JPS6038024A - Removal of hydrogen chloride in exhaust gas - Google Patents

Removal of hydrogen chloride in exhaust gas

Info

Publication number
JPS6038024A
JPS6038024A JP58146078A JP14607883A JPS6038024A JP S6038024 A JPS6038024 A JP S6038024A JP 58146078 A JP58146078 A JP 58146078A JP 14607883 A JP14607883 A JP 14607883A JP S6038024 A JPS6038024 A JP S6038024A
Authority
JP
Japan
Prior art keywords
reaction chamber
hydrogen chloride
exhaust gas
powder
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146078A
Other languages
Japanese (ja)
Inventor
Hiroshi Kono
浩 河野
Miki Yamagishi
山岸 三樹
Tsuneharu Miyaji
宮地 常晴
Hisao Nara
奈良 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58146078A priority Critical patent/JPS6038024A/en
Publication of JPS6038024A publication Critical patent/JPS6038024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To enhance the removal efficiency of HCl, by blowing a powdery alkali agent into a reaction chamber after grinding the same into a fine powder with a specific particle size or less. CONSTITUTION:Exhaust gas generated in a garbage incinerator 1 is introduced into a reaction chamber 3 through waste heat utilizing machinery 2 and a powdery alkali agent S such as slaked lime supplied from a silo 1 is blown into the reaction chamber 3 while ground into a fine powder with a particle size of 10mum or less by a finely grinding machine 10. HCl in the exhaust gas is removed through the reaction with the fine powder and the purified gas is exhausted through a dust collector 4. The chemical agent S' in the collected ash collected by the dust collector 4 is recovered in a hopper 11 and the reaction product on the surface of each particle is released by a finely grinding machine 10' and the regenerated chemical agent is blown into the reaction chamber 3 along with the powdery chemical agent S supplied from the side of the silo 7.

Description

【発明の詳細な説明】 この発明はごみ焼却炉等から発生する排ガス中の塩化水
素除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing hydrogen chloride from exhaust gas generated from a garbage incinerator or the like.

ごみ焼却炉から発生する排ガス中の塩化水素除去方法に
は、乾式・半乾式・湿式の三方式があシ、その中の乾式
法は設備費の安さ及び操業面・維持管理面の簡便さから
みて、良い方法であるが、塩化水素の除去性能が半乾式
法・湿式法に比べて悪いという欠点がある。
There are three methods for removing hydrogen chloride from exhaust gas generated from garbage incinerators: dry, semi-dry, and wet. The dry method is preferred due to its low equipment costs and ease of operation and maintenance. Although this is a good method, it has the disadvantage that its hydrogen chloride removal performance is poorer than semi-dry or wet methods.

乾式法は昭和52年にごみ焼却炉排ガス中の塩化水素に
法規制が加えられた時点より、主として既設炉対策用と
して簡易な装置によシ法規制を達成しようとして開発さ
れたものである。
The dry method was developed in 1972, when legal regulations were imposed on hydrogen chloride in waste gas from waste incinerators, in an attempt to meet the legal regulations using a simple device, primarily as a countermeasure for existing incinerators.

この方法は塩化水素を含有する排ガス中に、基塩化水素
の気体分子とアルカリ剤粉末の固体粒子とが排ガス中で
遭遇することによりなされる。
This method is carried out in an exhaust gas containing hydrogen chloride, in which gaseous molecules of basic hydrogen chloride and solid particles of alkaline agent powder encounter each other in the exhaust gas.

