JPS6038828B2 - Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding - Google Patents

Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding

Info

Publication number
JPS6038828B2
JPS6038828B2 JP55073595A JP7359580A JPS6038828B2 JP S6038828 B2 JPS6038828 B2 JP S6038828B2 JP 55073595 A JP55073595 A JP 55073595A JP 7359580 A JP7359580 A JP 7359580A JP S6038828 B2 JPS6038828 B2 JP S6038828B2
Authority
JP
Japan
Prior art keywords
pole
partition wall
cell
circular
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073595A
Other languages
Japanese (ja)
Other versions
JPS56168356A (en
Inventor
良佐 森成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP55073595A priority Critical patent/JPS6038828B2/en
Publication of JPS56168356A publication Critical patent/JPS56168356A/en
Publication of JPS6038828B2 publication Critical patent/JPS6038828B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 本発明は、鉛蓄電池に係わり、機械的、電気的特性、液
密性に優れた信頼性の高いセル間接続の方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to lead-acid batteries, and relates to a highly reliable inter-cell connection method with excellent mechanical, electrical properties and liquid tightness.

鉛蓄電池のセル間接競には、従来いくつかの方法が用い
られてきたが、自動車用電池の場合、現在では電池の軽
量化、性能向上および原価低減のタ目的から貫通式が主
流を占めつつある。
Several methods have been used in the past for cell-to-cell competition in lead-acid batteries, but in the case of automobile batteries, the through-cell method is currently becoming mainstream in order to reduce battery weight, improve performance, and reduce costs. be.

貫通式は、燐酸するセル間の極板群同士を、その名称の
通り隔壁を貫通させて接続するもので、従来用いられて
いる隔壁オーバー式と比べるとセル間の暖続部が短かく
なるため電圧特性が向上し、使用する鉛の量も大幅に低
減できる。第1図は、貫通式によるセル間接続の状況を
示す断面図であり、極板群を構成する複数個の極板耳部
1,1′が溶接されている極柱2,2′が、セル3およ
び3′の間の隔壁4を貫通する形で接続されている。極
柱2と極柱2′との接続には抵抗溶接、ガス溶接等の手
法が用いられているが、量産性に於て特に優れていると
の理由から抵抗溶接が用いられる場合が多い。第2図は
、抵抗客暖による貫通式セル間接続の状況を示したもの
である。
As the name suggests, the through-type connects the electrode plates between the phosphoric cells by passing through the partition wall, and the connecting part between the cells is shorter than the conventional partition-over type. Therefore, the voltage characteristics are improved and the amount of lead used can be significantly reduced. FIG. 1 is a cross-sectional view showing the through-type cell-to-cell connection, in which the pole posts 2, 2' to which the plurality of pole plate ears 1, 1' constituting the pole plate group are welded, The connection is made through the partition wall 4 between the cells 3 and 3'. Methods such as resistance welding and gas welding are used to connect the pole posts 2 and 2', but resistance welding is often used because it is particularly excellent in mass production. FIG. 2 shows the state of through-type cell-to-cell connection using resistive heating.

まず、隔壁4に設けられた円形の貫通口5を通して隣接
するセル3,3′内の極柱2,2′を接触させ、これに
1対の溶接用電極6を当接し、太い矢印で示した様に加
圧力Pを加えるとともに一方の電極6から被溶接材料、
すなわち極柱2,2′を経て他方の電極6へと溶接電流
7を通じる。この操作により、両極柱2,2′の接触面
8では接触抵抗並びに極柱自身のもつ電気抵抗による抵
抗発熱によって極柱2,2′の一部が溶融する。そして
、通電終了とともに溶接部の温度は低下し、前記溶融部
は凝固し溶接は完了する。第3図は、良好な熔接が行な
われた後の接続部の断面で示したものであるが、両極柱
2,2′の接触面8には前述した如く極柱の一部が熔融
、凝固して生じたナゲット8′が認められる。抵抗溶接
による接続方式に於て接続部に要求される特性の主なも
のは、3つある。
First, the pole pillars 2 and 2' in the adjacent cells 3 and 3' are brought into contact through the circular through-hole 5 provided in the partition wall 4, and a pair of welding electrodes 6 are brought into contact with this, as shown by the thick arrows. While applying pressure P in the same manner as above, the material to be welded is removed from one electrode 6.
That is, the welding current 7 is passed through the pole posts 2, 2' to the other electrode 6. By this operation, a portion of the pole columns 2, 2' is melted at the contact surface 8 of the pole columns 2, 2' due to resistance heat generation due to contact resistance and electric resistance of the pole columns themselves. Then, as the current supply ends, the temperature of the welded part decreases, the molten part solidifies, and welding is completed. Figure 3 shows a cross section of the connection after good welding, but as mentioned above, some of the poles are melted and solidified on the contact surface 8 of the poles 2 and 2'. A nugget 8' produced by this process is recognized. There are three main characteristics required of the connection part in the resistance welding connection method.

