performed in the form of calcium carbonate, and calcium carbonate reacts well with sulfuric acid or an aqueous sulfate solution to form calcium sulfate. Therefore, when electricity is applied using an acid as an electrolyte, the acid is re-electrodeposited on the surface of the porous conductive material in the form of calcium or calcium sulfate. In this regard, the results of comparing acid treatment and acid energization treatment will be shown in an experimental example to be described later. The state of adsorption of adsorbed substances onto a porous conductive material is such that inorganic ions are occluded in the pores on the anode and cathode sides, and organic substances such as COD components and salt-type metal deposits are present around them. Furthermore, single metal and salt type lightning precipitates are adsorbed around it, especially on the cathode side.

したがって、再生に際して金属電折物の脱看が不完全で
あると、特に紐孔内に吸蔵された無機性イオンの脱着も
不完全になる。以上の理由により、従来の単一工程の電
解再生処理によっては十分な効果を発揮することができ
ないという問題がある。
Therefore, if desorption of the metal electrolyte is incomplete during regeneration, desorption of inorganic ions occluded in the string holes will also be incomplete. For the above reasons, there is a problem in that the conventional single-step electrolytic regeneration treatment cannot exhibit sufficient effects.

本発明はこのような現状に鑑みてなされたものであり、
その目的は、多孔質導電性物質の電解処理により排水中
の金属イオン、無機性イオン及び有機物を吸着した多孔
質導電性物質を効果的に再生する多孔質導電性物質の再
生方法を提供することである。
The present invention was made in view of the current situation, and
The purpose is to provide a method for regenerating a porous conductive material that effectively regenerates a porous conductive material that has adsorbed metal ions, inorganic ions, and organic matter in wastewater through electrolytic treatment of the porous conductive material. It is.

本発明につき概説すれば、本発明の多孔質導電性物質の
再生方法は、多孔質導電性物質を充填したた電解槽に排
水を流通し、電解処理により排水中の金属イオン、無機
性イオン及び有機物を吸着した多孔質導電性物質を再生
するに当り、多孔質導電性物質を酸により洗浄する工程
、塩素イオン含有溶液により洗浄する工程及び通電を行
なう工程を含むことを特徴とするものである。
To summarize the present invention, the method for regenerating a porous conductive material of the present invention involves flowing wastewater through an electrolytic cell filled with a porous conductive material, and electrolytically treating the wastewater to eliminate metal ions, inorganic ions, and In regenerating the porous conductive material that has adsorbed organic matter, the method is characterized by including the steps of cleaning the porous conductive material with an acid, cleaning it with a solution containing chloride ions, and applying electricity. .

本発明者等は、多孔質導電性物質(以下多孔買物質とい
う)を支持電極間に充填して通電下に排水を処理する方
法(以下充填電解処理法という)の実施により被吸着物
質を吸着した多孔質物質から被吸着物質を脱着する場合
、適用する脱着剤の種類及び通電の効果を確認する目的
で、再生液として水、酸及び塩素イオン含有溶液を用い
てそれ等の効果を対比し、更に通電操作を併用してその
影響を調べた結果本発明を完成するに到ったものである
The present inventors have developed a method in which wastewater is treated by filling a porous conductive material (hereinafter referred to as porous material) between supporting electrodes and applying electricity (hereinafter referred to as filling electrolytic treatment method) to adsorb substances to be adsorbed. When desorbing adsorbed substances from porous materials, water, acid, and chloride ion-containing solutions were used as regenerating liquids to compare their effects in order to confirm the type of desorbent to be applied and the effect of energization. Furthermore, the present invention was completed as a result of investigating the effects of energization.

これらの基礎実験及び得られた確認事項を実験例として
以下に示す。実験例 1 第1図は本実験に使用した装置の断面概略図であり、a
は側面図、bは正面図を示す。
These basic experiments and the confirmation items obtained are shown below as experimental examples. Experimental Example 1 Figure 1 is a cross-sectional schematic diagram of the apparatus used in this experiment, and a
b shows a side view, and b shows a front view.

又、符号1は浮上分離帯城、2は電解帯城、3は活性炭
、4は支持電極、5は排水供聯合口、6は再生液供聯合
口兼処理水排出口を示す。処理槽の全体寸法は柳単位で
750×150×4止浮上分離帯域1の高さ400側、
電解帯城2の高さ200肋とした。支持電極4の陽極材
質はフェライト、陰極材質はSUS、極板寸法は側単位
で200×150×5とした。又、排水供給口5は電解
帯域2の上面から235肋上方に設置し、活性炭3とし
て平均粒径8肋の粒状活性炭を使用した。カルシウムを
金属成分として含有する摸擬排水を排水供給口5から供
給し、浮上分離帯域1及び電解帯城2を流通させ支持電
極4に通電して充填電解処理を行ない、活性炭3の表面
上にカルシウム(塩型のものを含む)を竜析させた。
Further, reference numeral 1 indicates a flotation separation band, 2 an electrolytic band, 3 activated carbon, 4 a support electrode, 5 a waste water supply joint, and 6 a regeneration liquid supply joint and treated water discharge port. The overall dimensions of the treatment tank are 750 x 150 x 4 on the height 400 side of the floating separation zone 1,
The height of electrolytic band castle 2 was set to 200 ribs. The anode material of the supporting electrode 4 was ferrite, the cathode material was SUS, and the electrode plate dimensions were 200 x 150 x 5 in side units. Further, the waste water supply port 5 was installed 235 times above the top surface of the electrolytic zone 2, and granular activated carbon having an average particle size of 8 times was used as the activated carbon 3. A simulated wastewater containing calcium as a metal component is supplied from the wastewater supply port 5, passed through the flotation separation zone 1 and the electrolytic band 2, and is energized to the supporting electrode 4 to perform charging electrolytic treatment, so that it is deposited on the surface of the activated carbon 3. Contains calcium (including salt form).

次いで、水、硫酸及び食塩水を使用し併せて通電操作を
加え又は加えずに、活性炭3に吸着したカルシウムを溶
出、脱着させて再生を行なった。
Next, the calcium adsorbed on the activated carbon 3 was eluted and desorbed using water, sulfuric acid, and a saline solution, with or without applying electricity, to perform regeneration.

