JPS6037378B2 - Refrigerant heating air conditioner - Google Patents

Refrigerant heating air conditioner

Info

Publication number
JPS6037378B2
JPS6037378B2 JP6286381A JP6286381A JPS6037378B2 JP S6037378 B2 JPS6037378 B2 JP S6037378B2 JP 6286381 A JP6286381 A JP 6286381A JP 6286381 A JP6286381 A JP 6286381A JP S6037378 B2 JPS6037378 B2 JP S6037378B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
pressure
heating
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6286381A
Other languages
Japanese (ja)
Other versions
JPS57175859A (en
Inventor
邦武 酒井
章 田口
雄司 森
滋 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6286381A priority Critical patent/JPS6037378B2/en
Publication of JPS57175859A publication Critical patent/JPS57175859A/en
Publication of JPS6037378B2 publication Critical patent/JPS6037378B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、低外気溢時に暖房能力を向上させる冷煤加熱
器を具備した冷凍サイクルからなる袷嬢加熱式空気調和
機に関するもので、特に冷煤加熱暖房運転時に冷凍サイ
クル中の冷煤圧力を検知し、その冷煤圧力に応じて冷煤
加熱器の運転、一部運転、停止等、冷煤加熱度の制御を
行い、冷煤の加熱による冷凍サイクル中の圧力の急激な
上昇のため正常な冷媒加熱蝦夏運転が継続できなくなる
現象を生じさせないようにすることを目的とするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slip-heating type air conditioner comprising a refrigeration cycle equipped with a cold soot heater that improves heating capacity when there is low outside air overflow. The cold soot pressure during the cycle is detected, and the degree of cold soot heating is controlled by operating, partially operating, or stopping the cold soot heater according to the cold soot pressure, and the pressure during the refrigeration cycle is reduced by heating the cold soot. The purpose of this is to prevent a phenomenon in which normal refrigerant heating operation cannot be continued due to a sudden increase in refrigerant temperature.

従釆における冷煤加熱暖房運転時の冷煤加熱器の制御は
、室内ユニットに取付けられた室内吸込空気の温度は検
知するサーモスタットからの信号によって冷凍サイクル
中の圧縮器を運転、停止させて行っていたため、室内側
の吸込空気温度が上昇すると頻繁に圧縮機の運転、停止
を繰り返し、運転時と停止時の吹出空気温度の差が大き
くなり、人体に不快感を与えるとともに運転を開始する
たびに電流や入力の増減が生じ冷凍サイクルも不安定で
あった。
The control of the cold soot heater during the cold soot heating heating operation in the sub-chamber is performed by starting and stopping the compressor in the refrigeration cycle based on the signal from the thermostat that detects the temperature of the indoor intake air installed in the indoor unit. As a result, when the indoor suction air temperature rises, the compressor frequently starts and stops, and the difference in the temperature of the blowing air between when it is running and when it is stopped increases, causing discomfort to the human body and causing problems every time it starts operating. The refrigeration cycle was also unstable due to fluctuations in current and input.

本発明は、上記従来の空気調和機の冷煤加熱器の運転制
御にみられる欠点を除去するものである。
The present invention eliminates the drawbacks seen in the operation control of the cold soot heater of the conventional air conditioner.

以下本発明をその一実施例を示す添付図面を参考に説明
する。
The present invention will be described below with reference to the accompanying drawings showing one embodiment thereof.

まず、図により冷凍サイクルについて説明する。First, the refrigeration cycle will be explained using diagrams.

図において、1は圧縮機、2は冷房運転と暖房運転の切
り換え用四方切換弁、3は室内側熱交換器、4は減圧機
構、5は室外側熱交換器であり、これらを環状に連結し
てヒートポンプ式の冷凍サイクルを形成している。6は
前記圧縮機1への戻り管6aを加熱する冷媒加熱器で、
この袷媒加熱器6の中には水等の熱媒体6bおよび前記
熱媒体6bを加熱する加熱源6c等が配設されている。
In the figure, 1 is a compressor, 2 is a four-way switching valve for switching between cooling operation and heating operation, 3 is an indoor heat exchanger, 4 is a pressure reduction mechanism, and 5 is an outdoor heat exchanger, which are connected in a ring. This creates a heat pump type refrigeration cycle. 6 is a refrigerant heater that heats the return pipe 6a to the compressor 1;
A heat medium 6b such as water, a heat source 6c for heating the heat medium 6b, and the like are disposed in the liner heater 6.