その第1は、大電流放電に耐えられる十分な接触面積(
熔後面積)が確保されること。第2には、接続部を通じ
て隣接するセル3,3′間の電解液の移動が起こらない
様に液密性が確保されること。第3には、振動等により
熔接部が破壊することがない様十分な機械的強度を有す
ることである。これらの諸特性を満足する接続部を得る
ためには、高度の溶接技術が要求されるが、最も難しい
問題は“散り”の発生をいかにして防止するかというこ
とである。衆知の通り、極柱の材質は、純鉛あるいはわ
ずかの合金元素を含む鉛ベースの合金(Pb一Sb系、
Pb−Ca系等)であり、いずれも250〜33000
と金属材料中では極めて低い融点を有している。このこ
とは、一見、熔接を容易にするように考えられがちであ
るが、抵抗溶接の如く極めて急峻な加熱を伴なう溶接の
場合にはその考えは適当ではない。すなわち、両極柱の
接触面の温度は、ほとんど通電開始と同時に融点以上に
産し、さらに溶融金属は、その沸点(約1700C○)
以上にも加熱される。この様な極度の加熱が極めて短時
間のうちになされるため、溶融金属は著しい体積膨張を
来たし、その結果、非常に大きな圧力で接触面から外部
へ飛出してくる。この様な溶融金属の飛散を“散り”を
呼んでいるが、鉛あるいは鉛合金(以下鉛合金と略す)
の場合には、融点(沸点)が低いために極めて“散り”
が発生しやすい。抵抗溶接に於ては、電極加圧力は、溶
融金属の外周にある未溶融部分を押さえつけ、内部の溶
融金属が前述した如く外へ向って飛出してくるのを防止
する役目をもっている。
The first is a sufficient contact area (
(area after melting) must be ensured. Second, liquid tightness must be ensured so that electrolyte does not move between adjacent cells 3, 3' through the connection portion. Thirdly, it must have sufficient mechanical strength so that the welded portion will not be destroyed by vibration or the like. In order to obtain a joint that satisfies these various characteristics, advanced welding technology is required, but the most difficult problem is how to prevent the occurrence of "splashing". As is well known, the material of the pole pillar is pure lead or a lead-based alloy containing a small amount of alloying elements (Pb-Sb system,
(Pb-Ca system, etc.), both of which are 250 to 33,000
It has an extremely low melting point among metal materials. At first glance, this tends to be thought to make welding easier, but this is not appropriate in the case of welding that involves extremely steep heating, such as resistance welding. In other words, the temperature of the contact surfaces of the pole pillars rises above the melting point almost as soon as the current starts flowing, and the temperature of the molten metal rises above its boiling point (approximately 1700℃).
It gets heated even more. Because such extreme heating occurs in a very short period of time, the molten metal undergoes significant volumetric expansion, and as a result, it flies out from the contact surface under a very large pressure. This kind of scattering of molten metal is called "splatter", but lead or lead alloy (hereinafter abbreviated as lead alloy)
In the case of
is likely to occur. In resistance welding, the electrode pressurizing force has the role of pressing down the unmelted portion on the outer periphery of the molten metal and preventing the molten metal inside from flying out as described above.

それ故、加圧力を大きくすれば“散り”の発生は防止で
きるはずであるが、この場合にも鉛合金本来の性質が大
きな障害となる。すなわち、常温に於ても軟ら力)な鉛
合金は、溶接時の温度上昇によりさらに軟化する。この
ために、溶接時に極柱内部へ電極が著しく食込んだりし
て極柱自身が異常に変形し、両極柱の接触面が溶接中開
□し、ここから散りが発生する。この様な傾向は、従来
行なわれてきた如く一回の熔接で大きな接続面積(溶接
面積あるいはナゲツト径)を得ようとして大電流で溶接
するほど著しくなる。この様な異常変形は、通電中熔接
時におる電流通路を乱し、本来溶融すべきでない部分い
溶融が生じるなどの障害を引起こすことにもなり、さら
に“散り”の発生を促進させる結果となる。さて、上述
した様な“散り”の発生が大きな問題とされる最大の理
由は次の通りである。
Therefore, it should be possible to prevent the occurrence of "scattering" by increasing the pressure, but in this case as well, the inherent properties of the lead alloy pose a major obstacle. In other words, lead alloy, which is soft even at room temperature, becomes even softer as the temperature rises during welding. For this reason, during welding, the electrode may significantly dig into the inside of the pole column, causing the pole column itself to deform abnormally, and the contact surfaces of both pole columns to open during welding, which causes expulsion. This tendency becomes more pronounced as welding is carried out with a large current in an attempt to obtain a large connection area (welded area or nugget diameter) in one welding process, as has been done in the past. Such abnormal deformation disturbs the current path during welding while energizing, causing problems such as melting of parts that should not originally be melted, and further promoting the occurrence of "splintering". Become. Now, the biggest reason why the occurrence of the above-mentioned "scattering" is considered to be a big problem is as follows.

すなわち、前述した如く、“散り”の正体は飛散した極
柱の一部であり、当然のことながら電気の良導体であり
、セル間接続は、第2図に示した通り極板群がセルに挿
入された後で行なわれるわけで、溶接時に発生した“散
り”がセル内に飛込むと、極坂間の短絡の原因となり、
電池の寿命を著しく短かくする。この様な理由から、“
散り”の発生は極力抑えなければならない。また‘‘散
り”の発生過程を理解すれば、明らかな如く、“散り”
が発生すると溶接欠陥が発生しやすく、大きなブローホ
ールが発生し、十分なナゲット面積が確保できなくなる
。この様な状態になれば、前述した接続部に要求される
3つの特性は十分満足されなくなり、信頼性の高い接続
部を得ることはできない。以上述べた如く、従来行なわ
れてきた抵抗熔接による貫通式接続に於ては、“散り”
の発生が極めて大きな問題であり、良好な解決策が容易
に見出せないため、溶接終了後にセル内に飛散した“散
り”をピンセットで除去するなど抵抗溶接法の最大のメ
リットである量産性を十分生かすことが出来ない状態で
生産を行なってきた。本発明は、前述した問題点を解決
し、信頼性の高い接続部を得るために抵抗溶接方法を提
供するものである。以下に本発明の内容について述べる
In other words, as mentioned above, the true nature of the "scattering" is a part of the scattered pole pole, which is naturally a good conductor of electricity, and the connection between the cells is that the pole plate group connects to the cell as shown in Figure 2. This is done after the welding has been inserted, and if the "spatter" generated during welding flies into the cell, it may cause a short circuit between the poles.
Significantly shorten battery life. For this reason, “
The occurrence of ``scattering'' must be suppressed as much as possible. Also, if you understand the process of ``scattering'', it becomes clear that ``scattering''
When this occurs, welding defects are likely to occur, large blowholes occur, and a sufficient nugget area cannot be secured. In such a state, the three characteristics required of the connection part described above are no longer fully satisfied, and a highly reliable connection part cannot be obtained. As mentioned above, in the conventional through-type connection using resistance welding, "dispersion"
This is an extremely serious problem, and it is difficult to find a good solution. Therefore, it is difficult to fully utilize mass production, which is the biggest advantage of the resistance welding method, by using tweezers to remove the "scattering" that scatters inside the cell after welding is completed. We have been producing in a state where we cannot make the most of it. The present invention solves the above-mentioned problems and provides a resistance welding method to obtain a highly reliable connection. The content of the present invention will be described below.