各再生時間は1時間とし、通電する場合には、直流2A
の電流を流した。又、再生液は循環使用し、活性炭3に
は毎分500私で下方から上方へ再生液を流通させた。
なお、再生液は各液毎に所定時間循環使用した。得られ
た結果を第2図に示す。
Each playback time is 1 hour, and when energized, DC 2A
A current was applied. Further, the regenerating liquid was used in circulation, and the regenerating liquid was passed through the activated carbon 3 from below to above at a rate of 500 m/min.
Note that the regenerating solution was used in circulation for a predetermined period of time for each solution. The results obtained are shown in FIG.

第2図は本実施例における漆出時間間とカルシウムイオ
ン溶出率との関係を示したグラフであり、Aは1重量%
の濃度の硫酸を用いて単に港出を行なった場合、Bは1
重量%の濃度の硫酸を用し、溶出と同時に通電した場合
、Cは1重量%の濃度の食塩水を用し、溶出と同時に通
電した場合、Dは1重量%の濃度の食塩水を用いて単に
溶出を行なった場合、Eは水道水を用いて単に溶出を行
なった場合を示す。第2図のグラフから明らかなように
、硫酸を用いて単に溶出を行なった場合に最大のカルシ
ウムイオン除去効果が得られる、すなわち処理速度が速
い。実験例 2 実験例1と同じ装置を用い、硝酸イオン (N03)を無機性イオンとして含有する摸擬排水を用
いて実験例1と同様の操作により活性炭3に硝酸イオン
を吸着させ、次いで再生液として食塩水を用い通電下又
は通電せずに活性炭3の再生を行なった。
Figure 2 is a graph showing the relationship between the lacquer release time and the calcium ion elution rate in this example, where A is 1% by weight.
If you simply leave the port using sulfuric acid with a concentration of
When using sulfuric acid with a concentration of 1% by weight and applying electricity at the same time as elution, C uses a saline solution with a concentration of 1% by weight, and when electricity is applied simultaneously with elution, D uses a saline solution with a concentration of 1% by weight. E shows the case where elution was simply performed using tap water. As is clear from the graph of FIG. 2, the maximum calcium ion removal effect is obtained when sulfuric acid is used for simple elution, that is, the processing speed is fast. Experimental Example 2 Using the same equipment as in Experimental Example 1, nitrate ions were adsorbed onto activated carbon 3 in the same manner as in Experimental Example 1 using simulated wastewater containing nitrate ions (N03) as inorganic ions, and then the regenerated liquid Activated carbon 3 was regenerated using saline solution with or without electricity.

各再生時間は3時間とし、通電する場合には、直流2A
の電流を流した。又、再生液は循環使用し、活性炭3に
は毎分500のとで下方から上方へ再生液を流通させた
。なお、再生液は各液毎に所定時間循環使用した。得ら
れた結果を第3図に示す。
Each playback time is 3 hours, and when electricity is applied, DC 2A
A current was applied. Further, the regenerating liquid was used for circulation, and the regenerating liquid was passed through the activated carbon 3 from below to above at a rate of 500 per minute. Note that the regenerating solution was used in circulation for a predetermined period of time for each solution. The results obtained are shown in FIG.

第3図は本実験例における溶出時間と硝酸イオン溶出率
との関係を示したグラフであり、Fは5%食塩水を用い
て単に溶出を行なった場合、Gは5重量%の濃度の食塩
水を用し、熔出と同時に通電した場合を示す。第3図の
グラフから明らかなように、食塩水で単に溶出(正確に
は置換)させた方が短時間で効率よく硝酸イオンを溶出
させることができる。実験例 3処理槽として、全体寸
法が肋単位で100×50×100の角形容器を用い、
活性炭3として粒径5〜1伍肋の粒状活性炭を用いて実
験例2と同様の操作により、食塩水による再生効果を調
べた。
Figure 3 is a graph showing the relationship between elution time and nitrate ion elution rate in this experimental example, where F is when elution was simply performed using 5% saline, and G is salt at a concentration of 5% by weight. This shows the case where water is used and electricity is applied at the same time as melting. As is clear from the graph of FIG. 3, nitrate ions can be eluted in a shorter time and more efficiently by simply eluating (or more accurately, replacing) with saline. Experimental Example 3 A square container with overall dimensions of 100 x 50 x 100 in units of ribs was used as the treatment tank.
The regeneration effect of saline solution was investigated in the same manner as in Experimental Example 2 using granular activated carbon having a particle size of 5 to 1 dia as the activated carbon 3.

又、被吸着物は硝酸イオン及びカルシウムイオンとし、
同時通電は行なわなかった。処理槽中で硝酸カルシウム
を電解し、活性炭3に硝酸イオン0.5夕及びカルシウ
ムイオン0.65夕を吸着させた。
In addition, the adsorbed substances are nitrate ions and calcium ions,
Simultaneous energization was not performed. Calcium nitrate was electrolyzed in the treatment tank, and 0.5 nitrate ions and 0.65 calcium ions were adsorbed onto the activated carbon 3.

次いで、5重量%の濃度の食塩水300の‘を処理槽に
流通循環させて活性炭の再生を行なった。
Next, activated carbon was regenerated by circulating 300 ml of saline solution having a concentration of 5% by weight through the treatment tank.

得られた結果を第4図に示す。第4図のaは本実験例に
おける溶出時間とカルシウムイオン溶出率との関係を示
したグラフであり、第4図のbは本実験例における総出
時間と硝酸イオン熔出率との関係を示したグラフである
。第4図から明らかなように、両イオン共に時間の経過
に伴って港出率は上昇し、カルシウムイオンは約2時間
、硝酸イオンは約4時間で90%程度溶出している。実
験例 4有機物としてフェノールを含有する溶液及び下
水を用いて粒状活性炭(実験例3と同じもの)100の
こ有機物を電解吸着させた。
The results obtained are shown in FIG. Figure 4a is a graph showing the relationship between elution time and calcium ion elution rate in this experimental example, and Figure 4b is a graph showing the relationship between total elution time and nitrate ion elution rate in this experimental example. This is a graph. As is clear from FIG. 4, the elution rate of both ions increases with the passage of time, with approximately 90% of the calcium ion being eluted in about 2 hours and the nitrate ion being eluted in about 4 hours. Experimental Example 4 Using a solution containing phenol as an organic substance and sewage, 100 pieces of granular activated carbon (same as in Experimental Example 3) were electrolytically adsorbed.