7は冷煤加熱器6の戻り管6aと直列に接続された第1
の開閉弁であり、この開閉弁7と袷嬢加熱器6とを直列
に接続して形成した冷媒加熱回路は、減圧機構4と室外
側熱交換器5と四方切襖弁2とからなる直列回路に並列
に接続されている。
7 is a first pipe connected in series with the return pipe 6a of the cold soot heater 6.
The refrigerant heating circuit formed by connecting the on-off valve 7 and the sleeve heater 6 in series is a series-connected refrigerant heating circuit consisting of a pressure reducing mechanism 4, an outdoor heat exchanger 5, and a four-way sliding door valve 2. connected in parallel to the circuit.

前記第1の開閉弁7は冷媒加熱暖房運転時にのみ開放す
るものである。8は通常のヒートポンプ式暖房運転時に
のみ開枚する第2の開閉弁であり、二分割された減圧機
構4,4の間に冷房運転時にのみ冷媒を流す方向に設け
られた逆止弁9に並列に設けられている。
The first on-off valve 7 is opened only during refrigerant heating operation. Reference numeral 8 denotes a second on-off valve that opens only during normal heat pump type heating operation, and check valve 9 is provided between the two divided pressure reducing mechanisms 4 and 4 in a direction to allow refrigerant to flow only during cooling operation. are installed in parallel.

10は二分割された減圧装置4,4のうちの一方に並列
に設けられた逆止弁であり冷房運転時に袷媒を通す方向
に設けられている。
Reference numeral 10 denotes a check valve that is provided in parallel to one of the two divided pressure reducing devices 4, 4, and is provided in a direction that allows the medium to pass during cooling operation.

11は第3の開閉弁であり圧縮機1の吐出管と吸入管と
を連結する管に設けられており冷媒加熱暖房運転時に開
放するものである。
Reference numeral 11 denotes a third on-off valve, which is provided in a pipe connecting the discharge pipe and suction pipe of the compressor 1, and is opened during refrigerant heating operation.

この第3の開閉弁11の開放により袷嬢加熱暖房運転時
における室内側熱交換器3への冷媒流量を少なくし圧縮
機1への負荷を小さくすることができる。12は四方切
換弁2から圧縮機1へ至る吸入管に設けた逆止弁であり
前記袷煤加熱回路の一端はこの逆止弁12とアキュレー
タ13との間に接続されている。
By opening the third on-off valve 11, the flow rate of refrigerant to the indoor heat exchanger 3 during the side heating operation can be reduced, and the load on the compressor 1 can be reduced. Reference numeral 12 denotes a check valve provided in the suction pipe leading from the four-way switching valve 2 to the compressor 1, and one end of the soot heating circuit is connected between the check valve 12 and the acculator 13.

14は四方切換弁2から室内側熱交換器3に至る冷煤回
路に設けられた圧力検知器であり前記冷媒回路中の冷煤
の圧力を検出しその圧力に応じた電気信号を出力するも
のである。
14 is a pressure detector installed in the cold soot circuit from the four-way switching valve 2 to the indoor heat exchanger 3, which detects the pressure of the cold soot in the refrigerant circuit and outputs an electric signal according to the pressure. It is.

