JPS6037393A - Robot system in sea and sea bottom work - Google Patents

Robot system in sea and sea bottom work

Info

Publication number
JPS6037393A
JPS6037393A JP14435183A JP14435183A JPS6037393A JP S6037393 A JPS6037393 A JP S6037393A JP 14435183 A JP14435183 A JP 14435183A JP 14435183 A JP14435183 A JP 14435183A JP S6037393 A JPS6037393 A JP S6037393A
Authority
JP
Japan
Prior art keywords
robot
launcher
sea
work
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14435183A
Other languages
Japanese (ja)
Inventor
健一 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14435183A priority Critical patent/JPS6037393A/en
Publication of JPS6037393A publication Critical patent/JPS6037393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 て調査、作業を行うに適したロボットゾステムに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a robot Zostem suitable for carrying out investigations and operations.

近時、海底石油の開発は漸次大深度の海域に及んできて
おり、又マンガン団塊や熱水鉱床等の海底鉱物資源の開
発の必要性が高まってきている。
In recent years, the development of seabed oil has gradually extended to deeper sea areas, and the need for the development of seabed mineral resources such as manganese nodules and hydrothermal deposits is increasing.

このような大深度の海中・海底、あるいは海底油井の事
項等の危険な場所での調査、作業は従来の有人潜水作業
機では作業が不可能又は極めて困難である。
It is impossible or extremely difficult for conventional manned submersible machines to carry out investigations and operations in such dangerous locations such as the deep sea, the seabed, or offshore oil wells.

このような高水圧、又は有人作業機での近接困難な海中
・海底での調査・作業を行なわせる目的で、近年、無人
潜水機の発達ハ目覚しく、海洋石油開発作業のうち、観
察やメインテナンス等の単純な作業は無人潜水機に置き
換えらnつ\ある。
In recent years, the development of unmanned underwater vehicles has been remarkable for the purpose of conducting surveys and operations under the sea and the seabed under high water pressure or where it is difficult for manned working machines to approach. There are many simple tasks that can be replaced by unmanned underwater vehicles.

このような無人潜水機は年々改良され、高性能、大深度
用のものが次々と開発され市,場に出て来ている。しか
しながら、従来発表さ几ている無人潜水機は、動力及び
情報伝達の面よりすべてテザ一式(有索式)となってい
る。
These unmanned underwater vehicles have been improved year by year, and high-performance, deep-dive vehicles are being developed one after another and are appearing on the market. However, all unmanned underwater vehicles that have been announced so far are equipped with tethers for power and information transmission.

しかし、テザ一式(通信用光ファイバーを含む〕のもの
は次のような欠点を有し、海中・海底作業に対して充分
な適応性があるとは云い難い。
However, the tether set (including optical fiber for communication) has the following drawbacks, and it cannot be said that it has sufficient adaptability for underwater/undersea work.

すなわち (1) テザーがからまるため、海底油井のジャケット
等の構造物の内部に入ることが出来ない。又、行動半径
が制約さ几る。
That is, (1) the tether becomes tangled, making it impossible to enter structures such as the jacket of an offshore oil well. Also, the radius of action is restricted.

(2) テザーの水中抵抗のため、自由な行動が妨げら
れる。特に潮流のある場合はその影響が甚だしい。
(2) Free movement is hindered by the underwater resistance of the tether. The effect is especially severe when there is a current.

たとえば、潮流下におけるジャケット等の構造物内部で
の油の事項、火災事故調査においては、危険のため、有
人潜水調査作業機やダイパーは接近できず、又、テザ一
式の無人潜水機もテザーが構造物にからまる恐れがある
ため、構造物内部に進入できず、又、潮流のため微細な
作業は困難となる。
For example, in the investigation of oil inside structures such as jackets under tidal currents, and fire accident investigations, manned diving investigation equipment and divers cannot approach due to the danger, and unmanned underwater vehicles equipped with tethers cannot be used. Because there is a risk of getting entangled in the structure, it is impossible to enter the inside of the structure, and tidal currents make delicate work difficult.

そこで、非テザ一式無人潜水機を使用す几ば、上記のテ
ザ一式無人潜水機の欠点は解決さ几るが、非テザ一式無
人潜水機では検出した情報に基いてオペレータが制御し
て繊細な作業を行なわすることが出来ず、又、自身の保
有する電源を大きくすることができないので光学的観察
に必要な十分な照明を得ることがセきない。
Therefore, if a non-tethered unmanned submersible vehicle is used, the above-mentioned drawbacks of the tethered unmanned submersible vehicle will be solved, but with a non-tethered fully equipped unmanned submersible vehicle, the operator will be able to control based on the detected information. Since they are unable to carry out any work and cannot increase their own power supply, they are unable to obtain sufficient illumination necessary for optical observation.