吸着量は、フェノールの場合5.2夕、下水の場合1.
5夕〔TOD(総酸素要求量)で測定〕であった。再生
に当っては、5重量%の濃度の食塩水300の上を実施
例3と同様にして処理槽に流通し、電流1.虫で通電し
塩素ガスを発生させて有機物の酸化分解を行なった。
The adsorption amount is 5.2 days for phenol and 1.2 hours for sewage.
5 o'clock [measured by TOD (total oxygen demand)]. For regeneration, a saline solution 300 with a concentration of 5% by weight was passed through the treatment tank in the same manner as in Example 3, and a current of 1. The insects were used to energize and generate chlorine gas to oxidize and decompose organic matter.

各場合における活性炭3の経時再生率をメチレンフル一
落液の吸着量から求めた。
The regeneration rate of the activated carbon 3 over time in each case was determined from the adsorption amount of the methylene full drop.

すなわち、粉末状にした活性炭3を1000○で2時間
乾燥した後、メチレンフルー液(150ppm)100
必中に該活性炭3の50岬を入れて損蚤芋し、3慨ご後
の吸着量を吸光度から測定した。得られた結果を第5図
及び第6図に示す。第5図はフェノール液の場合、第6
図は下水の場合における経時再生率を示したグラフであ
る。これらのグラフから明らかなように、いずれも通電
(電解)時間すなわち塩素発生量に応じて再生率が上昇
しているが、フェノール液の場合には比較的短時間例え
ば1.即時間程度でほぼ90%再生されているのに対し
、下水の場合には約65%の再生率である。本発明者等
は、上記の実験から、酸及び食塩水による再生を通電せ
ずに行なった場合に特にカルシウムイオン及び硝酸イオ
ンを効果的に除去できることならびに食塩水による再生
を通電下に行なった場合に特に有機物を効果的に除去で
きることを確認し、これに基づいて本発明を完成するに
到ったものである。
That is, after drying powdered activated carbon 3 at 1000° for 2 hours, methylene flue solution (150 ppm) 100
Fifty caps of the activated carbon 3 were added to the pot, and the amount of adsorption after three cycles was measured from the absorbance. The results obtained are shown in FIGS. 5 and 6. Figure 5 shows the 6th column in the case of phenol liquid.
The figure is a graph showing the regeneration rate over time in the case of sewage. As is clear from these graphs, in both cases the regeneration rate increases depending on the energization (electrolysis) time, that is, the amount of chlorine generated, but in the case of the phenol solution, the regeneration rate increases over a relatively short period of time, for example 1. Approximately 90% of wastewater is regenerated immediately, whereas in the case of sewage, the regeneration rate is approximately 65%. From the above experiments, the present inventors have found that calcium ions and nitrate ions can be particularly effectively removed when regeneration with acid and saline solution is performed without energization, and when regeneration with saline solution is performed with energization. It was confirmed that organic substances in particular can be effectively removed, and based on this, the present invention was completed.

本発明においては、被吸着物を吸着した多孔買物質を酸
で洗浄し、それにより酸に溶解し易い物質すなわち金属
イオン特にカルシウムイオン及びその炭酸塩のような霞
析物を溶出させる。
In the present invention, the porous material that has adsorbed the adsorbed substance is washed with acid, thereby eluting substances that are easily soluble in acid, that is, metal ions, particularly calcium ions, and hazy precipitates such as carbonates thereof.

この洗浄は逆洗により行なうので、硫酸カルシウムのよ
うな析出物が生じても、その結晶が成長する前に順次逆
洗用酸に同伴させて処理槽から排出、除去することがで
きる。この場合、通電すると多孔買物質の表面にカルシ
ウム又は硫酸カルシウムのような金属又は金属塩が再度
電析されて溶出効果が低下するため、通電は行なわない
ことが望ましい。本発明における酸としては、硫酸、硝
酸及び塩酸等の無機酸を挙げることができるが、装置の
腐食性の関係から硫酸の使用が適している。
Since this cleaning is performed by backwashing, even if precipitates such as calcium sulfate occur, they can be sequentially entrained in the backwashing acid and removed from the treatment tank before the crystals grow. In this case, it is preferable not to apply electricity, since metals or metal salts such as calcium or calcium sulfate will be electrodeposited again on the surface of the porous material, reducing the elution effect. Examples of acids in the present invention include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, but sulfuric acid is suitable for use in view of the corrosivity of the equipment.

又、酸の濃度は0.5〜1.の重量%程度で短時間で十
分な効果が得られる。再生に使用された酸は、循環して
再使用されるが、その汚染度、再生能低下に応じて適宜
廃棄処分される。
Moreover, the concentration of acid is 0.5 to 1. A sufficient effect can be obtained in a short period of time with approximately 1% by weight. The acid used for regeneration is recycled and reused, but is disposed of as appropriate depending on the degree of contamination and reduction in regeneration ability.

次に、本発明においては、被吸着物質を吸着した多孔質
物質を塩素イオン含有溶液で洗浄し、それにより、無機
性イオン例えば硝酸イオン、亜硝酸イオン、亜硝酸イオ
ン及びアンモニウムイオンを脱着(置換)させる。
Next, in the present invention, the porous material that has adsorbed the adsorbed substance is washed with a solution containing chlorine ions, thereby desorbing (replacing) inorganic ions such as nitrate ions, nitrite ions, nitrite ions, and ammonium ions. ).

この洗浄は前記酸の場合と同様に逆洗により行なわれる
ので、フロック等の堆積物、反応生成物、漆出物及び析
出物等は順次塩素イオン含有溶液に同伴されて排出、除
去される。この工程における通電は、無機性イオン溶出
効果を低下させるので望ましくない。本発明における塩
素イオン含有溶液しては、食塩水が適しており、その濃
度は0.5〜5重量%程度で十分な効果が得られる。
Since this cleaning is carried out by backwashing as in the case of the acid, deposits such as flocs, reaction products, lacquer deposits, precipitates, etc. are sequentially entrained in the chlorine ion-containing solution and discharged and removed. Applying electricity in this step is undesirable because it reduces the effect of elution of inorganic ions. A saline solution is suitable as the chlorine ion-containing solution in the present invention, and a sufficient effect can be obtained at a concentration of about 0.5 to 5% by weight.

なお、食塩水の濃度を上げて水溶液の比伝導度を高める
ことにより無機性イオンの脱着、溶出を良好にできる煩
向があることがわかっている。再生に使用された塩素イ
オン含有溶液は、酸の場合と同様に循環して再使用され
るが、汚染度、再生館低下に応じて適宜廃棄処分される
It has been found that there is a tendency to improve the desorption and elution of inorganic ions by increasing the specific conductivity of the aqueous solution by increasing the concentration of the saline solution. The chlorine ion-containing solution used for regeneration is recycled and reused in the same way as acid, but it is disposed of as appropriate depending on the degree of contamination and the deterioration of the regeneration facility.

