JPS6038624B2 - Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment - Google Patents

Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment

Info

Publication number
JPS6038624B2
JPS6038624B2 JP56151958A JP15195881A JPS6038624B2 JP S6038624 B2 JPS6038624 B2 JP S6038624B2 JP 56151958 A JP56151958 A JP 56151958A JP 15195881 A JP15195881 A JP 15195881A JP S6038624 B2 JPS6038624 B2 JP S6038624B2
Authority
JP
Japan
Prior art keywords
ice
cold water
water tank
small chamber
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56151958A
Other languages
Japanese (ja)
Other versions
JPS5855667A (en
Inventor
修二 宮原
亘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56151958A priority Critical patent/JPS6038624B2/en
Publication of JPS5855667A publication Critical patent/JPS5855667A/en
Publication of JPS6038624B2 publication Critical patent/JPS6038624B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)

Description

【発明の詳細な説明】 この発明は、液体ホーニング、サンドブラスト、ショッ
トブラスト等の表面研掃蕩作業で用いられる砂等の固体
に代えて使用される氷粒を製造する新規な装置及びこれ
を利用した研婦洗浄装置に係り、特に冷水中に液体窒素
を吹き出しこれを樽拝して氷粒を成長させるとともに浮
上させ、氷粒を砕氷することなく連続して取り出すこと
ができる氷スラリ製造装置、並びにこの得られた氷スラ
リを被研掃物又は被洗緑配管に噴射又は送り込み使用済
みの氷スラリを再び氷スラリ製造装置に戻させ、外部か
ら異物の混入がない閉サイクル系を組んで効果的な省資
源化を計ることができるアイスブライト装置及び配管洗
浄装檀に関する。
[Detailed Description of the Invention] This invention provides a novel device for producing ice grains used in place of solids such as sand used in surface polishing operations such as liquid honing, sandblasting, and shot blasting, and a novel device using the same. In particular, ice slurry manufacturing equipment that can blow out liquid nitrogen into cold water, grow ice grains and float them to the surface, and continuously take out the ice grains without crushing them; and This obtained ice slurry is injected or sent to the object to be polished or the green pipe to be washed, and the used ice slurry is returned to the ice slurry manufacturing equipment again, creating a closed cycle system that does not allow foreign matter to enter from the outside. This invention relates to an ice brite device and pipe cleaning equipment that can save resources.

一般に、鋼板や機器の洗浄法としては液体ホ−ニング、
サンドブラスト、ショットブラスト等が採用されている
。これらは共に研摩材、砂、鋼球等の固体を圧搾空気又
は高圧水と共に噴射して鋼板等の表面を研掃するもので
ある。しかしながら、サンドブラストに代表されるこれ
らの方法には種々の問題がある。すなわち、粉塵公害が
発生しこの対策費が相当高価となっており、市街地では
当抵実施できないことが先ず掲げられる。また、廃砂の
処分地が不足し首都圏にはほとんどなく、しかも処分費
も年年上昇していることである。さらに、砂資源も不足
気味で高価になっており、良質のものはほとんど個渇し
つつあることである。特に施工場所によっては砂の運搬
、供給に支障が生じその施工がほとんど不可能であった
。また、原子力発電プラント等の特殊配管の洗浄法とし
ては化学洗浄法又はエアー工具を用いる物理洗浄法が採
用されている。しかしながら、化学洗浄の場合には、系
内に薬品が入るためフラッシングを完全に施す必要があ
り、時間と費用が嵩むばかりか設備も大掛りとなり、廃
液の処理費用と共に大きな問題となっていた。他方、ェ
ア−工具洗浄の場合には、管径と管長の制限があり、さ
らには研掃後のフラツシング工程が不可欠であるためそ
の利用範囲は狭いものとなっていた。ところで近年、上
述した研摩材、砂等に代えてドライアイス粒や氷粒を使
用するアイスブラスト法(特公昭47−38713号)
や配管洗浄法(特公昭53一80号)が提案されている
。これらは共に噴射粒子が気化又は液化することを利用
して廃棄物の低減化を計ったものであり、その有用性が
高く評価されている。しかしながらドライアイス粒や氷
粒の製造については従来通りの製造が採用されているた
め、その使用価値を半減していた。すなわちアイスプラ
スト法に代表されるこの方法では、製氷工場で大きな氷
塊を造り、これを機械的に破砕して氷粒を得ている。こ
のため均一な氷粒が得られないとともに破砕に伴なう損
失が大きく、特に粒径を揃えようとすると回収率が激減
するという欠点がある。また、通常は氷塊を製造する場
所は離れているので、その運搬、貯蔵が大変で施工場所
の制約を受け、殊に一時貯蔵に相当大きなコストがかか
る。さらには、氷粒製造システムと噴射システムとは別
体系となっているため、噴射した氷を回収して再使用す
ることができず、水資源と冷熱の省資源化を図ることが
できない等の問題があった。そこで、本発明者等は従来
の氷粒研橋装置における問題点に鑑み、これを有効に鱗
決すべ〈本発明を創案するに至ったものである。
Generally speaking, liquid honing,
Sandblasting, shotblasting, etc. are used. Both of these methods spray solid materials such as abrasives, sand, and steel balls together with compressed air or high-pressure water to polish the surface of a steel plate or the like. However, these methods, typified by sandblasting, have various problems. In other words, dust pollution occurs and the cost of countermeasures is quite high, and it is difficult to implement in urban areas. Additionally, there is a shortage of waste sand disposal sites in the Tokyo metropolitan area, and disposal costs are rising every year. Furthermore, sand resources are becoming scarce and expensive, and high-quality sand is almost running out. In particular, depending on the construction location, transportation and supply of sand was hindered, making construction almost impossible. In addition, chemical cleaning methods or physical cleaning methods using air tools are employed as methods for cleaning special piping in nuclear power plants and the like. However, in the case of chemical cleaning, since chemicals enter the system, it is necessary to perform complete flushing, which not only increases time and cost, but also requires large-scale equipment, which poses a big problem along with the cost of processing waste liquid. On the other hand, in the case of air tool cleaning, there are restrictions on pipe diameter and pipe length, and furthermore, a flushing step after cleaning is essential, so the scope of its use is narrow. By the way, in recent years, ice blasting method (Special Publication No. 38713/1989) using dry ice grains or ice grains instead of the abrasive material, sand, etc. mentioned above has been developed.
and a pipe cleaning method (Special Publication No. 53-80) have been proposed. Both of these are designed to reduce waste by utilizing the vaporization or liquefaction of sprayed particles, and their usefulness is highly evaluated. However, because conventional manufacturing methods are used to produce dry ice grains and ice grains, their useful value has been halved. In this method, typified by the Ice Plast method, large blocks of ice are made at an ice factory and then mechanically crushed to obtain ice particles. For this reason, it is difficult to obtain uniform ice particles, and there is a large loss due to crushing, and in particular, when trying to make the particle size uniform, the recovery rate is drastically reduced. In addition, since ice cubes are usually produced in a remote location, transportation and storage are difficult and there are constraints on the construction site, and temporary storage in particular requires a considerable amount of cost. Furthermore, since the ice grain production system and the injection system are separate systems, the injected ice cannot be recovered and reused, making it impossible to conserve water and cold energy resources. There was a problem. Therefore, in view of the problems in the conventional ice grain grinding apparatus, the present inventors aimed to solve the problems effectively and came up with the present invention.