本発明の要点は、“散り”の発生を防止するのに有効な
継手形状を有する極柱を用意すること。
The key point of the present invention is to prepare a pole pole having a joint shape effective in preventing the occurrence of "splash".

次に、所定の位置に配置し用意された極柱に対し予備通
電を行ない、本通電で生成されるナゲット外周部に熱圧
着部を形成するとともに隔壁と極柱との密着を確実に行
なうことにより本通電に於ける“散り”の発生を抑え、
同時に液密性を確保すること。次に、本通電を行なって
接続部に所定の大きさのナゲットを形成し、これにより
前述した大電放流に耐え十分な機械的強度を有する俊綾
部を確保することにある。第4図は、本発明に於て用い
る極柱の継手形状を示したものである。
Next, pre-energize the prepared pole pole placed at a predetermined position, form a thermocompression bonded part on the outer periphery of the nugget generated by main energization, and ensure close contact between the partition wall and the pole pole. This suppresses the occurrence of "scattering" during main energization,
At the same time, ensure liquid tightness. Next, main energization is performed to form a nugget of a predetermined size at the connection portion, thereby ensuring a tight twill portion having sufficient mechanical strength to withstand the aforementioned large current discharge. FIG. 4 shows the shape of the joint of the pole column used in the present invention.

図中9は極柱であり、この極柱の溶接される側の面(隣
接するセルの極柱と接触する側の面)には、円板状突起
部10が形成されている。さらにこの円板状突起部10
の表面は、中央に位置し微細な凹凸を有する円形凹凸部
11とこれをとりまく平滑リング部12とからなる。こ
れらの詳細については同図C)に示してある。すなわち
、円板状突起部10の高さW,は隔壁4の厚さの1/2
よりわずかに小さい。そして、その直径D,は、隔壁に
設けられた円形の貫通口5の直径とほとんど等しい。ま
た、前記円形凹凸部11内にある微細な凹凸部の先端は
平滑リング部12の表面より突出ることはなく、むしろ
若干表面より引込んだ位置にある方が好ましい。そして
、その直径D2の大きさは接続部に要求されるナゲット
の大きさとの関連に於て決定される。さらに、円形凹凸
部11の裏面には同じく円形凹部13が設けられている
。この凹部13は、前記円板状突起部10の熱容量を小
さくし、本通電による抵抗熔接を容易にするためのもの
である。凹部13の中心は前記円形凹凸部11のそれと
同じ位置にあり、その直径D3はD2と同じか多少大き
い程度である。また、その深さW2は、本通電に時に於
けるナゲットの生成に都合の良い様に決定される。次に
、上述した継手形状を有する極柱の抵抗溶接方法の詳細
を記す。
In the figure, reference numeral 9 denotes a pole pole, and a disc-shaped protrusion 10 is formed on the surface of this pole pole to be welded (the surface that contacts the pole pole of an adjacent cell). Furthermore, this disc-shaped protrusion 10
The surface consists of a circular uneven part 11 located at the center and having minute unevenness, and a smooth ring part 12 surrounding the circular uneven part 11. Details of these are shown in Figure C). That is, the height W of the disc-shaped protrusion 10 is 1/2 of the thickness of the partition wall 4.
slightly smaller than The diameter D is almost equal to the diameter of the circular through hole 5 provided in the partition wall. Further, it is preferable that the tips of the fine irregularities in the circular irregularities 11 do not protrude from the surface of the smooth ring part 12, but are rather retracted slightly from the surface. The size of the diameter D2 is determined in relation to the size of the nugget required for the connection portion. Furthermore, a circular concave portion 13 is similarly provided on the back surface of the circular concavo-convex portion 11 . This recess 13 is provided to reduce the heat capacity of the disc-shaped protrusion 10 and to facilitate resistance welding by main energization. The center of the recessed portion 13 is located at the same position as that of the circular uneven portion 11, and its diameter D3 is the same as or slightly larger than D2. Further, the depth W2 is determined to be convenient for the generation of nuggets during main energization. Next, details of a method of resistance welding a pole column having the above-mentioned joint shape will be described.

本発明に於ける抵抗溶接方法は、前述した如く予備通電
と本通電の2段階の過程をとることによって行なわれる
The resistance welding method according to the present invention is carried out in two steps: preliminary energization and main energization, as described above.