本発明は従来の海中海底作業ロボットシステムの現状な
らびに非テザ一式無人潜水作業機の問題点を除去した海
中海底作業ロボットシステムを提供することを目的とす
る。
An object of the present invention is to provide an underwater and submarine working robot system that eliminates the current state of conventional underwater and submarine working robot systems and the problems of non-tethered unmanned submersible working machines.

以下、本発明を図に示す実施例に基(八て詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

添付図に示す本発明の実施例の海中・海底作業口ボット
システムは、海上に浮ぶ母船1と、該母船にアンビリカ
ルケーブル2により連結され海底面に着底するランチャ
−3と、該ランチャ−3の上段より発進し、該ランチャ
−3に動力及び情報通信ケーブル4で連結された有索型
海中海底作業ロボット5と、上記ランチャ−3の下段か
ら発進し、自体の推進・情報用電源装置を有する無索型
ロボット6とを有して成る。上記の有索型ロボット5は
水中繊細作業に適したマニプレータ51を有する他、母
鉛工よりアンビリカルケーブル2及びテザー4を介して
供給される電力により発光する水中強力ライド52を有
する。又、水中を前後、左右、上下に移動するためのプ
ロペラ53及び複数の海底歩行脚54、海底で固定物に
ロボット自体を固定する手段、海中・海底の位置決め手
段、テレビカメラ、VTJ スチルカメラ、ンナー等の
観察記録装置、無索型ロボットとの複合作業コントロー
ル装置等を有する。
An underwater/submarine working port bot system according to an embodiment of the present invention shown in the accompanying drawings includes a mother ship 1 floating on the sea, a launcher 3 connected to the mother ship by an umbilical cable 2 and landing on the seabed surface, and the launcher 3. A cable-type underwater submarine work robot 5 is launched from the upper stage and connected to the launcher 3 by a power and information communication cable 4, and a cabled submarine working robot 5 is launched from the lower stage of the launcher 3 and uses its own propulsion/information power supply device. The cable-free robot 6 has a cable-free robot 6. The above-mentioned roped robot 5 has a manipulator 51 suitable for delicate underwater work, and also has a powerful underwater ride 52 that emits light by electricity supplied from the master lead worker via the umbilical cable 2 and tether 4. Also, a propeller 53 and a plurality of submarine walking legs 54 for moving back and forth, left and right, and up and down in the water, means for fixing the robot itself to a fixed object on the seabed, means for positioning the robot in the sea and on the seabed, a television camera, a VTJ still camera, It has an observation recording device such as a runner, and a complex work control device with a ropeless robot.

一方、無索型ロボット6は、有索型ロボット5と共働し
て水中単純作業を行なうマニプレータ61プロペラ63
、海底歩行脚64ヲ有するが、水中繊細作業可能なマニ
プレータや水中強力ライドは備えていない。その他の機
能は概ね有索型ロボットと同じである。
On the other hand, the unrope-type robot 6 has a manipulator 61 and a propeller 63 that work together with the rope-type robot 5 to perform simple underwater work.
Although it has 64 submarine walking legs, it does not have a manipulator capable of delicate underwater work or a powerful underwater ride. Other functions are generally the same as the tethered robot.

有索型ロボット5はテザー4を介して母船より制御さ2
するが、無索型ロボット6は母船よりアンビリカルケー
ブル2を介し、う/チャー3に伝達された制御信号がラ
ンチャ−5vc設けら几た音波信号発信装置及び有索型
ロボット5に設けら几ている音波信号装置より音波の形
で発信されて制御さ几る。協働作業時に近くにいる有索
型ロボット5からの音波信号は距離的に近いため、時間
的遅九動作がなくなり、より精度向上が可能となる〇又
、この実施例ではランチャ−3にもプロペラ32ヲ備え
自走可能となっている他、観察装置33を備えている。
The cabled robot 5 is controlled from the mother ship via the tether 4.
However, in the unrope-type robot 6, the control signal transmitted from the mother ship to the carrier 3 via the umbilical cable 2 is transmitted to the sonic signal transmitter provided in the launcher 5vc and to the tethered robot 5. The sound waves are transmitted in the form of sound waves by a sound wave signal device and controlled. During collaborative work, the sound wave signals from the cabled robot 5 nearby are close in distance, so there is no time delay in the movement, making it possible to further improve accuracy.In addition, in this embodiment, the launcher 3 also In addition to being equipped with a propeller 32 to enable self-propulsion, it is also equipped with an observation device 33.