本発明において、上記の酸洗浄工程及び塩素イオン含有
溶液洗浄工程については、その順序は特に限定されない
が、酸洗浄工程を先に行なう方が効果的である。
In the present invention, the order of the acid washing step and the chlorine ion-containing solution washing step is not particularly limited, but it is more effective to perform the acid washing step first.

又、酸及び塩素イオン含有溶液による洗浄を行なう前工
程として、水、特に気泡を同伴した水による逆洗を行な
うことにより、フロツク等の堆積物を剥離して次の再生
処理を更に効率良くすることができる。
In addition, as a pre-process for cleaning with an acid and chlorine ion-containing solution, backwashing with water, especially water with air bubbles, is performed to remove deposits such as flocs and make the next regeneration process more efficient. be able to.

酸及び塩素イオン含有溶液により洗浄した後、塩素イオ
ン含有溶液を流通した状態又は同溶液の流通を停止して
直流通電が行なわれる。
After cleaning with an acid and a chlorine ion-containing solution, direct current is applied with the chlorine ion-containing solution flowing or with the solution stopped.

通電は、例えば多孔質物質が活性炭である場合、活性炭
lk9当り7.幹岬程度の直流通電とし、それにより、
特に塩素イオン含有溶液を存在させた場合、電解効果に
より該溶液中の塩素イオンが酸化されてc12なし、し
NaC1o等の酸化に有効な活性を示す塩素(遊離、結
合型を問わず)となり、これらの作用によりCOD成分
等の有機物が分解される。又、この際、分極した多孔質
導物質の内部の細孔で塩素ガスが発生するので、吸着さ
れた有機物を効果的に分解することができる。更に又、
通電を塩素イオン含有溶液による逆洗下で行なうことに
より、多孔質物質の各粒子の帯電城又は分極域(陰性、
陽・性の位置)が各粒子の位置の変更に伴って変化し、
それにより吸着された無機性イオンが斥力によって除去
される効果が得られる。以上の工程を実施することによ
り、多孔質物質に吸着された被吸着物を効果的に除去す
ることができるが、本発明は排水処理におけるものと同
一の処理槽中で簡単に実施できる利点を有している。
For example, when the porous material is activated carbon, the electric current is applied at a rate of 7.5 kg per 1 lb of activated carbon. The direct current is about the same level as Mikimisaki, and as a result,
In particular, when a chlorine ion-containing solution is present, the chlorine ions in the solution are oxidized by the electrolytic effect and become chlorine (regardless of free or bound) that exhibits effective activity in oxidizing Cl2 and NaC1o, etc. These actions decompose organic substances such as COD components. Further, at this time, since chlorine gas is generated in the pores inside the polarized porous conductive material, the adsorbed organic matter can be effectively decomposed. Furthermore,
By applying electricity while backwashing with a chlorine ion-containing solution, the charging castle or polarization region (negative,
positive/positive position) changes as the position of each particle changes,
This produces the effect that the adsorbed inorganic ions are removed by repulsive force. By carrying out the above steps, it is possible to effectively remove adsorbed materials adsorbed onto porous materials, but the present invention has the advantage that it can be easily carried out in the same treatment tank as that used in wastewater treatment. have.

次に、本発明の具体例を図面を参照して説明する。Next, specific examples of the present invention will be described with reference to the drawings.

第7図は本発明に使用する装置の一具体例を示した断面
概略図であり、101、118、はポンプ、102は排
水貯槽、103は加圧浮上分離槽、104は泡沫分離槽
、105は電解槽、106は浮上分離帯城、107は多
孔買物質、108は多孔板、109は支持電極、110
は電解帯域、111は処理水貯槽、112は凝集剤貯槽
、1 13は加圧水生成器、1 14は圧縮機、1 1
5は水槽、116、117、122、126、127、
130、132、133及び134はバルブ、1 19
は再生液供総合路、120は再生液供繋合口、121再
生液排出口、123は空気供給路、124はバブリング
装置、125は再生液排出路、128は酸貯槽、131
は塩素イオン含有溶液貯槽を示し、又、Aは排水、Bは
処理水、Cは凝集剤、Dは加圧水、Bは水、Fは酸、G
は塩素イオン含有溶液を示す。排水Aはポンプ101に
より排水貯槽102まで揚水される。
FIG. 7 is a schematic cross-sectional view showing a specific example of the apparatus used in the present invention, in which 101 and 118 are pumps, 102 is a wastewater storage tank, 103 is a pressurized flotation separation tank, 104 is a foam separation tank, and 105 106 is an electrolytic cell, 106 is a flotation separation zone, 107 is a porous material, 108 is a porous plate, 109 is a supporting electrode, 110
is an electrolysis zone, 111 is a treated water storage tank, 112 is a coagulant storage tank, 1 13 is a pressurized water generator, 1 14 is a compressor, 1 1
5 is a water tank, 116, 117, 122, 126, 127,
130, 132, 133 and 134 are valves, 1 19
120 is a regeneration liquid supply path, 120 is a regeneration liquid supply connection port, 121 is a regeneration liquid discharge port, 123 is an air supply path, 124 is a bubbling device, 125 is a regeneration liquid discharge path, 128 is an acid storage tank, 131
indicates a chlorine ion-containing solution storage tank, A is wastewater, B is treated water, C is a flocculant, D is pressurized water, B is water, F is acid, G
indicates a solution containing chloride ions. The wastewater A is pumped up to a wastewater storage tank 102 by a pump 101.