なお前記加熱源6cは本実施例では二つのガスバーナに
て構成されておりそれぞれのガスバーナへのガス供給路
に電磁弁15,16が設けられている。17は電磁弁開
閉制御装置であり、前記電磁弁15,16とで冷煤加熱
度制御装置を形成しており、圧力検知器14からの信号
を受け、前記電磁弁15,16の開閉を制御するもので
ある。
In this embodiment, the heat source 6c is composed of two gas burners, and electromagnetic valves 15 and 16 are provided in the gas supply path to each gas burner. Reference numeral 17 denotes a solenoid valve opening/closing control device, which together with the solenoid valves 15 and 16 form a cold soot heating degree control device, receives a signal from the pressure detector 14 and controls the opening and closing of the solenoid valves 15 and 16. It is something to do.

すなわち、圧力検知器14で検出する冷煤圧力が非常に
高い場合には、両電磁弁15,16を閉じてガスバーナ
による加熱を停止させ、又、袷媒圧力がやや高い場合に
は、両電磁弁15,16のいずれか一方を閉じ、ガスバ
ーナによる加熱度を小さくし、さらに、冷煤圧力が通常
の場合又はそれより低い場合には、前記両電磁弁15,
16を開放し、加熱度を最高にするようにしている。な
お、図において、Aは室内ユニット、Bは室外ユニット
、Cは袷煤加熱器ユニットであり、電磁弁開閉制御装置
17は室外ユニットB内、又は、冷嬢加熱器ユニットC
内のいずれに設けてもよい。上記構成において、冷房運
転時は、圧縮機1から吐出された冷媒は、四方切換弁2
、室外側熱交換器5、逆止弁10,9、一方の減圧機構
4、室内側熱交換器3、四方切換弁2、逆止弁12、ア
キュムレータ13を順次通り圧縮機1に戻る冷凍サイク
ルを構成する。また通常のヒートポンプ方式を用いた暖
房運転時は、冷媒が圧縮機1から吐出され四方切換弁2
、室内側熱交換器3、一方の減圧機構4、第2の開閉弁
8、他方の減圧機構4、室外側熱交換器5、四方切換弁
2、逆止弁12、アキュムレータ13を順次通り圧縮機
1に戻る冷凍サイクルを構成する。次に前記冷媒加熱器
6を用いた袷煤加熱暖房運転を行う場合、冷煤は圧縮機
1、四方切換弁2、室内側熱交換器3、第1の開閉弁7
を通り袷煤加熱器6に入り、アキユムレータ13を通っ
て圧縮機1へ戻る冷凍サイクルと、圧縮機1から第3の
開閉弁11及びアキュムレータ13を通り圧縮機1へ戻
る冷凍サイクルの一つのサイクルを構成する。なお、冷
煤加熱暖房運転の場合は、第2の開閉弁8が閉じられて
いるため、袷煤は室外側熱交換器5を通らない。つまり
冷媒加熱器6を用いた冷煤加熱暖房運転時は、前記第1
の開閉弁7を開、前記第2の開閉弁8を閉、前記第3の
開閉弁11を開とし、前記室外側熱交換器5に冷煤が流
入しないような冷凍サイクルが用い、前記圧縮機1から
吐出された冷媒は、前記室内側熱交換器3において室内
側空気と熱交換した後、前記冷媒加熱器6で流入し前記
加熱源6cからの熱を冷煤中に取り入れて前記圧縮機1
へ戻る冷凍サイクルを構成する。さらに、前記冷媒加熱
器6を用いた冷煤加熱暖房運転を制御する場合は、冷煤
回路中の袷煤圧力を前記圧力検知器14によって検知し
、電磁弁開閉制御装置17を介して開閉弁15,16を
開閉することにより、冷凍サイクル中の圧力の大きさに
対応して前記冷煤加熱器6の運転、一部運転、停止を制
御し、前記圧縮機1へ吸い込まれる冷煤の状態を安定さ
せるとともに冷凍サイクル中の圧力の急激な上昇を防止
し、正常な冷煤加熱暖房運転が行なえるようにしている
。また冷煤加熱運転時に、第3の開閉弁11がなければ
袷煤は減圧機構を流れないため圧縮機1の高圧側と低圧
側の圧力差が少なくなり、よって冷媒循環量が過剰状態
となって袷煤加熱器6を出た袷媒が完全にガス化されず
に液状態で圧縮機1へ戻ることになるが、第3の開閉弁
11が開くことにより圧縮機1から吐出された袷煤はガ
ス状態で第3の開閉弁11を通って圧縮機1の吸入側に
流れ、よって冷媒加熱器6を出た袷媒は完全にガス化さ
れ圧縮機1へはガス状態で吸入される。さらに圧縮機1
の高圧側と低圧側の圧力差が減圧機構を冷媒が流れない
だけの時よりもさらに少なくなり、そのため電気入力が
低減される。以上の実施例の説明では、加熱源6cとし
てガスバーナを用い、かつ、袷煤加熱度制御装置として
電磁弁15,16と電磁弁開閉制御装置17を用いたが
、他の実施例としては、ガスバーナ及び電磁弁15,1
6を一つにして、その電磁弁の関度を電磁弁開閉制御装
置にて制御するようにしてもよい。
That is, when the pressure of cold soot detected by the pressure detector 14 is extremely high, both solenoid valves 15 and 16 are closed to stop heating by the gas burner, and when the pressure of the medium is slightly high, both solenoid valves 15 and 16 are closed. Close either one of the valves 15, 16 to reduce the degree of heating by the gas burner, and further, when the cold soot pressure is normal or lower, both the solenoid valves 15,
16 is opened to maximize the heating degree. In the figure, A is an indoor unit, B is an outdoor unit, and C is a soot heater unit.
It may be provided anywhere within. In the above configuration, during cooling operation, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2.
, the outdoor heat exchanger 5, the check valves 10 and 9, one pressure reducing mechanism 4, the indoor heat exchanger 3, the four-way switching valve 2, the check valve 12, and the accumulator 13. The refrigeration cycle returns to the compressor 1. Configure. Also, during heating operation using a normal heat pump system, refrigerant is discharged from the compressor 1 and the four-way switching valve 2