従って、この発明の目的とするところは超低温の液体寒
剤と冷水とを有効に熱交換させて、氷粒及び氷スラリを
連続的に製造することができる氷スラリ製造装置を提供
する。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an ice slurry production apparatus capable of continuously producing ice grains and ice slurry by effectively exchanging heat between an ultra-low temperature liquid cryogen and cold water.

また他の目的の一つは上記氷スラリ製造装置と氷噴射装
置とで開サイクル系を構成させ、異物を外部から混入さ
せることなく鋼板や機器の洗浄を効果的に行ない、冷熱
と水資源の回収再利用を計ることができるアイスブラス
ト装置を提供する。また更に他の目的の一つは上記氷ス
ラリ製造装置により得られる氷粒又は氷スラIJを被洗
浄配管に導くとともに流出した氷スラリを再び氷スラリ
製造装置に有効に帰還させて閉サイクルとすると共にす
べての経路を密封路とし、公害防止並びに省資源化を計
ることができる配管洗浄装置を提供する。以下、本発明
に係る各装置の好適−実施例を添付図面に従って説明す
る。
Another purpose is to configure an open cycle system with the ice slurry production equipment and ice injection equipment, to effectively clean steel plates and equipment without introducing foreign matter from the outside, and to conserve cold, heat, and water resources. To provide an ice blasting device that can be recovered and reused. Yet another purpose is to guide the ice grains or ice slurry IJ obtained by the ice slurry production apparatus to the piping to be cleaned, and to effectively return the ice slurry that flows out to the ice slurry production apparatus again to form a closed cycle. The present invention also provides a pipe cleaning device that can prevent pollution and save resources by making all routes sealed. Preferred embodiments of each device according to the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の氷スラリ製造装置の実施例を示し、図
に示す如く、1は0℃〜4℃に予め冷却された冷水を溜
める冷水槽である。
FIG. 1 shows an embodiment of the ice slurry production apparatus of the present invention, and as shown in the figure, 1 is a cold water tank that stores cold water that has been cooled in advance to 0 DEG C. to 4 DEG C.

検知器2によって定水位を保持され、定水位を割ると補
給水槽3に溜められていた常温の補給水がポンプ4によ
り冷却装置5に送られて冷され、前記温度の冷水となっ
て自動供給されるように設けられている。6は前記冷水
槽1内の下部に設けられた造氷室となる小室であり、冷
水槽1とはその下方と上方とで運通し、冷水が自由に出
入できるように形成されている。
A constant water level is maintained by the detector 2, and when the constant water level is broken, the make-up water at room temperature stored in the make-up water tank 3 is sent to the cooling device 5 by the pump 4 and cooled, and becomes cold water at the above temperature and is automatically supplied. It is set up so that Reference numeral 6 denotes a small chamber which serves as an ice-making chamber provided at the lower part of the cold water tank 1, and is formed so that the cold water tank 1 is connected to the lower part and the upper part thereof so that cold water can freely enter and exit.

この4・室6は底部よりタンク7等に充填された超底温
の液体寒剤、例えば液体窒素が連続的に注入されるよう
に設けられている。また、小室6の内部には急速境洋手
段たる強境梓翼8が設けられ、注入された液体窒素を冷
水9に十分混合させ、両者の熱交換を向上させるべく冷
水中に窒素粒子を可能な限り多く分散せしめ、多数の氷
粒子を発生させるように設けられている。小室6の上方
、すなわち冷水槽1の中部には綾速濃伴手段たる弱境枠
翼10がその藤を前記小室6の上方蓮通部から延出させ
て設けられている。
These chambers 4 and 6 are provided so that a liquid cryogen having an ultra-bottom temperature, such as liquid nitrogen, filled in a tank 7 or the like is continuously injected from the bottom. In addition, a strong boundary azusa wing 8 is provided inside the small chamber 6 as a rapid boundary means, and the injected liquid nitrogen is sufficiently mixed with the cold water 9, and nitrogen particles can be added to the cold water in order to improve heat exchange between the two. It is designed to disperse as many ice particles as possible and generate a large number of ice particles. Above the small chamber 6, that is, in the middle of the cold water tank 1, a weak boundary frame wing 10, which is a traverse speed concentration means, is provided with its blade extending from the upper lotus passage of the small chamber 6.

11は中室であり、前記弱境梓翼10が丁度中央となる
ように4・室6を囲綾する如く設けられ、かつ底部及び
上方は小室6と同様に冷水槽1と蓮通するように形成さ
れている。
Reference numeral 11 denotes a middle chamber, which is provided so as to surround chambers 4 and 6 so that the weak border azusa wing 10 is exactly in the center, and whose bottom and upper part communicate with the cold water tank 1 in the same manner as the small chamber 6. is formed.