ところで、気体となっている塩化水素14 ’(jp 
、f −J中に気体分子として万遍なく散在し、・ ゛
・・径社約3X(3X10 μ、)であり、その数も多
い(1021個/m3のオーダーである)。これに対し
アルカリ剤粉末例えば一般に市販されている消石灰粉末
は固体粒子(平均粒子径20〜50μ)として存在し、
その数は通常の吹き込み量で108個AJ程度でありて
、塩化水素分子の数に比較して極端に少ない。このため
、消石灰粉末の固体粒子と塩化水素の気体分子が反応室
内で遭遇する確率が低く、排ガス中の塩化水素除去率を
上げることができなかった。なお、前記反応室内で′の
遭遇確率を高めるために、反応室内での滞留時間を長く
する方法、運動量を増加させる方法が知られているが、
前者の方法は反応室の大形化等の経済的問題があシ、ま
た後者の方法についても除去率の点でおのずから限界が
ある。
By the way, hydrogen chloride 14' (jp
, f-J, they are evenly scattered as gas molecules, and the diameter is approximately 3X (3X10 μ), and their number is large (on the order of 1021 pieces/m3). On the other hand, alkaline agent powder, such as commonly commercially available slaked lime powder, exists as solid particles (average particle size 20 to 50μ),
The number of these molecules is about 108 AJ at a normal injection amount, which is extremely small compared to the number of hydrogen chloride molecules. For this reason, the probability that solid particles of slaked lime powder and gaseous molecules of hydrogen chloride will encounter each other in the reaction chamber is low, making it impossible to increase the hydrogen chloride removal rate from exhaust gas. In addition, in order to increase the probability of encountering ′ in the reaction chamber, methods of increasing the residence time in the reaction chamber and increasing the momentum are known.
The former method has economical problems such as increasing the size of the reaction chamber, and the latter method also has its own limitations in terms of removal rate.

本発明者は前記のような背景にもとづいて種種研究した
結果、反応室内で排ガス中の塩化水素分子と、アルカリ
剤粉末の固体粒子が遭遇する確率は三者の全表面積に比
例し、反応室へ吹き込まれるアルカリ剤粉末の全表面積
を増大させてやれば、前記の確率すなわち塩化水素除去
率を向上させることができ、その場合前記アルカリ剤粉
末を10μ以下の粒子径に微粉砕して反応室へ吹き込め
ば、従来75Ls以下であった塩化水素除去率を80−
以上に向上させ得ることを見い出した。
As a result of various studies based on the above background, the present inventor found that the probability that hydrogen chloride molecules in the exhaust gas and solid particles of alkaline agent powder encounter each other in the reaction chamber is proportional to the total surface area of the three. If the total surface area of the alkaline agent powder blown into the reaction chamber is increased, the above-mentioned probability, that is, the hydrogen chloride removal rate can be improved. If the hydrogen chloride removal rate was 75Ls or less,
We have discovered that we can improve this even further.

この発明は前記の如き研究によ多なされたもので、その
第1の発明は従来一般に使用されているアルカリ剤粉末
、主として消石灰粉末(平均粒子径20〜50μ)を1
0μ以下の微粒子粉末に微粉砕して反応室へ吹き込むこ
と(この場合の吹き込み量は従来と同様である)を特徴
とするものであり、また第2の発明は前記アルカリ剤粉
末、主として消石灰粉末を分級して、10μ以上の粉末
は10μ以下に微粉砕し、工。
This invention was made based on the above-mentioned research, and the first invention was based on alkali powders commonly used in the past, mainly slaked lime powder (average particle size 20-50μ).
The second invention is characterized in that the alkali agent powder, mainly slaked lime powder, is pulverized into a fine powder of 0μ or less and blown into the reaction chamber (the amount of blown in this case is the same as the conventional one). The powder is classified, and powders larger than 10μ are finely ground to smaller than 10μ.

μ以下の分級微粉末はそのまま反応室へ吹き込むことを
特徴とするものである。
This method is characterized in that the classified fine powder of μ or less is directly blown into the reaction chamber.

以下、この発明の実施例を図面に従い説明する。第1図
はごみ焼却炉から発生した塩化水素を含有する排ガスの
塩化水、素除去設備を示すもので、ごみ焼却炉1で発生
した排ガスを、ン2イラ等の廃熱利用機器2→反応室3
→集塵機4を経て誘引送R機5の作動により煙突671
)ら排気きせるようになっておp1前記反応室3にはサ
イロ7内の塩化水素除去用薬剤でおるアルカリ剤粉末S
(実施例では消石灰粉末)がプロア8の作動によシ吹き
込まれる。
Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows equipment for removing chlorinated water and elemental elements from exhaust gas containing hydrogen chloride generated from a garbage incinerator. Room 3
→Through the dust collector 4, the chimney 671 is activated by the induced transport R machine 5.
) P1 The reaction chamber 3 contains alkaline agent powder S which is a chemical for removing hydrogen chloride in the silo 7.
(slaked lime powder in the embodiment) is blown in by the operation of the blower 8.