, the indoor heat exchanger 3, one pressure reducing mechanism 4, the second on-off valve 8, the other pressure reducing mechanism 4, the outdoor heat exchanger 5, the four-way switching valve 2, the check valve 12, and the accumulator 13 for compression. A refrigeration cycle returning to machine 1 is constructed. Next, when performing a soot heating operation using the refrigerant heater 6, the cold soot is transferred to the compressor 1, the four-way switching valve 2, the indoor heat exchanger 3, and the first on-off valve 7.
One cycle includes a refrigeration cycle that passes through the soot heater 6 and returns to the compressor 1 through the accumulator 13, and a refrigeration cycle that returns from the compressor 1 to the compressor 1 through the third on-off valve 11 and the accumulator 13. Configure. In addition, in the case of cold soot heating heating operation, the second on-off valve 8 is closed, so that the soot does not pass through the outdoor heat exchanger 5. In other words, during the cold soot heating operation using the refrigerant heater 6, the first
The on-off valve 7 is opened, the second on-off valve 8 is closed, and the third on-off valve 11 is opened, and a refrigeration cycle is used that prevents cold soot from flowing into the outdoor heat exchanger 5. The refrigerant discharged from the machine 1 exchanges heat with the indoor air in the indoor heat exchanger 3, and then flows into the refrigerant heater 6, absorbs heat from the heating source 6c into the cold soot, and is compressed. Machine 1
Configure the refrigeration cycle to return to. Furthermore, when controlling the cold soot heating heating operation using the refrigerant heater 6, the soot pressure in the cold soot circuit is detected by the pressure detector 14, and the on-off valve is controlled via the solenoid valve opening/closing control device 17. By opening and closing 15 and 16, operation, partial operation, and stoppage of the cold soot heater 6 is controlled according to the magnitude of the pressure in the refrigeration cycle, and the state of the cold soot sucked into the compressor 1 is controlled. It stabilizes the temperature and prevents a sudden rise in pressure during the refrigeration cycle, allowing normal cold soot heating and heating operation. In addition, during cold soot heating operation, if the third on-off valve 11 is not present, the soot will not flow through the pressure reducing mechanism, so the pressure difference between the high pressure side and the low pressure side of the compressor 1 will be reduced, resulting in an excessive amount of refrigerant circulation. The soot medium discharged from the soot heater 6 is not completely gasified and returns to the compressor 1 in a liquid state. The soot flows in a gaseous state through the third on-off valve 11 to the suction side of the compressor 1, so that the soot that has left the refrigerant heater 6 is completely gasified and is sucked into the compressor 1 in a gaseous state. . Furthermore, compressor 1
The pressure difference between the high-pressure side and the low-pressure side of the refrigerant is further reduced than when no refrigerant flows through the pressure reducing mechanism, thereby reducing the electrical input. In the above description of the embodiment, a gas burner was used as the heating source 6c, and the solenoid valves 15 and 16 and the solenoid valve opening/closing control device 17 were used as the soot heating degree control device. and solenoid valve 15,1
6 may be integrated into one, and the relationship of the solenoid valve may be controlled by a solenoid valve opening/closing control device.