この中室11内の冷水は、弱境梓翼10が前記小室にお
いて形成された液体窒素の微粒子の気化を促進し、その
微粒子の周りの冷水を急冷却させて氷結せしめて氷粒子
の成長を促進させることにより、所望の均一な粒径の氷
粒に置き換えられる。・12は冷水槽1内の上部に設け
られた案内通路であり、中室11で成長した氷粒13を
周囲の冷水と区分し、これを上方に導くべく中室11の
上方部から小径な管となって冷水槽1の水面上に迄延出
されている。14は案内通路12の上方に蓮設された取
出管であり、案内通路12に浮上してきた氷粒13又は
氷スラリを連続して外部へ取り出せるように設けられて
いる。
The cold water in the middle chamber 11 is generated by the weak boundary azusa blade 10 that promotes the vaporization of the liquid nitrogen particles formed in the small chamber, rapidly cooling the cold water around the particles and freezing them, thereby inhibiting the growth of ice particles. The acceleration replaces ice particles with the desired uniform size.・12 is a guide passage provided at the upper part of the cold water tank 1, which separates the ice grains 13 grown in the middle chamber 11 from the surrounding cold water and guides them upward through a small diameter guide passage from the upper part of the middle chamber 11. It becomes a pipe and extends above the water surface of the cold water tank 1. Reference numeral 14 denotes a take-out pipe arranged above the guide passage 12 so that the ice particles 13 or ice slurry floating in the guide passage 12 can be taken out continuously to the outside.

以上の構成よりなる本装置の作用について述べる。The operation of this device having the above configuration will now be described.

先ず、液体窒素タンク7より注入された液体窒素は、予
め0〜4℃に冷やされてづ・室6内に満たされている冷
水と、強櫨杵翼8の急速回転により樽拝され混合される
。この混合は小室内の冷水が冷水槽1と隔壁によって分
離されているので十分効果的になされ、冷水中に液体窒
素の微粒子を分散させるとともに熱交換による氷の微粒
子の発生をもたらす。これらは小室6の上方より中室1
1へと浸出していくも、液体窒素が連続注入される限り
新しい冷水が小室6の下方より絶えず供給されるので連
続的に発生し、つきることはない。中室11内に侵入し
た微粒子は弱潰梓翼10により緩つくりと麓拝されるた
め、そのうちの液体窒素の微粒子が気化促進されその回
りの冷水を氷結するとともに氷の微粒子が成長促進され
氷粒となる。ここでも小室6と同様に隔壁で仕切られて
いるので上記涜梓効果は中室11内の冷水に均一におよ
び、これより得られる氷粒の粒度も均一化さ‐れる。ま
たこれら氷粒に必要な新しい冷水は絶えず中室11の下
方より供給される。
First, the liquid nitrogen injected from the liquid nitrogen tank 7 is poured into a barrel and mixed with the cold water that has been pre-cooled to 0 to 4 degrees Celsius and filled in the chamber 6 by the rapid rotation of the strong pestle blades 8. Ru. This mixing is sufficiently effective because the cold water in the chamber is separated from the cold water tank 1 by the partition wall, and causes fine particles of liquid nitrogen to be dispersed in the cold water and generate fine particles of ice due to heat exchange. These are the middle chamber 1 from above the small chamber 6.
1, but as long as liquid nitrogen is continuously injected, new cold water is constantly supplied from below the small chamber 6, so it is continuously generated and does not get stuck. The fine particles that have entered the middle chamber 11 are gently crushed by the weak crushing blades 10, so that the liquid nitrogen fine particles are promoted to vaporize and freeze the cold water around them, and the growth of ice particles is promoted to form ice. Becomes grains. Here, as in the small chamber 6, it is partitioned by a partition wall, so that the above-mentioned aphrodisiac effect is uniformly applied to the cold water in the middle chamber 11, and the particle size of the ice particles obtained thereby is also made uniform. Also, new cold water necessary for these ice particles is constantly supplied from below the middle chamber 11.

従って、造氷工程は単に水に液体窒素を接触させるだけ
というきわめて単純な反応工程だけで足り、その過程に
複な機構、例えば砕氷あるし・は削氷機構がないので装
置の保守が簡単となる。
Therefore, the ice-making process requires only an extremely simple reaction process of simply bringing liquid nitrogen into contact with water, and since there is no complicated mechanism involved in the process, such as ice crushing or ice cutting, maintenance of the equipment is easy. Become.

また蝉梓翼8,10の回転速度や液体窒素の注入速度の
調整等により適宜の粒径を有する氷粒を得ることが可能
である。次に、中室11で形成された氷粒13はその比
重差により中室11内を上昇し、案内通路12を通って
その上部に浮上積層する。
Furthermore, it is possible to obtain ice grains having an appropriate particle size by adjusting the rotational speed of the cicada leaves 8, 10 and the injection speed of liquid nitrogen. Next, the ice grains 13 formed in the middle chamber 11 rise within the middle chamber 11 due to the difference in specific gravity, pass through the guide passage 12, and float and stack on the upper part thereof.

他方、中室11内で気化した窒素ガスも上昇し案内通路
12の上端開□より排気される。案内通路12の管径は
中室11よりも小さく形成してあるので、通路12内の
冷水は大半が排除されて氷粒に置き換わり、密度の高い
氷スラリとなる。上記窒素ガスは氷粒の積層する通路1
2内を絶えず上昇して抜け出るため、氷スラリのブリッ
ジ現象を妨げ、また同時にその浮上力を氷粒に付与し氷
粒の上昇を助ける効果をもたらす。なお、案内通路12
内の氷粒が溶けるのを防止するために、望ましくは通路
12の壁を断熱層で覆うようにし、さらに阻止できない
ブリッジ現象を解消するための解凍ヒータを設けるよう
にすれば一層効果的となる。更に浮上した氷粒13は取
出管14により氷粒としてあるし、は氷スラとして取り
出される。
On the other hand, the nitrogen gas vaporized in the middle chamber 11 also rises and is exhausted from the upper end opening □ of the guide passage 12. Since the diameter of the guide passage 12 is smaller than that of the middle chamber 11, most of the cold water in the passage 12 is removed and replaced with ice particles, resulting in a dense ice slurry. The above nitrogen gas is the passage 1 where the ice grains are piled up.
2, which constantly rises and escapes from the ice slurry, prevents the bridging phenomenon of the ice slurry, and at the same time imparts its buoyancy to the ice particles, thereby having the effect of helping the ice particles rise. In addition, the guide passage 12
In order to prevent the ice particles inside from melting, it would be more effective if the walls of the passage 12 were preferably covered with a heat insulating layer, and a thawing heater was provided to eliminate the unstoppable bridging phenomenon. . Further, the floating ice grains 13 are taken out as ice grains or as ice slurry by the take-out pipe 14.