第5図は、溶接過程の第1段階(予備通電段階)を示し
たものである。前述した継手形状を有する極柱9,9′
(9と9′とは同一継手形状)を図の如く各々の平滑リ
ング部12が相対するように接触させ、第6図に示した
如き形状の予備通電用電極14を外側から当接する。予
備通電用電極14は、リンク状突起部15を備えており
、第5図に示した如くこのIJング状突起部15が、極
柱9,9′の円板状突起部10内の平滑リング部12に
対向する位置17に接触するように当接させる。この様
に位置決めした後、電極加圧力P,を作用させて両極柱
9,9′を緊密に接触させるとともに予備通電を行なう
。この時の電流は極柱9,9′の一部を熔触させるほど
大きなものでない。溶接電流7は矢印で示した如く極柱
9,9′の前記平滑リング部12に集中した形で流れる
。これは、極柱9,9′の円板状突起部10の中央部の
円形凹凸部11が微細な凹凸を有しており、この部分で
の溶接電流に対する抵抗が大きいことと、予備通電用電
極14が平滑リング12に溶接電流を集中させる形状を
備えているためである。この様な形で、比較的小さな電
流で本通電時よりも長い時間通電し、緩慢な温度上昇に
より平滑リング部12およびその周辺の隔壁4と極柱9
,9′との接触部の温度を150〜200qCまで高め
る。この操作により、両極柱9,9′は、平滑リング部
12に於て熱圧着状態で接合され、かつ電極加圧力P,
によって隔壁4と極柱9,9′とは密着状態を呈する。
この様にして、本通電によってナゲツトを形成しようと
する円形凹凸部11の周辺を上述した予備通電により熱
圧着状態にし、本通電時の“散り”発生を機械的に抑制
出来る状態を作り出しておくと同時に、この段階に於て
前述した接続部の液密性を確保する。予備通電された接
続部は「次に第2段階として本通電に供される。
FIG. 5 shows the first stage (preliminary energization stage) of the welding process. Pole columns 9, 9' having the above-mentioned joint shape
(9 and 9' have the same joint shape) are brought into contact with each other so that their respective smooth ring portions 12 face each other as shown in the figure, and a pre-energization electrode 14 having a shape as shown in FIG. 6 is brought into contact from the outside. The preliminary energization electrode 14 is provided with a link-shaped protrusion 15, and as shown in FIG. It is brought into contact with a position 17 opposite to the portion 12. After positioning in this manner, an electrode pressing force P is applied to bring the pole columns 9, 9' into close contact and preliminary energization is performed. The current at this time is not large enough to melt part of the pole columns 9, 9'. The welding current 7 flows in a concentrated manner in the smooth ring portions 12 of the pole posts 9, 9' as shown by the arrows. This is because the circular uneven portion 11 at the center of the disc-shaped protrusion 10 of the pole pillars 9, 9' has minute unevenness, and the resistance to the welding current in this area is large, and the pre-energization This is because the electrode 14 has a shape that concentrates the welding current on the smooth ring 12. In this way, a relatively small current is applied for a longer time than the main energization, and a slow temperature rise causes the smooth ring part 12 and the partition wall 4 and pole pillar 9 around it to become energized.
, 9' is raised to 150-200 qC. Through this operation, the bipolar columns 9 and 9' are joined in a thermocompression state at the smooth ring portion 12, and the electrode pressing force P,
As a result, the partition wall 4 and the pole pillars 9, 9' are in close contact with each other.
In this way, the periphery of the circular uneven portion 11 where a nugget is to be formed by the main energization is brought into a thermocompression bonded state by the above-mentioned preliminary energization, creating a state in which the occurrence of "scattering" during the main energization can be mechanically suppressed. At the same time, at this stage, the liquid-tightness of the connection portion described above is ensured. The pre-energized connection section is then subjected to main energization as a second step.

本通電は、第1段階の予備通電とは異つた溶接用電極を
用いて行なう。第7図に本通電に使用する電極の形状、
構造を示す。本通電用電極18は本体に電極チップ19
、該電極チップ19を囲む加圧リング20が取付けられ
た構造を有している。本体の中央には電極チップ19を
冷却するための冷却水を流すパイプ21,22が設けら
れている。また、電極チップ19は本体にネジ止めされ
るが、電極チップ19の内部にも冷却水を導入するため
のパイプ23が設けられ、これは本体の方のパイプ22
と連結する様に加工されている。また、電極チップ19
の先端24の形状は、溶接部に対する均一な電流分布を
達成するために円錐形が好まし.し、。本通電における
溶接電流は、この電極チップ19より極柱9,9′へ供
給される。電極チップ19の外周に配置されている加圧
リング2川ま、第7図C)に見られる様に断面がコの字
形をしており、同じくコの字形断面をもつリング状のス
プリングケース25と組合されている。そして「加圧リ
ング20は、スプリングケース25内に収納されている
スプリング26によって矢印(H)で示した如く変位可
能となっている。なお、加圧リング20およびスプリン
グケ−ス25は、本通電用電極18とは電気的に絶縁さ
れており、従って、溶接電流は加圧リング20‘こは流
れず、すべて中央の電極チップ19を通って極柱9,9
′へ流れ込むことになる。以上述べた如き本通電用電極
を用いて本通電を行なう状況を第8図に示す。
The main energization is performed using a welding electrode different from that used in the first stage preliminary energization. Figure 7 shows the shape of the electrode used for main energization.
Show the structure. The main energizing electrode 18 has an electrode chip 19 on the main body.
, has a structure in which a pressure ring 20 surrounding the electrode tip 19 is attached. Pipes 21 and 22 through which cooling water flows to cool the electrode chip 19 are provided in the center of the main body. Further, although the electrode chip 19 is screwed to the main body, a pipe 23 for introducing cooling water is also provided inside the electrode chip 19, and this is connected to the pipe 22 on the main body.
It is processed to connect with. In addition, the electrode tip 19
The shape of the tip 24 is preferably conical to achieve uniform current distribution over the weld. death,. The welding current in the main energization is supplied from this electrode tip 19 to the pole posts 9, 9'. The pressure ring 2 disposed around the outer periphery of the electrode tip 19 has a U-shaped cross section as shown in FIG. 7C, and a ring-shaped spring case 25 also has a U-shaped cross section. It is combined with The pressure ring 20 can be displaced as shown by the arrow (H) by a spring 26 housed in a spring case 25. It is electrically insulated from the current-carrying electrode 18, so that the welding current does not flow through the pressure ring 20', but instead passes through the central electrode tip 19 to the pole columns 9, 9.
’. FIG. 8 shows a situation in which main current application is performed using the main current application electrodes as described above.