また、加熱源6cとして電気ヒータを用い、冷煤加熱度
制御装置として前記電気ヒータへの供給電力量を制御す
る装置を用いてもよい。さらに加熱源6cを灯油燃焼部
とし、冷煤加熱度制御装置としては灯油供給量制御装置
を用いもよい。なお、圧力検知器14は冷煤圧力を段階
的又は連続的に検出して出力するようにしてもよい。上
記実施例より明らかなように、本発明は冷煤加熱器を用
いた暖房運転を行なう場合に室外熱交換器だけでなく減
圧機構をもバイパスする構成であるので圧縮機の入力低
減を図ることができる。またこのとき第3の開閉弁を開
き圧縮機の吐出側と吸入側を蓮適することにより冷媒の
循環量を減少させ、さらに吸入側に吐出ガスを導くこと
により、圧縮機の吸入側冷媒のガス化を図り、圧縮機で
の液圧縮を防止することができる。さらに冷煤加熱器に
よる冷煤加熱度を冷凍サイクル中の冷媒圧力の大きさに
よって制御するため冷凍サイクル中の圧力変動が少ない
、安定したサイクルを確保できるなどすぐれた効果を奏
するものである。
Alternatively, an electric heater may be used as the heating source 6c, and a device that controls the amount of power supplied to the electric heater may be used as the cold soot heating degree control device. Further, the heating source 6c may be a kerosene combustion section, and a kerosene supply amount control device may be used as the cold soot heating degree control device. Note that the pressure detector 14 may detect and output the cold soot pressure stepwise or continuously. As is clear from the above embodiments, the present invention is configured to bypass not only the outdoor heat exchanger but also the pressure reduction mechanism when performing heating operation using the cold soot heater, so that the input to the compressor can be reduced. I can do it. At this time, the third on-off valve is opened to separate the discharge side and suction side of the compressor, thereby reducing the amount of refrigerant circulation, and by guiding the discharge gas to the suction side, the refrigerant gas on the suction side of the compressor is It is possible to prevent liquid compression in the compressor. Furthermore, since the degree of heating of the cold soot by the cold soot heater is controlled by the magnitude of the refrigerant pressure in the refrigeration cycle, it has excellent effects such as less pressure fluctuation during the refrigeration cycle and a stable cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における冷媒加熱式空気調和機の
冷凍サイクル図である。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
…・・・室内側熱交換器、4・・・・・・減圧機構、5
・・・・・・室外側熱交換器、6・・・・・・冷媒加熱
器、7・・・・・・第1の開閉弁、8・・・・・・第2
の開閉弁、11・・・・・・第3の開閉弁、12…・・
・逆止弁、14……圧力検知器、15,16,17・・
・・・・冷煤加熱度制御装置。
The figure is a refrigeration cycle diagram of a refrigerant heating type air conditioner according to an embodiment of the present invention. 1... Compressor, 2... Four-way switching valve, 3
... Indoor heat exchanger, 4 ... Pressure reduction mechanism, 5
... Outdoor heat exchanger, 6 ... Refrigerant heater, 7 ... First on-off valve, 8 ... Second
On-off valve, 11...Third on-off valve, 12...
・Check valve, 14...Pressure detector, 15, 16, 17...
...Cold soot heating degree control device.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、室内側熱交換器、減圧機構、
室外側熱交換器を連結して冷凍サイクルを構成し、前記
減圧機構と前記室外熱交換器との直列回路に第1の開閉
弁と冷媒を加熱する冷媒加熱器とを並列に設け、前記減
圧機構と前記室外熱交換器との間に第2の開閉弁を設け
、前記圧縮機の高圧側配管と低圧側配管をバイパスさせ
て第3の開閉弁を設け、冷媒流通回路に冷媒圧力を検出
する圧力検知器を設け、冷媒加熱運転時、前記第1の開
閉弁及び第3の開閉弁を開き、前記第2の開閉弁を閉じ
、さらに前記圧力検知器からの冷媒圧力に応じた出力を
受けて前記冷媒加熱器の加熱度を制御する構成とした冷
媒加熱式空気調和機。
1 Compressor, four-way switching valve, indoor heat exchanger, pressure reduction mechanism,
An outdoor heat exchanger is connected to constitute a refrigeration cycle, and a first on-off valve and a refrigerant heater for heating the refrigerant are provided in parallel in a series circuit of the pressure reduction mechanism and the outdoor heat exchanger, and the pressure reduction A second on-off valve is provided between the mechanism and the outdoor heat exchanger, a third on-off valve is provided by bypassing the high pressure side piping and the low pressure side piping of the compressor, and the refrigerant pressure is detected in the refrigerant circulation circuit. A pressure sensor is provided, and during refrigerant heating operation, the first on-off valve and the third on-off valve are opened, the second on-off valve is closed, and the output from the pressure sensor is output according to the refrigerant pressure. A refrigerant heating type air conditioner configured to control the heating degree of the refrigerant heater based on the received refrigerant heater.
JP6286381A 1981-04-24 1981-04-24 Refrigerant heating air conditioner Expired JPS6037378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6286381A JPS6037378B2 (en) 1981-04-24 1981-04-24 Refrigerant heating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286381A JPS6037378B2 (en) 1981-04-24 1981-04-24 Refrigerant heating air conditioner