この際、取出管14に窒素ガスが混入することは好まし
くないので、その入口近傍にガス抜き孔を設けるとよい
。冷水槽1内の冷水の減少分は、補給水槽3により冷却
器5を介して直ちに補給され、常に定水位を保つべく検
知器2で監視されており、また液体窒素も連続注入可能
であるから製氷の連続運転を行ない得る。従って、取出
管14より取り出され使用済みとなった氷スラリを廃棄
しないでその水及び冷熱を回収再使用するべく開サイク
ル系を組めば、実際に失なわれる僅かの冷熱及び水の補
給をするだけで連続運転が可能となり、省資源、省エネ
ルギーを計ることができる。このような効果は、氷を対
象としたから可能であり、ドライアイスのように気化し
てしまうものでは実現不可能である。また砂等を使用す
る場合と比較して当然公害防止が計れる。第2図は上記
氷スラリ製造装置を利用した本発明のアイスブラスト装
置の実施例を示し、図に示す如く、21は冷水槽であり
、上述の冷水槽1を変形してあるが実質は同じである。
At this time, it is undesirable for nitrogen gas to get mixed into the take-out pipe 14, so it is preferable to provide a gas vent hole near the inlet. The decreased amount of cold water in the cold water tank 1 is immediately replenished by the make-up water tank 3 via the cooler 5, and is monitored by the detector 2 to maintain a constant water level at all times, and liquid nitrogen can also be continuously injected. Continuous operation of ice making is possible. Therefore, if an open cycle system is constructed to collect and reuse the water and cold energy without discarding the used ice slurry taken out from the take-out pipe 14, the small amount of cold energy and water that is actually lost can be replenished. Continuous operation is possible with just one step, saving resources and energy. Such an effect is possible because the target is ice, and cannot be achieved with something that vaporizes like dry ice. Also, pollution can be naturally prevented compared to using sand or the like. FIG. 2 shows an embodiment of the ice blasting device of the present invention using the ice slurry manufacturing device described above. As shown in the figure, 21 is a cold water tank, which is a modified form of the cold water tank 1 described above, but is essentially the same. It is.

すなわち、中室22と案内通路23とからなる逆漏斗状
の内部形状をそのまま冷水槽21の外形となし、前述の
冷水槽1の外側を取り払って簡略化してある。但し、上
部において補給水の補給口と、氷スラリの取出口とを区
分するために案内通路23を隔壁で二分し、案内通路2
3の鉛直線上に延びた一方を取出路24となし、鉛直緩
から偏橋し分岐して延びた他方を補給勝25としている
。26はエアコンプレッサ又は高圧ポンプ等の圧送装置
であり、これより延びた圧送管27へ圧搾空気又は高圧
水を吐出すべく設けられている。
That is, the inverted funnel-shaped internal shape consisting of the middle chamber 22 and the guide passage 23 is used as the external shape of the cold water tank 21, and the outside of the cold water tank 1 described above is removed to simplify the design. However, in order to separate the make-up water supply port and the ice slurry take-out port at the top, the guide path 23 is divided into two by a partition wall, and the guide path 2
One end extending on the vertical line of 3 is defined as an outlet path 24, and the other end extending from the vertically angled bridge and branching off is defined as a replenishment channel 25. 26 is a pressure feeding device such as an air compressor or a high pressure pump, and is provided to discharge compressed air or high pressure water to a pressure feeding pipe 27 extending from this device.

圧送管27の途中には氷スラリ製造装置の取出路24か
ら延設された取出管28が接続され、取り出された氷ス
ラリを庄送管27へ合流させるようになっている。29
は圧送管27の先端に取り付けられた氷スラリ噴射ノズ
ルであり、鋼板等の被研編物301こ高圧で技射すべく
設けられている。
A take-out pipe 28 extending from the take-out passage 24 of the ice slurry manufacturing device is connected to the middle of the pressure feed pipe 27, so that the taken-out ice slurry is made to join the pressure feed pipe 27. 29
An ice slurry injection nozzle is attached to the tip of the pressure feed pipe 27, and is provided to spray the knitted material 301 such as a steel plate at high pressure.

31は回収槽であり、被研掃物30に投射して落下飛散
した使用済みの氷及び水を冷水として回収すべ〈設けら
れている。
Reference numeral 31 denotes a collection tank, which is provided to collect used ice and water that have been projected onto the object to be polished 30 and fallen and scattered as cold water.

32はこの回収された冷水を冷水ポンプ33によって汲
み取ってこれを洗浄櫨過する水処理装置であり、フィル
タあるいはサイクロン等を要素とした公知の処理装置と
して設けられている。
Reference numeral 32 denotes a water treatment device which pumps up the collected cold water with a cold water pump 33 and passes it through a washing filter, and is provided as a known treatment device including a filter, a cyclone, etc. as an element.

かかる処理後の冷水はポンプ34により氷スラリ製造装
置の補給路25に帰還させている。尚、前記回収槽31
で回収した水と氷をふるい等で分離し、水は水処理装置
32を介して原水槽、すなわち補給水槽3に戻し、氷は
公知の洗浄方法で汚物を除去し氷スラリ製造装置の補給
路25又は取出路24に直接回収するように設けてもよ
い。次に、このアイスブラスト装置の実施例の作用を説
明する。
The cold water after such treatment is returned to the supply path 25 of the ice slurry manufacturing apparatus by a pump 34. In addition, the recovery tank 31
The collected water and ice are separated using a sieve or the like, and the water is returned to the raw water tank, that is, the make-up water tank 3, via the water treatment device 32, and the ice is cleaned of waste by a known cleaning method and then sent to the make-up path of the ice slurry manufacturing device. 25 or the extraction path 24 for direct collection. Next, the operation of this embodiment of the ice blasting device will be explained.