通電に先立ち、前述した本通電用電極18は極柱9,9
′に対し、極柱9,9′の円形の凹部13に電極チップ
19が、極柱9,9′の平滑リング部12(予備通電に
より熱圧着状態となっている)に対向する位置にある面
17に加圧リング20が接触する様に位置決めされる。
次に、矢印(0)の如く電極加圧力P2を作用させる。
これによって、第1段階の予備通電に於ては溶接されな
かった極柱9,9′の相対する円形凹凸部11は、ナゲ
ットを形成するに適当な接触状態を呈する様になる。ま
た、同時に、第1段階で熱圧着状態を呈した平滑リング
部12および隔壁4と極柱9,9′との密着部も圧縮さ
れたスプリング26の反発力をうけた加圧IJング20
1こより加圧され、第1段階の予備通電によってもたら
された状態が、第2段階の本通電時にも十分維持される
べき用意がなされる。このような状態で本通電のための
溶接電流を流す。溶接電流7は第8図に示した矢印の様
に前述した円形凹凸部11に集中して流れる。前述した
如く加圧リング20Gま本通電用電極18とは電気的に
絶縁されているため、第1段階に於て両極柱9,9′の
平滑リング部12が熱圧着状態となりこの部分の電気抵
抗が極めて小さくなっていても、この部分への分流は一
切考えなくて良い。なお、前述した如く円形凹凸部11
は、微細な凹凸を有するように加工された部分である。
それ故、加圧力P2が得られると、両極柱9,9′の円
形凹凸部11は、互にかなりの密着状態を呈する形で接
触することになるが、前述した様に微細な凹凸が表面に
存在するためにミクロ的に見るとかなり部分的な接触状
態を呈している。このことは、この部分が適度な接触抵
抗を有しているということであり、第8図に示した電極
配置をとることによって有効な電流の集中がはかれるこ
とと相まって、比較的小さな溶接電流によって円形凹凸
部11全面積にわたって十分な大きさのナゲットの生成
が可能な熱が発生する。そして、溶接電流が小さければ
、極柱9,9′の異常変形も防止できるし、それによる
電流分布の乱れもなくなるので、本来生じるべきでない
部分にナゲットが生成されそれがもとで“散り”が発生
することもなくある。また、この様な溶接方法をとれば
、予備通電によって生成されたりング状の熱圧着部28
、隔壁4と極柱9,9′との密着部29は、加圧リング
20‘こよって十分な力で保持されているため、この部
分が本通電時に破壊されることはなく、これらの部分の
存在によって本通電時に生成されるナゲツトの外周部は
完全に押えられているため、“散り”の発生は十分に抑
制されてしまう。以上述べた如く、貫通式接続に対して
本発明による抵抗溶接方法を適用することにより、“散
り’’の発生は十分抑制でき、大電流放電に十分耐え、
液密性、機械的強度も十分備えた信頼性の高い接続部を
得ることができる。
Prior to energization, the main energization electrode 18 described above is connected to the poles 9, 9.
′, the electrode tip 19 is located in the circular recess 13 of the pole posts 9, 9′ in a position opposite to the smooth ring portion 12 of the pole posts 9, 9′ (which is in a thermocompression bonded state due to preliminary energization). The pressure ring 20 is positioned so as to be in contact with the surface 17.
Next, electrode pressurizing force P2 is applied as shown by arrow (0).
As a result, the opposing circular concavo-convex portions 11 of the pole posts 9, 9', which were not welded during the first preliminary energization, come into contact with each other suitable for forming a nugget. At the same time, the pressurized IJ ring 20 receives the repulsive force of the compressed spring 26 from the smooth ring portion 12 and the close contact portion between the partition wall 4 and the pole pillars 9, 9', which were in a thermocompression bonded state in the first stage.
Preparations are made to ensure that the state brought about by the preliminary energization in the first stage is sufficiently maintained during the main energization in the second stage. In this state, welding current for main energization is applied. The welding current 7 flows concentratedly in the circular uneven portion 11 as indicated by the arrow shown in FIG. As mentioned above, since the pressurizing ring 20G is electrically insulated from the current-carrying electrode 18, the smooth ring portions 12 of the pole columns 9 and 9' are bonded by thermocompression in the first stage, and the electricity in this portion is Even if the resistance is extremely small, there is no need to consider diverting the current to this part. Note that, as described above, the circular uneven portion 11
is a part processed to have minute irregularities.
Therefore, when the pressurizing force P2 is obtained, the circular uneven portions 11 of the pole columns 9 and 9' come into contact with each other in a state of close contact, but as mentioned above, the fine unevenness on the surface When viewed microscopically, there is a fairly partial contact state. This means that this part has an appropriate contact resistance, and combined with the fact that the electrode arrangement shown in Figure 8 allows effective current concentration, a relatively small welding current can be used. Heat is generated over the entire area of the circular uneven portion 11 to generate a nugget of sufficient size. If the welding current is small, abnormal deformation of the pole pillars 9, 9' can be prevented, and the resulting disturbance of the current distribution is also eliminated, so nuggets are generated in areas where they should not be generated, and this causes "scattering". may never occur. Moreover, if such a welding method is used, the ring-shaped thermocompression bonded part 28 generated by preliminary energization
Since the contact portion 29 between the partition wall 4 and the pole pillars 9, 9' is held with sufficient force by the pressure ring 20', this portion will not be destroyed during main energization, and these portions Because the outer circumference of the nugget generated during main energization is completely suppressed by the presence of the nugget, the occurrence of "scattering" is sufficiently suppressed. As described above, by applying the resistance welding method of the present invention to a through-type connection, the occurrence of "splashing" can be sufficiently suppressed, and it can sufficiently withstand large current discharge.
A highly reliable connection having sufficient liquid tightness and mechanical strength can be obtained.