揚水された排水Aは、排水貯槽102から自然落差を用
いて順次加圧浮上分離槽103、泡沫分離槽104そし
て本発明の再生機能を備えた電解槽105の浮上分離帯
城106に供給され、次いで、多孔質物質107につき
不透性の多孔板108上で支持電極109間に多孔質物
質107が充填された電解帯城110を流通し、処理水
Bとなって処理水貯槽111に到る。排水貯槽102か
ら加圧浮上分離槽103に到る過程では、凝集剤貯槽1
12からの凝集剤Cと加圧水生成器113からの加圧水
Dとが添加される。圧縮機114からは空気が加圧水生
成器113内の底部の液の溜りと泡沫分離槽104の底
部とに吹き込まれ、更に本発明の実施の際に電解槽10
5の底部に吹き込まれる。上記の排水処理工程において
、特に電解帯城110を経ることにより、排水中の金属
イオン、無機性イオン及び有機物(COD成分等)が吸
着除去される。
The pumped wastewater A is sequentially supplied from the wastewater storage tank 102 to the pressurized flotation separation tank 103, the foam separation tank 104, and the flotation separation band 106 of the electrolytic cell 105 equipped with the regeneration function of the present invention using natural head. Next, the porous material 107 flows through an electrolytic band 110 filled with porous material 107 between supporting electrodes 109 on an impermeable porous plate 108, and becomes treated water B to reach a treated water storage tank 111. . In the process from the wastewater storage tank 102 to the pressurized flotation separation tank 103, the flocculant storage tank 1
Flocculant C from 12 and pressurized water D from pressurized water generator 113 are added. Air is blown from the compressor 114 into the liquid pool at the bottom of the pressurized water generator 113 and into the bottom of the foam separation tank 104, and further into the electrolytic tank 10 in the practice of the present invention.
It is blown into the bottom of 5. In the above-mentioned wastewater treatment process, metal ions, inorganic ions, and organic substances (such as COD components) in the wastewater are adsorbed and removed, especially by passing through the electrolytic belt 110.

多孔買物質107の紐孔及び界面におけるこれらの除去
は、吸着、濃縮によるばかりでなく酸化、還元分解によ
るところが大きい。しかしながら、長時間の経過により
多孔質物質107上には上記被吸着物が吸着され、更に
、電解帯域110上面のほぼ全域にわたりフロックの堆
積を生ずることがある。再出処理に当っては、先ず水槽
115内の水Eを、バルブ116及びバルブ117を開
きポンプ118により再生液供給路119を経て再生液
供給口120から電解槽105の底部に供給する。
Removal of these substances at the string pores and interfaces of the porous material 107 is largely due to oxidation and reductive decomposition as well as adsorption and concentration. However, over a long period of time, the adsorbed substances may be adsorbed onto the porous material 107, and flocs may be deposited over almost the entire upper surface of the electrolytic zone 110. In the re-discharging process, first, the water E in the water tank 115 is supplied to the bottom of the electrolytic cell 105 from the regeneration liquid supply port 120 via the regeneration liquid supply path 119 by the pump 118 with the valves 116 and 117 opened.

電解槽105内に供給された水Eは、多孔板108を経
て多孔質物質107相互の間隙を通ってて上昇し、逆洗
により堆積物であるフロックを剥離し、再生液排出口1
21から電解槽105外へ排出される。この逆洗浄工程
では、水Eの供給と同時に圧縮機104からバルブ12
2を開いて空気供給路123を経てバブリング装置12
4から電解槽105内の多孔板108より下方に空気が
吹き込まれてバブリングが行なわれる。再生に寄与した
水Eは、再生液排出ロー21から再生液排出路125を
経てバルブ126を開いて水槽115に戻される。この
ように水Eは循環使用されるが、汚染度に応じ適宜バル
ブ127を開いて廃棄される。バブリングを併用した水
E‘こよる逆洗後、酸貯槽128内の酸Fを、バルブ1
29を開いて、水Eと同経路、同要領で再生液供給ロー
20から電解槽105の底部に供給する。
The water E supplied into the electrolytic cell 105 passes through the porous plate 108 and rises through the gaps between the porous substances 107, peels off the flocs that are deposits by backwashing, and drains the recycled liquid outlet 1.
21 to the outside of the electrolytic cell 105. In this backwashing process, water E is supplied from the compressor 104 to the valve 12 at the same time.
2 is opened and the bubbling device 12 passes through the air supply path 123.
4, air is blown downward from the porous plate 108 in the electrolytic cell 105 to perform bubbling. The water E that has contributed to the regeneration is returned to the water tank 115 from the regeneration liquid discharge row 21 via the regeneration liquid discharge path 125 by opening the valve 126. In this way, the water E is recycled and used, but is discarded by opening the valve 127 as appropriate depending on the degree of contamination. After backwashing with water E' using bubbling, the acid F in the acid storage tank 128 is removed from the valve 1.
29 is opened, and the regenerating liquid supply row 20 is supplied to the bottom of the electrolytic cell 105 through the same route and in the same manner as water E.

電解槽105内に供給された酸Fは、多孔板108を経
て多孔質物質107相互の間隙を通って上昇し、酸F‘
こ溶解し易い物質特にカルシウムイオン及びその炭酸塩
のような電析物を港出し、再生液排出ロー21から電解
槽105外へ排出される。この酸Fによる逆洗工程では
、硫酸カルシウムのような析出物が生成してもこれが成
長する間もなく順次酸Fに同伴されて再生液排出ロー2
1から排出、除去される。再生に寄与した酸Fは再生液
排出口121から再生液排出路125を経てバルブ13
0を開いて酸貯槽128に戻される。このようにして酸
Fは循環使用されるが、汚染度及び再生能低下に応じて
適宜バルブ127を開いて廃棄される。酸Fの流通は、
その効果が短時間で現われるので、装置及び多孔買物質
の損傷を防ぐために適宜時間を考慮する。酸Fによる逆
洗後、塩素イオン含有溶液貯槽131内の塩素イオン含
有溶液Gを、バルブ132を開いて水E及び酸Fと同経
路、同要領で電解槽105の底部に供給する。
The acid F supplied into the electrolytic cell 105 passes through the porous plate 108 and rises through the gap between the porous materials 107, and becomes acid F'.
Easily dissolved substances, particularly calcium ions and electrodeposited substances such as carbonates thereof, are discharged from the regenerating liquid discharge row 21 to the outside of the electrolytic cell 105. In this backwashing process using acid F, even if precipitates such as calcium sulfate are formed, they are entrained by acid F and sent to the reclaimed liquid discharge row 2 before they grow.
It is discharged and removed from 1. The acid F that contributed to the regeneration is passed from the regenerating liquid outlet 121 to the regenerating liquid outlet 125 to the valve 13.
0 and returned to the acid storage tank 128. In this way, the acid F is recycled and used, but is discarded by opening the valve 127 as appropriate depending on the degree of contamination and the decline in regeneration ability. The distribution of acid F is
Since the effect appears in a short time, time should be taken into consideration to prevent damage to the equipment and the porous material. After backwashing with acid F, the chlorine ion-containing solution G in the chlorine ion-containing solution storage tank 131 is supplied to the bottom of the electrolytic cell 105 through the same route and in the same manner as water E and acid F by opening the valve 132.