第2図において、氷スラリ製造装置より得られた氷スラ
リ35は圧送装置26の運転により取出管28へ自動的
に吸引流入すると共に、圧送管27へ流り込み圧搾空気
又は高圧水と合流し、噴射ノズル29より高圧力で噴射
される。この噴射で、氷粒は硬度と重量を有するから被
研掃物30に衝突したときの摩擦と衝撃効果で汚れを剥
離し、水はこれらの汚れを洗い落す洗浄効果をもたらし
、さらにはこれらの相乗効果を発揮する。しかも氷粒は
すべて均一の粒度を有しているので砂や鋼粒と比較して
劣ることはない。しかしてこれらの使用済みの水及び氷
はそのまま汚物と共に回収され、水処理装置32による
清浄後氷スラリ装置へ戻される。この帰還により本アイ
スブラスト装置は閉サイクルに近いシステムとすること
ができる。すなわち、常に供給しなければならない冷熱
(液体窒素)を例外とすれば、本装置で唯一の関路とな
っている研掃部においても水及び氷のほぼ完全な回収が
可能であり、しかもここで奪われる冷熱は系内にある冷
水自動供給要素の冷却装置5(第1図参照)と液体窒素
とにより補給されるからである。このことは、圧送装置
26としてエアコンプレッサを用いた場合でも、あるい
は高圧ポンプを用いた場合でも同じであり、共に開サイ
クルを組むことができる。従って、系外からの異物混入
は全くあり得ず、単に研婦によって生じる被研掃物の汚
れ、しかも絶対量が少ない廃棄物を排出するに止まるか
ら、原子力発電プラントや特殊な化学プラント等のよう
な粉塵や異物の混入を嫌う機器の洗浄に好適に使用する
ることができる。
In FIG. 2, the ice slurry 35 obtained from the ice slurry manufacturing device is automatically sucked into the take-out pipe 28 by operation of the pressure feeding device 26, and flows into the pressure feeding pipe 27 where it merges with compressed air or high pressure water. , is injected from the injection nozzle 29 at high pressure. In this jetting, the ice grains have hardness and weight, so when they collide with the object to be polished 30, they peel off dirt due to the friction and impact effect, and the water has a cleaning effect that washes away these dirt. Demonstrate a synergistic effect. Moreover, all ice grains have a uniform particle size, so they are not inferior to sand or steel grains. The used water and ice are collected as they are along with the waste, cleaned by the water treatment device 32, and then returned to the ice slurry device. This feedback allows the ice blasting device to operate as a nearly closed cycle system. In other words, with the exception of cold heat (liquid nitrogen), which must be constantly supplied, almost complete recovery of water and ice is possible even in the grinding section, which is the only barrier in this device. This is because the removed cold heat is replenished by the cooling device 5 (see FIG. 1) of the automatic cold water supply element in the system and by liquid nitrogen. This is the same whether an air compressor or a high-pressure pump is used as the pressure feeding device 26, and both can form an open cycle. Therefore, there is no possibility of foreign matter entering the system from outside the system, and only dirt on the object to be polished is generated by the cleaning staff, and only a small amount of waste is discharged, making it ideal for nuclear power plants, special chemical plants, etc. It can be suitably used for cleaning equipment where dust and foreign matter should not be mixed in.

また、サンドブラスト等のように粉塵の発生が皆無に等
しいので、街路の構造物や密集するピルの壁面の洗浄等
にも幅広く応用でき、施工場所の制限も設ける必要がな
い。さらには、使用後の氷及び冷水は再利用されるので
、系外からの補給は系内における消耗分の冷熱と水とを
供給するだけで済みしかも非常に僅少であって、廃棄量
の減少とともに省資源化を計ることができる。
In addition, unlike sandblasting, which generates almost no dust, it can be widely applied to cleaning street structures and walls of densely packed pillars, and there is no need to place restrictions on where it can be applied. Furthermore, since ice and cold water are reused after use, replenishment from outside the system is only necessary to supply cold heat and water equivalent to the amount consumed within the system, and the amount is extremely small, reducing the amount of waste. At the same time, it is possible to save resources.

また、本装置は電源、水、液体寒剤を補給源とする独立
した装置として形成でき、しかもこれらの補給源は大型
化、複雑化を招かず、あるいは入手困難なものではなく
通常どこでも容易に調達できるものであるから任意の場
所で使用でき、また連続運転が可能であるからシステム
としての利用度、応用分野も広凡となる。
Additionally, the device can be configured as an independent device with power, water, and liquid cryogen supplies that are not bulky, complicated, or difficult to obtain, and are generally easily procured anywhere. Since it can be used anywhere, it can be used in any place, and since it can be operated continuously, it can be used as a system and has a wide range of applications.

第3図は、上記氷スラリ製造装置を利用した本発明の配
管洗浄装置の実施例を示し、図に示す如く、41は冷水
槽であり、前述の第2図で示した冷水槽21と全同じも
のである。
FIG. 3 shows an embodiment of the pipe cleaning device of the present invention using the ice slurry manufacturing device described above. As shown in the figure, 41 is a cold water tank, which is similar to the cold water tank 21 shown in FIG. It's the same thing.

42はポンプであり、取出器43から延設された取出管
44をその流入口に接続し、その吐出口より直接又はバ
イパス配管を介して氷粒又は氷スラリを被洗浄配管45
に送出するように設けられている。
Reference numeral 42 designates a pump, which connects a take-out pipe 44 extending from a take-out device 43 to its inlet, and supplies ice particles or ice slurry to the pipe to be cleaned 45 directly or via a bypass pipe from its discharge port.
It is set up to be sent to.