このシステムは以上の如く構成さj、ているので、海中
又は海底で作業を行なう場合は、1ず有索型及び無索型
ロボット4.5全収納するランチャ−3を母船lよシそ
の海域の海底に降下着底さぜ、ランチャ−3の観察装置
33により目的物を探知し、有索型ロボット5I−iテ
ザー4を介して電気的に、無索型ロボット6は音波信号
発信装置31より発信さ几る音波で制御さ几て目的物に
向って走行し、ロボット自身の観察手段により目的物を
観察しながらプロペラ53,63、海底歩行脚54 、
64により目的物に接近し、位置決め手段Vrc、ll
:I)位置決めし、有索型ロボット5の水中強力ライド
52で目的物を照明し、テレビカメラで撮像しそのビデ
オ信号はテザー4、アンビリカルケーブル2を介して母
船lに伝達さ几、母船上のTV受像機で観察され、アン
ビリカルケーブル2、テザー4を介して有索型ロボット
のマニプレータ51を、又音波信号によす無索型ロボッ
ト6のマニプレータ61i制御する。
Since this system is configured as described above, when working under the sea or on the seabed, the first step is to transport the launcher 3, which houses all the 4.5 roped and unroped robots, from the mother ship to the sea area. After descending to the bottom of the ocean, the observation device 33 of the launcher 3 detects the object, and the cable-less robot 6 detects the target object electrically via the tether 4 of the cable-type robot 5I-i. The robot travels toward the target object under the control of the sound waves emitted from the robot, and while observing the target object using its own observation means, the propellers 53, 63, submarine walking legs 54,
64, the object is approached, and the positioning means Vrc, ll
:I) Position the object, illuminate it with the underwater powerful ride 52 of the roped robot 5, image it with a TV camera, and transmit the video signal to the mother ship l via the tether 4 and umbilical cable 2. The manipulator 51 of the tethered robot is controlled via the umbilical cable 2 and the tether 4, and the manipulator 61i of the untethered robot 6 is controlled by sound waves.

作業は2台のロボットのマニプレータ51 、61によ
り行なわれるので、多岐にわたる作業が可能になり、特
に有索型ロボット5のマニプレータは水中繊細作業が可
能となっているため、1隻では出来ない複雑な作業も実
施可能となる。
Since the work is carried out by the manipulators 51 and 61 of the two robots, a wide variety of work can be performed.In particular, the manipulator of the roped robot 5 is capable of delicate underwater work, so it can handle complex tasks that cannot be done with a single robot. It also becomes possible to perform various tasks.

又、ランチャ−3にもプロペラ32及び観察装置33が
設けら几ているので、行動範囲は拡大される。
Further, since the launcher 3 is also provided with a propeller 32 and an observation device 33, the action range is expanded.

又、無索型ロボット6により指定さ几たコースの観察を
粗探査方式で行なうことも出来、その場合は有索型ロボ
ットの如くテザーの長さにより行動半径を制約されるこ
とがないので、観察範囲が拡大さ几る。
In addition, the untethered robot 6 can observe a specified course using a rough exploration method, and in that case, the radius of movement is not restricted by the length of the tether, as is the case with tethered robots. The observation range is expanded.

以上の如く、本発明により有索型及び無索型のロボット
全備え協働させることにより、いずれの1隻でも出来な
い作業を、能率良く、かつ精度高く行なうことができる
ほか、目的に合せてりずれか適した型のロボットで作業
を行なうことにより、作業能率を向上さぜることかでき
る。
As described above, by having all the roped and unroped robots work together in accordance with the present invention, it is possible to efficiently and accurately perform work that cannot be done by any one robot alone, and it is also possible to By using a suitable type of robot to perform the work, work efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例のシステムの全体を示す斜視
図である。 1・・・母船 2・・・アンビリカルケーブル 3・・・ランチャ− 4・・・テザー(動力及び情報通信ケーブル)5・・・
有索型ロボット 6・・・無索型ロボット51・・・水
中繊細作業用マニプレータ61・・・マニプレータ 32 、53 、63・・・推進装置
The accompanying drawing is a perspective view showing the entire system of an embodiment of the present invention. 1... Mother ship 2... Umbilical cable 3... Launcher 4... Tether (power and information communication cable) 5...
Cabled robot 6... Untethered robot 51... Manipulator for underwater delicate work 61... Manipulator 32, 53, 63... Propulsion device

Claims (2)