塩素イオン含有溶液Gは、多孔板108を経て多孔質物
質107相互の間隙をぬって上昇し、多孔質物質107
に紬孔において、該溶液を構成するイオンと置換し易い
物質、特に塩素イオン含有溶液Gとして食塩水を用い場
合には、BH4十、N03‐及びN02‐等を置換して
再生液排出口121から電解槽105外へ排出される。
次いで、塩素イオン含有溶液Gの流通下において支持電
極109間に直流通電を行なう。
The chlorine ion-containing solution G passes through the porous plate 108 and rises through the gaps between the porous substances 107, and the porous substances 107
In the Tsumugi hole, when using salt water as the solution G containing a substance that easily replaces the ions constituting the solution, especially chlorine ions, BH40, N03-, N02-, etc. are replaced and the regenerated liquid outlet 121 is used. is discharged from the electrolytic cell 105.
Next, direct current is applied between the supporting electrodes 109 while the chlorine ion-containing solution G is flowing.

それにより、塩素イオン含有溶液G中の塩素イオンが電
解効果により酸化され、c12乃至Naclo等になり
これらの作用により有機物すなわちCOD成分等が分解
される。この逆洗及び電解工程により、溶出物、分解生
成物、フロック等は塩素イオン含有溶液Gに同伴されて
再生液排出ロー21から排出、除去される。再生に寄予
した塩素イオン含有溶液Gは、再生液排出ロー21から
再生液排出路125を経てバルブ133を開いて塩素イ
オン含有渚液貯槽131に戻される。このようにして塩
素イオン含有溶液Gは循環使用されるが、汚染度及び再
生能低下に応じバルブ127を開いて適宜廃棄される。
なお、電解時に発生する塩素ガスは有害であるが、第7
図に示されるように、他の糟とペントを一つにしている
ために、希釈された後に大気中に放出されることになる
As a result, the chlorine ions in the chlorine ion-containing solution G are oxidized by the electrolytic effect to become c12, Naclo, etc., and organic substances, ie, COD components, etc. are decomposed by these actions. Through this backwashing and electrolytic process, eluates, decomposition products, flocs, etc. are discharged and removed from the regeneration liquid discharge row 21 along with the chlorine ion-containing solution G. The chlorine ion-containing solution G contributed to the regeneration is returned to the chlorine ion-containing beach liquid storage tank 131 by opening the valve 133 via the regenerating liquid discharge path 125 from the regenerating liquid discharge row 21. In this way, the chlorine ion-containing solution G is recycled and used, but the valve 127 is opened depending on the degree of contamination and the reduction in regeneration ability, and the solution is disposed of as appropriate.
Note that chlorine gas generated during electrolysis is harmful, but
As shown in the figure, since the pent is combined with other grains, it is diluted and then released into the atmosphere.

以上述べたように、本発明の一具体例として、酸洗に次
いで塩素イオン含有溶液で洗浄し、更に電解を行なうこ
とにより、多孔質物質を充填した電解処理によって多孔
質物質に吸着された排水中の金属イオン、無機性イオン
及び有機物を簡単にかつ効果的に除去、再生することが
できる。
As described above, as a specific example of the present invention, wastewater adsorbed to a porous material by electrolytic treatment filled with a porous material is obtained by pickling, washing with a chlorine ion-containing solution, and further electrolyzing. Metal ions, inorganic ions, and organic substances inside can be easily and effectively removed and regenerated.

次に、本発明を実施例により説明するが、本発明はこれ
らによりなんら限定されるものではなL、。実施例 1 前記実施例1におけるものと同一の第1図に示した装置
を使用し、下水を電流2A、流量200の‘/分、時間
1餌時間の条件で電解処理し、下水中の被吸着物を粒状
活性炭に吸着させて除去した。
Next, the present invention will be explained by examples, but the present invention is not limited to these in any way. Example 1 Using the same apparatus shown in FIG. 1 as in Example 1, sewage was subjected to electrolytic treatment under the conditions of a current of 2 A, a flow rate of 200'/min, and a feed time of 1 time, to remove contaminated water in the sewage. The adsorbate was removed by adsorption on granular activated carbon.

その結果、カルシウム1.2夕、TNI.4夕、COD
I.8夕及び懸濁物0.84夕が除去、吸着された。こ
の粒状活性炭に本発明の再生方法を適用した。
As a result, calcium 1.2 pm, TNI. 4th evening, COD
I. 8 particles and 0.84 particles of suspended matter were removed and adsorbed. The regeneration method of the present invention was applied to this granular activated carbon.

溶出(再生)条件を下記に示す。酸 洗 浄:1重量%
の濃度の硫酸、 500のと/分、循環使用、 時間3び分間 食塩水洗浄:5重量%の濃度の食塩水、 500の【/分、循環使用、 時間1時間 食塩水電解:食塩水洗浄後の食塩水(5重量%の濃度の
もの)直流電流弘、時間1時間 処理結果を第1表に示す。
The elution (regeneration) conditions are shown below. Acid cleaning: 1% by weight
Sulfuric acid with a concentration of 500 / min, cyclic use, 3 minutes saline washing: saline solution with a concentration of 5% by weight, 500 / min, cyclic use, 1 hour saline electrolysis: saline washing Table 1 shows the results of subsequent saline treatment (with a concentration of 5% by weight) under direct current for 1 hour.

結果は、処理水中の港出塁と港出百分率で示した。なお
、CODは酸化分解するので食塩水電解における溶出量
は不明であった。第1表 第1表から明らかなように、本発明によれば、下水中か
ら粒状活性炭に吸着された被吸着物の約90%を溶出、
脱着させることができる。
The results were expressed as port departure and port exit percentage in the treated water. Note that since COD is oxidatively decomposed, the amount eluted in the saline electrolysis was unknown. Table 1 As is clear from Table 1, according to the present invention, about 90% of the adsorbed substances adsorbed on granular activated carbon from sewage are eluted,
It can be attached and detached.

なお、溶出効果と分解効果を加えた粒状活性炭の全再生
率(実験例4と同機の方法により測定)は約90%以上
であった。実施例 2 実施例1におけるものと同一の装置を使用し、供試液と
して硝酸カルシウム〔Ca(N03)2〕及びべプトン
を含有する液を露流泌、流量200私/分、時間8時間
の条件で電解処理し、粒状活性炭にカルシウム0.9夕
及び硝酸イオン4.3夕及びCODI.1夕を吸着、除
去させた。
The total regeneration rate of the granular activated carbon including the elution effect and the decomposition effect (measured by the same method as in Experimental Example 4) was about 90% or more. Example 2 Using the same equipment as in Example 1, a solution containing calcium nitrate [Ca(N03)2] and bepton was discharged as a test solution, at a flow rate of 200 I/min, for 8 hours. The granular activated carbon was electrolytically treated under the following conditions: calcium 0.9 hours, nitrate ions 4.3 hours, and CODI. 1 night was adsorbed and removed.