46は汚物除去槽であり、被洗浄配管45より排出され
た氷及び水を直接又はバイパス配管を介して回収するよ
うに設けられ、ここで汚物を除去し氷スラリが浄化され
る。
A filth removal tank 46 is provided to collect ice and water discharged from the pipe to be cleaned 45 either directly or via a bypass pipe, and filth is removed here to purify the ice slurry.

47はポンプであり、前記汚物除去槽46で浄化された
氷スラリを氷スラリ製造装置の補給路46に帰還させる
ように設けられている。
A pump 47 is provided to return the ice slurry purified in the dirt removal tank 46 to the supply path 46 of the ice slurry manufacturing apparatus.

尚、本装置では氷スラリ製造装置から冷水を自動供給す
る要素、すなわち補給水槽3、ポンプ4、冷却装置5が
除かれている。しかして上記構成の作用を説明すると、
取出管44を通って来た氷粒又は氷スラリはポンプ42
の吐出口から外気に触れることなく直接被洗浄配管45
へ送出される。
Incidentally, in this apparatus, elements for automatically supplying cold water from the ice slurry manufacturing apparatus, that is, the make-up water tank 3, the pump 4, and the cooling device 5 are removed. However, to explain the effect of the above configuration,
The ice grains or ice slurry that has passed through the take-out pipe 44 is passed through the pump 42
The pipe 45 to be cleaned is directly cleaned from the outlet port without contacting the outside air.
sent to.

この送出により氷又は氷スラリは被洗浄配管45中を高
流速で乱流となって流れ、これに伴なし、氷粒の衝撃効
果と水の洗浄効果及び両者の相乗効果を発揮し管内壁の
洗浄を行なう。被洗浄配管45より排出される汚物の混
在した氷スラリは、ここでも外気に触れることなく取り
出され汚物除去槽46に回収される。そして、これより
浄化された氷スラリは氷スラリ製造装置の補給路48に
戻され再び氷の製造に供される。この過程をみるに、氷
粒又は氷スラリは一度も外気に触れることなく常に管路
又はこれに類する密封路を通ることがわかる。このこと
はもし管路等が熱交換による熱の出入がないようになっ
ていれば、あるいは熱損失があったとしても積極的にな
されている場合を除いて、冷熱の損失はかなり4・さし
、ことを意味する。従ってこの損失に応じた冷熱の補給
を液体窒素タンク7によってなせばよく、一方この補給
がこの系の唯一のオープンループを形成する。なぜなら
ば、氷スラリ製造装置から取り出される氷粒又は氷スラ
リの量と回収され戻ってくる氷スラリの量とは同一であ
り、途中において失なわれないから冷水槽41の水及び
冷熱(水)を系外から補給する必要がないからである。
すなわち、本装置は冷熱(液体窒素)の補給を除けば完
全開サイクル系を構成しているといえるのである。なお
、初期運転の円滑化又は粒度の均一化のために冷水槽4
1の水は常温水でなく0〜4℃の冷水であることが望ま
しいが、以後系自体の循環作用により冷水槽41の水温
は十分冷やされ0〜4℃に落ち着くこととなるから、当
初から常温水であっても良くこの場合冷却器5が不要と
なる。
As a result of this delivery, the ice or ice slurry flows in the pipe 45 to be cleaned as a turbulent flow at a high flow rate, and as a result, the impact effect of the ice particles, the cleaning effect of the water, and the synergistic effect of the two are exerted, and the inner wall of the pipe is Perform cleaning. The ice slurry mixed with dirt discharged from the pipe to be cleaned 45 is also taken out without coming into contact with the outside air and collected in the dirt removal tank 46. The purified ice slurry is then returned to the supply path 48 of the ice slurry production device and used for ice production again. This process shows that the ice particles or ice slurry always pass through the conduit or similar sealed channel without ever being exposed to the outside air. This means that if the pipes etc. are designed so that no heat can pass in or out through heat exchange, or if there is heat loss, unless it is actively done, the loss of cold heat will be quite small. And it means that. Therefore, it is only necessary to replenish cold heat corresponding to this loss using the liquid nitrogen tank 7, and this replenishment forms the only open loop of this system. This is because the amount of ice grains or ice slurry taken out from the ice slurry manufacturing device is the same as the amount of ice slurry collected and returned, and the water and cold heat (water) in the cold water tank 41 are not lost during the process. This is because there is no need to supply it from outside the system.
In other words, this device can be said to constitute a completely open cycle system, except for the replenishment of cold energy (liquid nitrogen). In addition, in order to smooth the initial operation or to make the particle size uniform, a cold water tank 4 is installed.
It is desirable that the water in step 1 is not room temperature water but cold water of 0 to 4 degrees Celsius, but since the water temperature in the cold water tank 41 will be sufficiently cooled by the circulation action of the system itself and settle to 0 to 4 degrees Celsius, from the beginning. Room temperature water may be used, and in this case, the cooler 5 is not required.

従って氷スラリの高速循環が可能となり、単に冷熱(液
体窒素)の補給のみで連続サイクルを組むことができ、
一方系外からの異物の混入は全く無いばかりか系内で生
じる汚物は元釆系内に存在したものであるから、たとえ
汚物除去槽46で完全に汚物の除去ができなかったり、
又は水処理が不完全であっても系に支障はなく、不都合
が起きることはない。また、本装置にあっては水を氷粒
化するものであるから、被洗浄配管45を構成要素とし
ている系が水を使用するものであれば、その水をそのま
ま利用して氷スラリとすることができ、しかも氷が解け
ればこれを廃棄することなく残存させたまま再び被洗浄
配管系の装置の運転に入ることができる。
Therefore, high-speed circulation of ice slurry is possible, and a continuous cycle can be established simply by replenishing cold energy (liquid nitrogen).
On the other hand, not only is there no contamination of foreign substances from outside the system, but also the filth generated within the system is the same as the one that existed in the original pot system, so even if the filth cannot be completely removed in the filth removal tank 46,
Or, even if the water treatment is incomplete, the system will not be affected and no inconvenience will occur. In addition, since this device turns water into ice particles, if the system in which the pipe 45 to be cleaned is a component uses water, the water can be used as is to make ice slurry. Furthermore, once the ice has melted, the equipment for the piping system to be cleaned can be put into operation again without having to dispose of it.