而して、この発明ではアルカリ剤粉末Sの反応室3への
吹き込み管路9に微粉砕−1,1A1oを組込んで、サ
イロ7から供給されるアルカリ剤粉末S(平均粒子径2
0〜50μの消石灰粉末)を前記微粉砕機lOで10μ
以下の微粉末に粉砕して反応室3へ吹き込むことを特徴
とするもので、この場合の吹き込み箪は従来と同様に行
なわれ例えばモル比;消石灰粉末/塩化水素=3となる
ように吹き込まれる。なお、前記アルカリ剤粉末Sの消
費量を減らすために、集塵機4で捕集された集塵灰中の
薬剤S′(表面が反応生成物で被覆されている消石灰の
粒子)をホッパー11内に回収し、これを微粉砕機又は
廖砕機10′によって再粉砕又は磨砕して、粒子表面の
反応生成物を剥離し新しい反応面を生成して、この再生
薬剤をサイロ7側から供給される薬剤粉末(アルカリ剤
粉末)Sと一緒に反応室3へ吹き込む方法を採用するこ
ともできる。第1図における符号12は再生薬剤を反応
室3へ吹き込むプロア、13はその吹き込み管路を示し
ている。
Accordingly, in this invention, finely pulverized -1,1A1o is incorporated into the pipe 9 for blowing the alkali powder S into the reaction chamber 3, and the alkali powder S (average particle diameter 2
0 to 50μ of slaked lime powder) to 10μ in the pulverizer lO.
It is characterized by pulverizing it into the following fine powder and blowing it into the reaction chamber 3. In this case, the blowing chamber is carried out in the same way as before, and for example, the molar ratio is slaked lime powder/hydrogen chloride = 3. . In order to reduce the consumption of the alkaline agent powder S, the agent S' (slaked lime particles whose surface is coated with a reaction product) in the dust collected by the dust collector 4 is placed in the hopper 11. This is collected and re-pulverized or ground by a pulverizer or crusher 10' to peel off the reaction products on the particle surface and generate a new reaction surface, and this regenerated agent is supplied from the silo 7 side. It is also possible to adopt a method in which the chemical powder (alkaline powder) is blown into the reaction chamber 3 together with the chemical powder (alkaline powder) S. In FIG. 1, reference numeral 12 indicates a blower for blowing the regenerating agent into the reaction chamber 3, and 13 indicates the blowing conduit.

第2図はこの発明の他の実施例(第2発明)による塩化
水素除去方法を示すもので、サイロ7からブロワ供給さ
れるアルカリ剤粉末S(平均粒子径20〜50μの消石
灰粉末で、10μ以下の微粉末が20〜3oチ含まれて
いる)を分級機14によって10μ以上の粉末と、10
μ以下の微粉末に分け、10μ以上の粉末は分岐管路9
aから微粉砕機1oに送って10μ以下の微粉末に粉砕
し、10μ以下の分級微粉末は分岐管路9bからそのま
ま反応室3へ吹き込むようにしている。第3図は反応室
3へ吹き込まれる消石灰の粉末粒子径と排ガス中の塩化
水素除去率との関係をグラフで示した説明図であって、
モル比(消石灰粉末と塩化水素の割合)=3とし、反応
室3人口の塩化水素濃度=600ppm (12% 0
2換算値)として実験した結果を示している。
FIG. 2 shows a hydrogen chloride removal method according to another embodiment (second invention) of the present invention, in which alkaline agent powder S (slaked lime powder with an average particle size of 20 to 50 μm, 10μ The following fine powders (containing 20~3o
Divided into fine powders with a diameter of less than μ, powders with a diameter of more than 10μ are divided into branch pipes 9.
The powder is sent from a to the pulverizer 1o and pulverized into a fine powder of 10 μm or less, and the classified fine powder of 10 μm or less is directly blown into the reaction chamber 3 through a branch pipe 9b. FIG. 3 is an explanatory diagram showing in a graph the relationship between the powder particle size of slaked lime blown into the reaction chamber 3 and the hydrogen chloride removal rate in the exhaust gas,
The molar ratio (ratio of slaked lime powder and hydrogen chloride) = 3, and the hydrogen chloride concentration in reaction chamber 3 = 600 ppm (12% 0
2 conversion value) is shown.