この粒状活性炭に本発明の再生方法を適用した。The regeneration method of the present invention was applied to this granular activated carbon.

なお、本実施例においては、ta}酸洗浄の後に食塩水
洗浄を行なった場合及び{b}食塩水洗浄後に酸洗浄を
行なった場合を併記する。溶出(再生)条件は下記のと
おりとした。酸 洗 浄:1重量%の濃度の硫酸、50
0のと/分、循環使用、時間30分食塩水洗総:5重量
%の濃度の食塩水、500泌/分、循環使用、時間1時
間食塩水電解:食塩水洗浄後の食塩水(5重量%の濃度
のもの)直流電流弘、時間1時間 処理結果を第2表の{a}及び{bに示す。
In addition, in this example, the case where saline washing was performed after ta} acid washing and the case where acid washing was performed after saline water washing are also described {b}. The elution (regeneration) conditions were as follows. Acid washing: sulfuric acid with a concentration of 1% by weight, 50%
0/min, circulation use, time 30 minutes Saline washing total: 5 wt% concentration saline, 500 secretion/min, circulation use, time 1 hour Saline electrolysis: Saline solution after saline washing (5 wt. % concentration) Direct current, 1 hour treatment results are shown in Table 2, {a} and {b.

結果は処理水中の溶出量と溶出百分率で示した。なお、
CODは酸化分解するので食塩水電解における溶出量は
不明であった。第2表の(a) 第2表の他 第2表から明らかなように、何れの場合においても熔出
率70%以上の効果があるが、酸洗浄を先に行なう場合
が特に優れて90%以上の溶出率が得られる。
The results were expressed as the elution amount and elution percentage in the treated water. In addition,
Since COD is oxidatively decomposed, the amount eluted in saline electrolysis was unknown. Table 2 (a) As is clear from Table 2 and Table 2, there is an effect of a dissolution rate of 70% or more in any case, but the case where acid washing is performed first is particularly excellent. % or higher elution rate can be obtained.

なお、ベプトンに伴うCOD成分は、活性炭には僅かし
か吸着されておらず、その大部分が酸化分解されている
ことが再生試験により判明している。以上説明したよう
に、本発明によれば、多孔費導電性物質の電解処理によ
り排水中の金属イオン、無機性イオン及び有機物を吸着
した多孔質導電性物質を簡単かつ効果的に再生すること
ができる。
It has been found through regeneration tests that only a small amount of the COD component associated with beptone is adsorbed on activated carbon, and most of it is oxidized and decomposed. As explained above, according to the present invention, it is possible to easily and effectively regenerate the porous conductive material that has adsorbed metal ions, inorganic ions, and organic matter in wastewater by electrolytic treatment of the porous conductive material. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実験例及び実施例に使用した装置の断
面概略図でaは側面図、bは正面図を示し、第2図は本
発明の実験例1における溶出時間とカルシウムイオン溶
出率との関係を示したグラフ、第3図は本発明の実験例
2における溶出時間と硝酸イオン溶出率との関係を示し
たグラフ、第4図のa及びbは本発明の実験例3におけ
る溶出時間とカルシウムイオン溶出率及び硝酸イオン溶
出率との関係を示したグラフ、第5図及び第6図は本発
明の実験例4における活性炭の経時再生率を示したグラ
フで第5図はフェノール液の場合、第6図は下水の場合
を示し、第7図は本発明に使用する装置の一具体例を示
した断面概略図である。 1・・・・・・浮上分離帯域、2…・・・電解帯域、3
・・・・・・活性炭、4・・・・・・支持電極、5・・
・・・・排水供給口、6・・・・・・再生液供給口兼処
理水排出口、101、118・・・・・・ポンプ、10
2・・・・・・排水貯槽、103・・・・・・加圧浮上
分離槽、104・・・・・・泡沫分離槽、105・・・
・・・電解槽、106・・・・・・浮上分離帯城、10
7・・・…多孔質物質、108・・・・・・多孔板、1
09・・・・・・支持電極、110・・・・・・電解帯
域、111・・・…処理水貯槽、112・・・・・・凝
集剤貯槽、113・・・・・・加圧水生成器、114・
・…・圧縮機、115・・・・・・水槽、116、11
7、122、126、127、130、132、133
及び134……バルブ、119・・・・・・再生液供給
口、120・・・・・・再生液供給口、121……再生
液排出口、123・・・・・・空気供給路、124・・
・・・・バブリング装置、125・・・・・・再生液排
出路、128・・・・・・酸貯槽、131・・・・・・
塩素イオン含有溶液貯槽、A・・・・・・排水、B・…
・・処理水、C・・・・・・凝集剤、D・・・・・・加
圧水、E・・・・・・水、F・・・・・・酸、G・・・
・・・塩素イオン含有溶液。 オー図 才2図 矛3図 矛4図 矛5図 矛6図 矛7図
Fig. 1 is a schematic cross-sectional view of the apparatus used in the experimental examples and examples of the present invention, where a shows a side view and b shows a front view, and Fig. 2 shows the elution time and calcium ion elution in Experimental Example 1 of the present invention. Figure 3 is a graph showing the relationship between elution time and nitrate ion elution rate in Experimental Example 2 of the present invention, and a and b in Figure 4 are graphs showing the relationship between elution time and nitrate ion elution rate in Experimental Example 3 of the present invention. Graphs showing the relationship between elution time, calcium ion elution rate, and nitrate ion elution rate. Figures 5 and 6 are graphs showing the regeneration rate of activated carbon over time in Experimental Example 4 of the present invention. Figure 5 is a graph showing the regeneration rate of activated carbon over time in Experimental Example 4 of the present invention. In the case of liquid, FIG. 6 shows the case of sewage, and FIG. 7 is a schematic cross-sectional view showing one specific example of the apparatus used in the present invention. 1...flotation separation zone, 2...electrolysis zone, 3
...Activated carbon, 4... Support electrode, 5...
... Drainage supply port, 6 ... Regeneration liquid supply port and treated water discharge port, 101, 118 ... Pump, 10
2...Drainage storage tank, 103...Pressure flotation separation tank, 104...Foam separation tank, 105...
...Electrolytic cell, 106...Flotation separation belt castle, 10
7...Porous substance, 108...Porous plate, 1
09... Support electrode, 110... Electrolysis zone, 111... Treated water storage tank, 112... Coagulant storage tank, 113... Pressurized water generator , 114・
...Compressor, 115...Water tank, 116, 11
7, 122, 126, 127, 130, 132, 133
and 134... Valve, 119... Regeneration liquid supply port, 120... Regeneration liquid supply port, 121... Regeneration liquid discharge port, 123... Air supply path, 124・・・
... Bubbling device, 125 ... Regeneration liquid discharge path, 128 ... Acid storage tank, 131 ...
Chlorine ion-containing solution storage tank, A...Drainage, B...
... Treated water, C ... Coagulant, D ... Pressurized water, E ... Water, F ... Acid, G ...
...Solution containing chlorine ions. O figure Sai 2 figure spear 3 figure spear 4 figure spear 5 figure 6 figure spear 7 figure