さらに、プラント配管を局部的に洗浄したい場合もバル
ブ操作とバイパス配管の使用により簡単に洗浄可能とな
り、異物混入がないのでフラッシングの必要がなく作業
性を向上させることができる。
Furthermore, even if it is desired to locally clean the plant piping, it can be easily cleaned by operating the valve and using the bypass piping, and since there is no contamination of foreign matter, there is no need for flushing, and work efficiency can be improved.

以上要するにこの発明によれば次のような優れた効果を
発揮する。
In summary, the present invention exhibits the following excellent effects.

‘1} 簡単な構造で氷粒及び氷スラリを連続的に製造
することができ、また粒度の揃った均一な氷粒又は氷ス
ラリを経済的に取り出すことできる。
'1} Ice grains and ice slurry can be continuously produced with a simple structure, and uniform ice grains or ice slurry with uniform particle size can be extracted economically.

{2’冷熱と水資源の回収再利用を計ることができ、さ
つ廃棄物の発生量が極端に少ないので粉塵公害の廃れが
なく、施工場所の制限を受けることがない。
{2'Cold heat and water resources can be recovered and reused, and the amount of waste generated is extremely small, so there is no waste from dust pollution, and there are no restrictions on construction locations.

{3’ 氷又は氷スラリを冷熱の補給のみで連続的に製
造することができ、水の補給を必要としないので省資源
化が計れ、また外部からの異物侵入のない完全閉サイク
ル系することができるので特に原子力発電プラント等放
射性物質を含む配管であって化学洗浄薬品の使用が難し
い配管の洗浄に有用で、公害防止を計ることができる。
{3' It is possible to continuously produce ice or ice slurry only by replenishing cold heat, and there is no need to replenish water, which saves resources, and it is a completely closed cycle system that does not allow foreign matter to enter from the outside. This makes it particularly useful for cleaning piping that contains radioactive materials, such as those in nuclear power plants, where it is difficult to use chemical cleaning chemicals, and can help prevent pollution.

図面の簡単な説明第1図は本発明に係る氷スラリ製造装
置の好適一実施例を図式的に示す断面図、第2図は本発
明に係るアイスブラスト装置の好適一実施例を図式的に
示す断面図、第3図は本発明に係る配管洗浄装置の好適
一実施例を図式的に示す断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view schematically showing a preferred embodiment of the ice slurry production apparatus according to the present invention, and FIG. 2 is a sectional view schematically showing a preferred embodiment of the ice blasting apparatus according to the present invention. FIG. 3 is a sectional view schematically showing a preferred embodiment of the pipe cleaning device according to the present invention.

図中、1,21,41は冷水槽、6は小室、8は急速樽
投手段、9は冷水、10は穣遠境投手段12,13は案
内通路、13は氷粒、26は圧送装置、30は被研橋物
、31は回収槽、32は水処理装置、42はポンプ、4
5は被洗浄配管、46は汚物除去槽である。
In the figure, 1, 21, 41 are cold water tanks, 6 is a small chamber, 8 is a rapid barrel throwing means, 9 is cold water, 10 is a cold water throwing means 12, 13 is a guide passage, 13 is ice grains, and 26 is a pressure feeding device , 30 is a bridge object to be polished, 31 is a collection tank, 32 is a water treatment device, 42 is a pump, 4
5 is a pipe to be cleaned, and 46 is a filth removal tank.