この図で明らかなように、従来の消石灰粉末(平均粒子
径20〜50μ)を、そのまま反応室3ヘモル比=3で
吹き込んだ場合には、75チ以下の塩化水素除去率しか
得られないのに対し、消石灰粉末を10μ以下の微粉末
に粉砕してモル比=3で反応室3へ吹き込んだ場合(本
発明の方法による場合)には80%以上の塩化水素除去
率(前記粒子径が5μの場合には90チという高除去率
となる)tl−得ることができた。
As is clear from this figure, when conventional slaked lime powder (average particle size 20-50μ) is directly blown into the reaction chamber at a hemolar ratio of 3, a hydrogen chloride removal rate of less than 75 cm can be obtained. On the other hand, when slaked lime powder is crushed into a fine powder of 10μ or less and blown into the reaction chamber 3 at a molar ratio of 3 (by the method of the present invention), the hydrogen chloride removal rate is 80% or more (the particle size is In the case of 5 μ, a high removal rate of 90 μ) was able to be obtained.

この発明の排ガス中の塩化水素除去方法は以上説明した
ようなものであるから、アルカリ剤粉末を10μ以下の
微粉末に粉砕して反応室へ吹き込むだけの簡単な方法に
よって、塩化水素除去効率を向上させることができる。
Since the method for removing hydrogen chloride from exhaust gas according to the present invention is as explained above, the hydrogen chloride removal efficiency can be improved by a simple method of pulverizing the alkaline agent powder into a fine powder of 10μ or less and blowing it into the reaction chamber. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明の方法を実施する塩化水素
除去設備の2つの例を示した説明図、第3図は反応室へ
吹き込まれる消石灰粉末と塩化水素除去率との関係をグ
ラフで示した実験結果による作用効果の説明図である。 l・・・ごみ焼却炉、3・・・反応室、4・・・集塵機
、5・・・誘引送風機、6・・・煙突、7・・・サイロ
、S・・・アルカリ剤粉末、8・・・ブロア、9・・・
アルカリ剤粉末との吹き込み管路、9a r 91)・
・・分岐管路、10・・・微粉砕機、14・・・分級機
Figures 1 and 2 are explanatory diagrams showing two examples of hydrogen chloride removal equipment implementing the method of this invention, and Figure 3 is a graph showing the relationship between slaked lime powder blown into the reaction chamber and the hydrogen chloride removal rate. It is an explanatory diagram of the effect according to the experimental results shown in FIG. L... Garbage incinerator, 3... Reaction chamber, 4... Dust collector, 5... Induced blower, 6... Chimney, 7... Silo, S... Alkali agent powder, 8... ...Blower, 9...
Blowing line with alkaline agent powder, 9a r 91)・
... Branch pipe line, 10... Fine grinder, 14... Classifier.

Claims (2)