Claims (1)

【特許請求の範囲】 1 多孔質導電性物質を充填した電解槽に排水を流通し
、電解処理により排水中の金属イオン、無機性イオン及
び有機物を吸着した多孔質導電性物質を再生するに当り
、多孔質導電性物質を酸により洗浄する工程、塩素イオ
ン含有溶液により洗浄する工程及び通電を行なう工程を
含むことを特徴とする多孔質導電性物質の再生方法。 2 多孔質導電性物質を酸により洗浄した後塩素イオン
含有溶液により洗浄する特許請求の範囲第1項記載の多
孔質導電性物質の再生方法。 3 多孔質導電性物質を塩素イオン含有溶液により洗浄
した後酸により洗浄する特許請求の範囲第1項記載の多
孔質導電性物質の再生方法。 4 多孔質導電性物質を塩素イオン含有溶液により洗浄
した後、塩素イオン含有溶液の流通を停止した状態で通
電を行なう特許請求の範囲第1項又は第2項記載の多孔
質導電性物質の再生方法。 5 多孔質導電性物質を塩素イオン含有溶液により洗浄
すると同時に塩素イオン含有溶液を流通した状態で通電
を行なう特許請求の範囲第1項又は第2項記載の多孔質
導電性物質の再生方法。 6 多孔質導電性物質を酸により洗浄する前に水により
逆洗を行なう特許請求の範囲第1項ないし第5項のいず
れかに記載の多孔質導電性物質の再生方法。 7 気泡を同伴した水で逆洗を行なう特許請求の範囲第
6項記載の多孔質導電性物質の再生方法。
[Scope of Claims] 1. In regenerating the porous conductive material that has adsorbed metal ions, inorganic ions, and organic matter in the waste water through electrolytic treatment by passing wastewater through an electrolytic cell filled with a porous conductive material. A method for regenerating a porous conductive material, comprising the steps of: washing the porous conductive material with an acid; washing the porous conductive material with a solution containing chlorine ions; and applying electricity. 2. A method for regenerating a porous conductive material according to claim 1, wherein the porous conductive material is washed with an acid and then washed with a solution containing chlorine ions. 3. A method for regenerating a porous conductive material according to claim 1, wherein the porous conductive material is washed with a chlorine ion-containing solution and then washed with an acid. 4. Regeneration of a porous conductive material according to claim 1 or 2, in which, after cleaning the porous conductive material with a chlorine ion-containing solution, electricity is supplied while the flow of the chlorine ion-containing solution is stopped. Method. 5. A method for regenerating a porous conductive material according to claim 1 or 2, wherein the porous conductive material is washed with a chlorine ion-containing solution and at the same time, electricity is applied while the chlorine ion-containing solution is flowing. 6. A method for regenerating a porous conductive material according to any one of claims 1 to 5, wherein the porous conductive material is backwashed with water before being washed with an acid. 7. The method for regenerating a porous conductive material according to claim 6, wherein backwashing is performed with water accompanied by air bubbles.
JP7690279A 1979-06-20 1979-06-20 Method for regenerating porous conductive materials Expired JPS6038998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7690279A JPS6038998B2 (en) 1979-06-20 1979-06-20 Method for regenerating porous conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7690279A JPS6038998B2 (en) 1979-06-20 1979-06-20 Method for regenerating porous conductive materials

Publications (2)

Publication Number Publication Date
JPS561404A JPS561404A (en) 1981-01-09
JPS6038998B2 true JPS6038998B2 (en) 1985-09-04

Family

ID=13618587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7690279A Expired JPS6038998B2 (en) 1979-06-20 1979-06-20 Method for regenerating porous conductive materials

Country Status (1)

Country Link
JP (1) JPS6038998B2 (en)

Also Published As

Publication number Publication date
JPS561404A (en) 1981-01-09

Similar Documents

Publication Publication Date Title
US4623436A (en) Method and apparatus for removing impurities from liquids
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
KR102074433B1 (en) Method for regenerating plating liquid, plating method, and plating apparatus
JP4104157B2 (en) Method and apparatus for purifying contaminated objects by heavy metals
US4652352A (en) Process and apparatus for recovering metals from dilute solutions
US5292412A (en) Removal of mercury from waste streams
KR101842552B1 (en) Electrolytic Carbon Filter and Equipment of Water Treatment using the same
US5804057A (en) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin
US4330386A (en) Combined ion-exchange particulate bed electrolytic cell
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
RU2157569C2 (en) Method for removing technetium from metal contaminated with radioactive materials
JP3512425B2 (en) Electrochemical treatment of ion exchange materials
JPS6038998B2 (en) Method for regenerating porous conductive materials
JPS6244995B2 (en)
JPS6338434B2 (en)
JPS59127691A (en) Advanced treatment of secondary treated water of night soil
JP2014139530A (en) Regeneration method of eluent and regenerating apparatus therefor
JPS6057369B2 (en) How to regenerate activated carbon
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP4102851B2 (en) Reaction tank for elution of heavy metals from contaminated materials
JPS58159888A (en) Active carbon adsorbing tower having regenerating apparatus
TWI356045B (en) Treatment of aqueous chemical waste
JPH05185072A (en) Energizing regeneration type waste liquid treatment and equipment therefor
JP2000061322A (en) Apparatus for regenerating used ion exchange resin
JP4013527B2 (en) Water treatment equipment