次に、本発明の実施例について述べる。Next, examples of the present invention will be described.

本発明の効果を確認するために、従来行なってきた抵抗
溶接方法(以下従来法と略す)と比較実験を行なった。
In order to confirm the effects of the present invention, a comparative experiment was conducted with a conventional resistance welding method (hereinafter referred to as the "conventional method").

効果の確認は、“散り”発生状況、液密性、大電流放電
(100船)に於ける溶接部綾断時間、溶接強度を従来
法と比較することで行なった。なお、“散り”発生状況
については、直接的な評価が難かしいので、“散り”発
生との関連性が深いナゲット中のブローホールの発生状
況を定量的にとらえ間接的に評価した。従来法での溶接
用電極の寸法、形状は、第9図に示した通りである。
The effectiveness was confirmed by comparing the occurrence of "splashing", liquid tightness, weld traverse time under large current discharge (100 ships), and weld strength with the conventional method. Since it is difficult to directly evaluate the occurrence of "explosion," we quantitatively assessed the occurrence of blowholes in the nugget, which is closely related to the occurrence of "exfoliation." The dimensions and shape of the welding electrode in the conventional method are as shown in FIG.

また、同じく従来法で用いていた極柱継手部の寸法、形
状は、第10図に示した通りである。一方、第11図に
は、本発明における方法での極柱継手部の寸法、形状を
示した。
Further, the dimensions and shape of the pole-column joint used in the conventional method are as shown in FIG. On the other hand, FIG. 11 shows the dimensions and shape of the pole-column joint according to the method of the present invention.

なお、第11図において、円形凹凸部1 1は0.2〜
0.3肋の深さのローレット加工を施してある。また、
第12図には、第1段階すなわち予備通電に使用する予
備通電用電極の寸法、形状を、第13図には第2段階す
なわち本通電に使用する本通電用電極の寸法、形状を示
した。なお、従来法、本発明による方法いずれの場合と
も溶接用電極の材質は、1%Cr−Cu合金である。
In addition, in FIG. 11, the circular uneven portion 11 is 0.2~
It is knurled to a depth of 0.3 ribs. Also,
Figure 12 shows the dimensions and shape of the preliminary energization electrode used in the first stage, that is, preliminary energization, and Figure 13 shows the dimensions and shape of the main energization electrode used in the second stage, that is, main energization. . In addition, the material of the welding electrode in both the conventional method and the method according to the present invention is a 1% Cr-Cu alloy.

また、比較実験においては、いずれの方法に対しても同
一の電槽を使用した。露槽の隔壁の厚さは1.65肋、
隔壁に設けられてある貫通口の直径は18肌である。ま
た、極柱の材質はいずれでもPb−3%Sb−0.3%
掛合金である。第1表には、従来法ならびに本発明によ
る方法で接続する際の溶接条件を示した。溶接装置は定
格容量100KVA、最大電流30000A、最大加圧
力400kgの交流式のものを用いた。
In addition, in the comparative experiment, the same container was used for both methods. The thickness of the bulkhead of the open tank is 1.65 ribs.
The diameter of the through hole provided in the partition wall is 18 mm. In addition, the material of the pole pillar is Pb-3%Sb-0.3%
It is a hanging alloy. Table 1 shows welding conditions when connecting by the conventional method and the method according to the present invention. The welding device used was an AC type welding device with a rated capacity of 100 KVA, a maximum current of 30,000 A, and a maximum pressing force of 400 kg.

第14図および第2表に実験結果示した。The experimental results are shown in FIG. 14 and Table 2.

これらの結果から本発明による方法がきわめてすぐれて
いることが理解できる。第1表 第2表 注)1 液密性は浸透試験による判定 2 大電流放電は電流1000A 3 溶接強度はトルク値
From these results, it can be seen that the method according to the present invention is extremely superior. Table 1 Table 2 Note) 1 Liquid tightness is determined by penetration test 2 Large current discharge is current 1000A 3 Welding strength is torque value