【特許請求の範囲】[Claims] (1)排ガスが導入される反応室へ消石灰等のアルカリ
剤粉末を吹き込むことによシ、排ガス中の塩化水素を除
去するようにした乾式法による塩化水素除去方法におい
て、前記アルカリ剤粉末を10μ以下の微粒子に粉砕し
て反応室へ吹き込むことを特徴とする排ガス中−の塩化
水素除去方法。
(1) In a hydrogen chloride removal method using a dry method in which hydrogen chloride in exhaust gas is removed by blowing an alkaline agent powder such as slaked lime into a reaction chamber into which exhaust gas is introduced, the alkali agent powder is A method for removing hydrogen chloride from exhaust gas, characterized by pulverizing it into the following fine particles and blowing them into a reaction chamber.
(2)排ガスが導入される反応室へ消石灰等のアルカリ
剤粉末を吹き込むことによシ、排ガス中の塩化水素を除
去するようにした乾式法による塩化水素除去方法におい
て、前記アルカリ剤粉末を分級して、粒子径10μ以上
の粉末は10μ以下の微粉末に粉砕し、粒子径10μ以
(2) In a hydrogen chloride removal method using a dry method, in which hydrogen chloride in exhaust gas is removed by blowing an alkaline agent powder such as slaked lime into a reaction chamber into which exhaust gas is introduced, the alkaline agent powder is classified. Powder with a particle size of 10μ or more is crushed into a fine powder of 10μ or less, and the powder with a particle size of 10μ or more is
JP58146078A 1983-08-10 1983-08-10 Removal of hydrogen chloride in exhaust gas Pending JPS6038024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146078A JPS6038024A (en) 1983-08-10 1983-08-10 Removal of hydrogen chloride in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146078A JPS6038024A (en) 1983-08-10 1983-08-10 Removal of hydrogen chloride in exhaust gas

Publications (1)

Publication Number Publication Date
JPS6038024A true JPS6038024A (en) 1985-02-27

Family

ID=15399609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146078A Pending JPS6038024A (en) 1983-08-10 1983-08-10 Removal of hydrogen chloride in exhaust gas

Country Status (1)

Country Link
JP (1) JPS6038024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216830A (en) * 1984-04-10 1985-10-30 Hitachi Zosen Corp Apparatus for removing harmful gas by dry process
JP2017154125A (en) * 2016-03-04 2017-09-07 荏原環境プラント株式会社 Exhaust gas treatment method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553855A (en) * 1978-06-26 1980-01-11 Ishikawajima Harima Heavy Ind Co Ltd Method of and apparatus for removing hydrogen chloride gas generated from waste incinerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553855A (en) * 1978-06-26 1980-01-11 Ishikawajima Harima Heavy Ind Co Ltd Method of and apparatus for removing hydrogen chloride gas generated from waste incinerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216830A (en) * 1984-04-10 1985-10-30 Hitachi Zosen Corp Apparatus for removing harmful gas by dry process
JP2017154125A (en) * 2016-03-04 2017-09-07 荏原環境プラント株式会社 Exhaust gas treatment method and device

Similar Documents

Publication Publication Date Title
US5507238A (en) Reduction of air toxics in coal combustion gas system and method
RU2135269C1 (en) Reactive composition and method of cleaning hydrogen chloride-containing gas
US4852269A (en) Combined sewage and lime slude treatment process
CN101805654A (en) Method for removing coal-fired superfine particulate matters
US5575984A (en) Method for preparing calcium carbonate for scrubbing sulfur oxides from combustion effluents
JPH03101812A (en) Method for dry-purifying waste gas
JPS6136969B2 (en)
JPS6038024A (en) Removal of hydrogen chloride in exhaust gas
CN201791470U (en) Dry-method suspension bed type flue gas desulfurization system for small and medium sized coal burning boiler
JP3165092B2 (en) Synthetic resin composition and its products
JP2000063116A (en) New calcium hydroxide, its production and acidic gas- treating agent including the same as effective component
JPS60216832A (en) Purification of waste gas by dry lime process
JP3101181B2 (en) Exhaust gas treatment agent and exhaust gas treatment method
JP3807717B2 (en) Exhaust gas treatment method
CN85106271B (en) Method and system for purification of waste gases
JPS62200107A (en) Furnace desulfurizing method
JPH08266830A (en) Method of reducing unburned coal in coal ash
JP2003200020A (en) Exhaust gas treatment method and exhaust gas treatment facility
JPH1058451A (en) Method for removing plastic containing chlorine from waste, and manufacture of fuel which does not include plastic containing chlorine
JP3901986B2 (en) Dust processing method and dust processing apparatus
JPS61259747A (en) Multistage jet stream bed gas-solid contact apparatus
JPH10503274A (en) System for producing ash products and energy from waste
JP3979550B2 (en) Method for determining the performance of high-efficiency acid gas treatment agents
JP2000117054A (en) Removing method of dioxins in waste gas
JPH0716581B2 (en) In-furnace desulfurization method