多7図 第2図 第3図Multi-7 diagrams Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 冷水を自動供給される冷水槽と、この下部に冷水槽
と連通するように設けられかつ液体窒素等の液体寒剤を
連続注入される小室と、この小室に設けられ前記液体寒
剤を冷水に均一分散させ氷粒子を形成させる急速撹拌手
段と、前記冷水槽の中部に設けられ小室から得られる氷
粒子の成長を促進させる緩速撹拌手段と、前記冷水槽の
上部に設けられ前記冷水と区分し成長した氷粒を上方に
導く案内通路とを備え、この案内通路より氷粒又は氷ス
ラリを連続して取り出せるように構成したことを特徴と
する氷スラリ製造装置。 2 冷水を自動供給される冷水槽と、この下部に冷水槽
と連通するように設けられかつ液体窒素等の液体寒剤を
連続注入される小室と、この小室に設けられ前記液体寒
剤を冷水に均一分散させ氷粒子を形成させる急速撹拌手
段と、前記冷水槽の中部に設けられ小室から得られる氷
粒子の成長を促進させる緩速撹拌手段と、前記冷水槽の
上部に設けられ前記冷水と区分し成長した氷粒を上方に
導く案内通路と、この案内通路とより取り出した氷粒又
は氷スラリを圧送する圧送装置と、この圧送された氷粒
又は氷スラリを被研掃物に噴射する噴射ノズルと、この
噴射した氷スラリを回収する回収槽と、この回収槽の氷
スラリを浄化する水処理装置とを備え、これにより浄化
された氷スラリを上記冷水槽に帰還させるように構成し
たことを特徴とするアイスブラスト装置。 3 冷水を溜める冷水槽と、この下部に冷水槽と連通す
るように設けられかつ液体窒素等の液体寒剤を連続注入
される小室と、この小室に設けられ前記液体寒剤を冷水
に均一分散させ氷粒子を形成させる急速撹拌手段と、前
記冷水槽の中部に設けられ小室から得られる氷粒子の成
長を促進させる緩速撹拌手段と、前記冷水槽の上部に設
けられ前記冷水と区分し成長した氷粒を上方に導く案内
通路と、この案内通路より取り出した氷粒又は氷スラリ
を被洗浄配管に送出するポンプと、被洗浄配管より排出
された氷スラリを回収する汚物除去槽とを備え、これよ
り浄化された氷スラリを上記冷水槽に帰還させるように
構成したことを特徴とする配管洗浄装置。
[Scope of Claims] 1. A cold water tank to which cold water is automatically supplied; a small chamber provided in the lower part of the tank so as to communicate with the cold water tank and into which a liquid cryogen such as liquid nitrogen is continuously injected; a rapid stirring means for uniformly dispersing a liquid cryogen in cold water to form ice particles; a slow stirring means provided in the middle of the cold water tank for promoting the growth of ice particles obtained from the small chamber; and a slow stirring means provided in the upper part of the cold water tank. 1. An ice slurry manufacturing apparatus, comprising: a guide path for separating the grown ice particles from the cold water and guiding the grown ice particles upward, and configured such that ice particles or ice slurry can be continuously taken out from the guide path. 2. A cold water tank to which cold water is automatically supplied, a small chamber provided below this so as to communicate with the cold water tank and into which a liquid cryogen such as liquid nitrogen is continuously injected, and a small chamber provided in this small chamber to uniformly distribute the liquid cryogen into the cold water. a rapid stirring means for dispersing and forming ice particles; a slow stirring means provided in the middle of the cold water tank to promote the growth of ice particles obtained from the small chamber; and a slow stirring means provided in the upper part of the cold water tank to separate it from the cold water. A guide passage that guides the grown ice grains upward, a pumping device that pumps the ice grains or ice slurry taken out from the guide passage, and an injection nozzle that sprays the pumped ice grains or ice slurry onto the object to be polished. and a collection tank for collecting the injected ice slurry, and a water treatment device for purifying the ice slurry in the collection tank, and configured to return the purified ice slurry to the cold water tank. Features an ice blast device. 3. A cold water tank for storing cold water, a small chamber provided at the bottom of this tank in communication with the cold water tank and into which a liquid cryogen such as liquid nitrogen is continuously injected, and a small chamber provided in this small chamber to uniformly disperse the liquid cryogen in the cold water to form ice. rapid stirring means for forming particles; slow stirring means provided in the middle of the cold water tank to promote the growth of ice particles obtained from the small chamber; and ice grown separated from the cold water provided in the upper part of the cold water tank. It is equipped with a guide passage that guides the ice particles upward, a pump that sends the ice particles or ice slurry taken out from the guide passage to the piping to be cleaned, and a waste removal tank that collects the ice slurry discharged from the piping to be cleaned. A pipe cleaning device characterized in that it is configured to return purified ice slurry to the cold water tank.
JP56151958A 1981-09-28 1981-09-28 Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment Expired JPS6038624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151958A JPS6038624B2 (en) 1981-09-28 1981-09-28 Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151958A JPS6038624B2 (en) 1981-09-28 1981-09-28 Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment

Publications (2)

Publication Number Publication Date
JPS5855667A JPS5855667A (en) 1983-04-02
JPS6038624B2 true JPS6038624B2 (en) 1985-09-02

Family

ID=15529924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151958A Expired JPS6038624B2 (en) 1981-09-28 1981-09-28 Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment

Country Status (1)

Country Link
JP (1) JPS6038624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142037A (en) * 1985-12-13 1987-06-25 Orient Watch Co Ltd Cutting oil feeding device in press work device
JPS62241589A (en) * 1986-04-10 1987-10-22 望月 たく夫 Method of washing inside of duct

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227364A (en) * 1983-06-09 1984-12-20 Fuji Plant Kogyo Kk Removal of adhering substance
JPH01111991U (en) * 1988-01-12 1989-07-27
JP2003033733A (en) * 2001-07-23 2003-02-04 Taiyo Toyo Sanso Co Ltd Substrate cleaning system
JP6712200B2 (en) * 2016-08-25 2020-06-17 大陽日酸株式会社 Slurry ice manufacturing method
JP6910215B2 (en) * 2017-06-21 2021-07-28 大陽日酸株式会社 Slurry ice making equipment and method
CN113976553B (en) * 2021-09-16 2023-02-28 河海大学 Pipeline cleaning device based on ice slurry spraying and cleaning method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142037A (en) * 1985-12-13 1987-06-25 Orient Watch Co Ltd Cutting oil feeding device in press work device
JPS62241589A (en) * 1986-04-10 1987-10-22 望月 たく夫 Method of washing inside of duct

Also Published As

Publication number Publication date
JPS5855667A (en) 1983-04-02

Similar Documents

Publication Publication Date Title
US3600225A (en) Pipe cleaning
US3615329A (en) A recirculatory system for the granulation of molten slag
JPS6038624B2 (en) Ice slurry manufacturing equipment, ice blasting equipment and pipe cleaning equipment using this equipment
CN110064630A (en) Particle stream flow impulse piping cleaning device
US2860490A (en) Method and apparatus for production of super-cooled ice
US5302324A (en) Method for decontaminating substances contaminated with radioactivity, and method for decontaminating the materials used for said decontamination
CN101865601B (en) Pulse stream cleaning anti-blocking method and device of coal slurry centrifugal dehydrator
WO2014037187A1 (en) Slurry dewatering device
CN109595026B (en) Mine air cooling dust pelletizing system
CN202143789U (en) Crystal catcher
AU2009207850A1 (en) Method and plant for removing accumulating slag from a slag bath
US4809513A (en) Ice melting in thermal storage systems
CN104017606B (en) Coal-water slurry gasification system
US2735275A (en) Inyentor
JP4395218B2 (en) Dynamic ice heat storage device
JPS5855666A (en) Method and device for manufacturing ice grain
JP3993609B2 (en) Freeze-concentration wastewater treatment equipment
JPH11153373A (en) Method and apparatus for removing stain
CN107626682B (en) Blast furnace ore tank regional water cleaning and recycling system and application method thereof
CN220004253U (en) Ball mill with cooling function
CN212820190U (en) Energy-concerving and environment-protective type's concrete washs separating centrifuge
JP2696046B2 (en) Latent heat storage device
CN109795018A (en) Aerated-block waste cut materials recovery system and method
CN219823907U (en) Sand water circulation system
KR102456914B1 (en) Three-effect type water tank immersion wheel washing system consisting of wheel immersion, H-beam trembling, and circulating supply of washing material