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動車用鉛蓄電池に於ける貫通式セル間接続の
状況を示し、aは側面断面図、bはaのA−A′線に沿
う断面図、第2図は従来の抵抗溶接法による貫通式セル
間髪銃を示した断面図、第3図は抵抗溶接完了後の接続
部の状況を示した断面図、第4図は本発明による接続方
法において使用かれる極柱の継手形状を示し、aは正面
図、bはaのB−B線に沿う断面図、cはbの円で囲ん
だ部分の詳細を示した拡大図、第5図は本発明による接
続方法のうち予備通電時の状況を示した断面図、第6図
は前記予備通電に使用する予備通電用電極の形状を示し
、aは正面図、bは側面図、第7図は同じく本発明によ
る接続方法のうち本通電時に使用する本通電用電極を示
し、aは側面図、bは正面図、c,bのC−C′線に沿
う断面図、第8図は第7図に示した電極を用いて本通電
を行なう状況を示した断面図、第9図は本発明実施例と
の比較実験で従来法に用いた抵抗溶接用電極の寸法、形
状を示し、aは側面図、bは正面図、第10図は同じく
従来法に用いた極柱の継手部の寸法、形状を示し、aは
側面図、bは正面図、第11図は本発明実施例に用いた
極柱の継手部の寸法、形状を示し、aは正面図、bは側
面図、cはaのD−〇線に沿う断面図、第12図は同じ
く本発明実施例において予備通電時に使用した予備通電
用電極の寸法、形状を示し、aは側面図、bは正面図、
第13図は同じく本通電時に使用した本通電用電極の寸
法、形状を示し、aは側面図、bは正面図、第14図は
本発明実施例と従来法において薮続部に発生したブロー
ホールの面積の度数分布図である。 4は隔壁、5は貫通口、7は溶接電流、9,9′は極柱
、10は円板状突起部、11は円形凹凸部、12は平滑
リング部、13は凹部、14は予備通電用電極、15は
リング状突起部、18は本通電用電極、19は電極チッ
プ、20は加圧リング、21,22,23はパイプ、2
4は電極チップ先端、25はスプリングケース、26は
スプリング、28は熱庇着部、29は密着部。 第1図 第2図 第3図 第4図 袴5図 精6図 袴フ図 第8図 第9図 鰐10図 第11図 第12図 第13図 第14図
Figure 1 shows the state of the through-cell connection in an automotive lead-acid battery, where a is a side sectional view, b is a sectional view taken along line A-A' in a, and Figure 2 is a conventional resistance welding method. FIG. 3 is a cross-sectional view showing the state of the connection after resistance welding is completed, and FIG. 4 is a cross-sectional view showing the joint shape of the pole column used in the connection method according to the present invention. , a is a front view, b is a sectional view taken along line B-B of a, c is an enlarged view showing the details of the circled part of b, and FIG. 5 is a connection method according to the present invention during preliminary energization. 6 shows the shape of the preliminary energization electrode used for the preliminary energization, a is a front view, b is a side view, and FIG. 7 is a sectional view showing the connection method of the present invention. This shows the actual current-carrying electrode used when applying current, a is a side view, b is a front view, c and b are cross-sectional views taken along line C-C', and Figure 8 is a main current-carrying electrode used when applying current. FIG. 9 is a cross-sectional view showing the situation in which current is applied. FIG. Figure 10 shows the dimensions and shape of the joint part of the pole pole similarly used in the conventional method, where a is a side view, b is a front view, and Figure 11 is the dimensions and shape of the joint part of the pole pole used in the embodiment of the present invention. The shapes are shown, a is a front view, b is a side view, c is a sectional view taken along the line D-○ of a, and FIG. 12 is the dimensions and shape of the preliminary energization electrode used at the time of preliminary energization in the embodiment of the present invention. , a is a side view, b is a front view,
Figure 13 shows the dimensions and shape of the main current supply electrode used in the main power supply, where a is a side view, b is a front view, and Figure 14 is a blow that occurred at the bush joint in the embodiment of the present invention and the conventional method. FIG. 3 is a frequency distribution diagram of the area of holes. 4 is a partition wall, 5 is a through hole, 7 is a welding current, 9 and 9' are pole columns, 10 is a disc-shaped protrusion, 11 is a circular uneven part, 12 is a smooth ring part, 13 is a recessed part, 14 is a preliminary energization 15 is a ring-shaped protrusion, 18 is an electrode for main current supply, 19 is an electrode tip, 20 is a pressure ring, 21, 22, 23 are pipes, 2
4 is the tip of the electrode tip, 25 is a spring case, 26 is a spring, 28 is a thermal eaves portion, and 29 is a contact portion. Figure 1 Figure 2 Figure 3 Figure 4 Hakama 5 figure Sei 6 Hakama figure 8 Figure 9 Crocodile 10 Figure 11 Figure 12 Figure 13 Figure 14

Claims (1)