【特許請求の範囲】[Claims] (1) 海上に浮ぶ母船と、該母船にアンビリカルケー
ブルにより連結され海底面に着底するランチャ−と、該
ランチャ−より発進し、該ランチャ−に動力及び情報通
信ケーブルで連結さ几た有索型ロボットと上記ランチャ
−より発進し自体の推進・情報用電源装置を有する無索
型ロボットとを有し、上記有索型ロボットと無索型ロボ
ットとは夫々相互に協働作業を行なうのに必要な作業手
段を備えたことを特徴とする海中・海底作業ロボットシ
ステム。
(1) A mother ship floating on the sea, a launcher connected to the mother ship by an umbilical cable and landing on the seabed, and a cable launched from the launcher and connected to the launcher by power and information communication cables. The robot has a type robot and an untethered robot that is launched from the launcher and has its own propulsion and information power supply device, and the tethered robot and the untethered robot perform collaborative work with each other. An underwater/submarine work robot system characterized by being equipped with the necessary work means.
(2)上記のランチャ−にも推進手段及び観察手段を設
けたことを特徴とする特許請求の範囲第1項に記載の海
中・海底作業ロボットシステム。
(2) The underwater/submarine working robot system according to claim 1, wherein the launcher is also provided with a propulsion means and an observation means.
JP14435183A 1983-08-09 1983-08-09 Robot system in sea and sea bottom work Pending JPS6037393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14435183A JPS6037393A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14435183A JPS6037393A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Publications (1)

Publication Number Publication Date
JPS6037393A true JPS6037393A (en) 1985-02-26

Family

ID=15360080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14435183A Pending JPS6037393A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Country Status (1)

Country Link
JP (1) JPS6037393A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253693A (en) * 1988-08-13 1990-02-22 Sakagami Masao Undersea operation system
JPH06173570A (en) * 1992-12-02 1994-06-21 Power Reactor & Nuclear Fuel Dev Corp Sea bottom mineral resource mining system
WO2005093215A1 (en) * 2004-01-17 2005-10-06 Pukyong National University Industry-University Cooperation Foundation Collecting and lifting methods of manganese nodule and mining device
JP2006161531A (en) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization Robot for mining methane hydrate
JP2020180544A (en) * 2019-04-01 2020-11-05 ケッペル マリン アンド ディープウォーター テクノロジー ピーティーイー リミテッド Device and method for seabed resource collection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253693A (en) * 1988-08-13 1990-02-22 Sakagami Masao Undersea operation system
JPH0418117B2 (en) * 1988-08-13 1992-03-26 Sakagami Masao
JPH06173570A (en) * 1992-12-02 1994-06-21 Power Reactor & Nuclear Fuel Dev Corp Sea bottom mineral resource mining system
WO2005093215A1 (en) * 2004-01-17 2005-10-06 Pukyong National University Industry-University Cooperation Foundation Collecting and lifting methods of manganese nodule and mining device
JP2006161531A (en) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization Robot for mining methane hydrate
JP2020180544A (en) * 2019-04-01 2020-11-05 ケッペル マリン アンド ディープウォーター テクノロジー ピーティーイー リミテッド Device and method for seabed resource collection

Similar Documents

Publication Publication Date Title
Christ et al. The ROV manual: a user guide for observation class remotely operated vehicles
Whitcomb Underwater robotics: Out of the research laboratory and into the field
US4010619A (en) Remote unmanned work system (RUWS) electromechanical cable system
KR100478811B1 (en) Autonomous underwater vehicle and operational method
KR101323824B1 (en) Underwater robot operating device
JPH03266794A (en) Submarine station
CN211107934U (en) Collaborative exploration system based on unmanned cableless submersible
CN109625220A (en) There are cable remote underwater robot cruising inspection system and a method with light, sound, magnetic machine
KR101277002B1 (en) Unmanned Surface Robot
JP2005193854A (en) Guidance device for underwater traveling vehicle
JP2006298288A (en) Master/slave type autonomous underwater vehicle system and connecting method of autonomous underwater vehicle
US11634198B2 (en) Control of remotely operated vehicle's dynamic positioning system by external navigation system
JPS6037393A (en) Robot system in sea and sea bottom work
EP3264143A1 (en) Towed remote controlled vehicle for seismic spread intervention and method
KR101422699B1 (en) Underwater station and underwater vehicle underwater vehicle management system
Kojima et al. Development of autonomous underwater vehicle'AQUA EXPLORER 2'for inspection of underwater cables
KR101224893B1 (en) Emergency module device for autonomous underwater vehicle
KR101411940B1 (en) Underwater station and underwater vehicle underwater vehicle management method
Vukić et al. State and perspectives of underwater robotics-role of laboratory for underwater systems and technologies
JPS63305096A (en) Deep-sea exploring method by ropeless self-propelling unmanned diving machine
Saha et al. A low cost remote controlled underwater rover using raspberry Pi
Conway ROV Mantis: A dual-purpose underwater vehicle
JPS6037392A (en) Robot system in sea and sea bottom work
MOREIRA Visual Servoing on Deformable Objects
Kojima et al. Autonomous underwater vehicle for inspection of submarine cables