【特許請求の範囲】 1 隔壁に設けた貫通口に密接して挿入可能な直径と貫
通口に挿入したとき他の部分が隔壁に密接可能な高さを
有しその表面が微細な凹凸の円形凹凸部と該円形凹凸部
をとりまく平滑リング部からなる円板状突起部並びに前
記円形凹凸部の裏面に凹部を備えた一対の極柱を前記貫
通口において円板状突起部が相対するように隔壁の両側
に配置する工程、次に、前記一対の極柱の平滑リング部
同士を圧接しながら該平滑リング部に溶接電流を集中さ
せるように予備通電をして平滑リング部同士を熱圧着す
ると共に極柱と隔壁の接触部分を密着状態となす工程、
更に、熱圧着状態の平滑リング部を電気絶縁状態で押圧
保持しながら前記一対の極柱の円形凹凸部に溶接電流を
集中させるよう本通電をして該部分に溶触させナゲツト
を作る工程からなることを特徴とする鉛蓄電池のセル間
接続方法。 2 隔壁に設けた貫通口に密接して挿入可能な直径と貫
通口に挿入したとき他の部分が隔壁に密接可能な高さを
有しその表面が微細な凹凸の円形凹凸部と該円形凹凸部
をとりまく平滑リング部とからなる円板状突起部並びに
前記円形凹凸部の裏面に凹部を備えたセル間接続用極柱
。 3 隔壁に設けた貫通口に密接して挿入可能な直径と貫
通口に挿入したときの他の部分が隔壁に密接可能な高さ
を有しその表面が微細な凹凸の円形凹凸部と該円形凹凸
部をとりまく平滑リング部とからなる円板状突起部並び
に前記円形凹凸部の裏面に凹部を備えた一対の極柱を前
記貫通口において円板状突起部が相対するように隔壁の
両側に配置する工程、次に、前記一対の極柱の平滑リン
グ部同士を圧接しながら該平滑リングに溶接電流を集中
させるように予備通電をして平滑リング部同士を熱圧着
すると共に極柱と隔壁の接触部分を密着状態となす工程
、更に、熱圧着状態の平滑リング部を電気絶縁状態で押
圧保持しながら前記一対の極柱の円形凹凸部に溶接電流
を集中させるよう本通電をして該部分を溶融させナゲツ
トを作る工程からなる鉛蓄電池のセル間接続方法に使用
する抵抗溶接用電極において、最後の本通電工程に使用
し、隔壁の両側から前記一対の極柱の凹部に当接させる
電極チツプをとりまいて電気的に絶縁された加圧リング
を備え該加圧リングをその軸方向に弾性的に変位可能と
なした抵抗溶接用電極。
[Scope of Claims] 1. A circular shape having a diameter that allows it to be inserted closely into a through-hole provided in a partition wall, and a height that allows the other part to come into close contact with the partition wall when inserted into the through-hole, and whose surface is minutely uneven. A disk-shaped protrusion consisting of an uneven portion and a smooth ring surrounding the circular uneven portion, and a pair of pole columns each having a concave portion on the back surface of the circular uneven portion are arranged such that the disk-shaped protrusion faces each other at the through-hole. The process of arranging the poles on both sides of the partition wall is followed by thermocompression bonding the smooth ring parts of the pair of pole pillars by applying a preliminary current so as to concentrate the welding current on the smooth ring parts while pressing them together. At the same time, the process of bringing the contact part of the pole pillar and the partition wall into a close contact state,
Further, the smooth ring part in a heat-compressed state is pressed and held in an electrically insulated state, and the main current is applied so as to concentrate the welding current on the circular uneven parts of the pair of pole pillars to melt and contact the parts to form a nugget. A method for connecting cells of a lead-acid battery, characterized by the following. 2. A circular uneven portion with minute irregularities on its surface, which has a diameter that allows it to be inserted closely into the through-hole provided in the partition wall, and a height that allows the other part to come into close contact with the partition wall when inserted into the through-hole, and the circular unevenness. A pole column for connecting between cells, comprising a disc-shaped protrusion section including a smooth ring section surrounding the section, and a concave section on the back surface of the circular uneven section. 3. A circular concavo-convex portion with minute irregularities on its surface, which has a diameter that allows it to be inserted closely into the through-hole provided in the bulkhead, and a height that allows the other part to come in close contact with the bulkhead when inserted into the through-hole; A disc-shaped protrusion consisting of a smooth ring surrounding an uneven part and a pair of pole pillars each having a recess on the back surface of the circular uneven part are placed on both sides of the partition wall so that the disc-shaped protrusion faces each other at the through-hole. Next, while pressing the smooth ring parts of the pair of pole posts together, preliminary energization is applied so as to concentrate the welding current on the smooth rings, and the smooth ring parts are bonded together by thermocompression, and the pole posts and the partition wall are The step of bringing the contact portions into a close contact state, and further applying main current to concentrate the welding current on the circular uneven portions of the pair of pole columns while pressing and holding the smooth ring portions in a thermocompression bonded state in an electrically insulated state. In the resistance welding electrode used in the cell-to-cell connection method of lead-acid batteries, which consists of a process of melting the parts and making a nugget, it is used in the final main energization process and is brought into contact with the recesses of the pair of pole columns from both sides of the partition wall. A resistance welding electrode comprising an electrically insulated pressure ring surrounding an electrode tip, the pressure ring being elastically displaceable in its axial direction.
JP55073595A 1980-05-30 1980-05-30 Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding Expired JPS6038828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55073595A JPS6038828B2 (en) 1980-05-30 1980-05-30 Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55073595A JPS6038828B2 (en) 1980-05-30 1980-05-30 Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding

Publications (2)

Publication Number Publication Date
JPS56168356A JPS56168356A (en) 1981-12-24
JPS6038828B2 true JPS6038828B2 (en) 1985-09-03

Family

ID=13522822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55073595A Expired JPS6038828B2 (en) 1980-05-30 1980-05-30 Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding

Country Status (1)

Country Link
JP (1) JPS6038828B2 (en)

Also Published As

Publication number Publication date
JPS56168356A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
CN207690847U (en) Top cover structure of power battery, power battery and battery modules
CN102896416B (en) The denoted low voltage electron beam welding that Li ion battery connects
JP4396787B2 (en) Thin temperature fuse and method of manufacturing thin temperature fuse
KR20000068897A (en) Non-aqueous electrolyte secondary battery
JP3211614B2 (en) Lead storage battery and method of manufacturing the same
US4177551A (en) Method of welding a arc battery intercell connector
US5202198A (en) Battery construction and method of connecting terminals to electrodes
US3806696A (en) Lead battery welding method and apparatus
CA1104643A (en) Electrodes for use in the extrusion-fusion welding of lead parts through an aperture
JPS6038828B2 (en) Cell-to-cell connection method for lead-acid batteries, pole poles for cell-to-cell connection, and electrodes for resistance welding
JPH024102B2 (en)
JP2004031062A (en) Manufacturing method of battery pack
JP3118944B2 (en) Manufacturing method of lead storage battery
JPH028417B2 (en)
KR100508947B1 (en) Secondary battery and methode for sealing thereof
JPH0713894B2 (en) Lead acid battery terminal
US4346283A (en) Method of extruding, fusing and forging lead connections in battery cases
JPS62207588A (en) Resistance welding method for body to be welded with small heat capacity
KR20030053092A (en) Method for forming cathode terminal of Lithium ion secondary battery
JP2002141099A (en) Sealed battery
JPS634548A (en) Manufacture of sealed battery
US4420673A (en) Electrodes for use in the extrusion-fusion welding of lead parts through an aperture in a battery case and method of extruding, fusing and forging lead connections in battery cases
EP0530891A1 (en) Battery construction and method of connecting terminals to electrodes
JPH10106535A (en) Lead-acid battery and method for connecting cells
JPH0294359A (en) Manufacture of lead-acid battery