Publications (2)

Publication Number Publication Date
JPS57175859A JPS57175859A (en) 1982-10-28
JPS6037378B2 true JPS6037378B2 (en) 1985-08-26

Family

ID=13212549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286381A Expired JPS6037378B2 (en) 1981-04-24 1981-04-24 Refrigerant heating air conditioner

Country Status (1)

Country Link
JP (1) JPS6037378B2 (en)

Also Published As

Publication number Publication date
JPS57175859A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US5628200A (en) Heat pump system with selective space cooling
US20080209930A1 (en) Heat Pump with Pulse Width Modulation Control
US11624538B2 (en) Refrigeration device provided with a secondary by-pass branch and method of use thereof
JPH04295566A (en) Engine-driven air-conditioning machine
JPH1073328A (en) Cooler
JPS6037378B2 (en) Refrigerant heating air conditioner
JPH0212339B2 (en)
JPH0144796Y2 (en)
JPS6244277Y2 (en)
JPS6216596Y2 (en)
JPS6479551A (en) Heat pump type air conditioner
JPH03217744A (en) Operation control system for temperature control device
JPS6144129Y2 (en)
JPS5815818Y2 (en) Air conditioner equipped with water-cooled heat exchanger
JP2000130890A (en) Refrigerating/cooling cycle, operation control method therefor and expansion valve with solenoid valve
JPS6028934Y2 (en) Refrigeration equipment
JPH01142358A (en) Refrigerant heating type cooling and heating machine
JPS6038623B2 (en) Operation control structure of air conditioner equipped with refrigerant heater
JP2874975B2 (en) Air conditioner
JPS60596Y2 (en) air conditioner
JPS6342180B2 (en)
JPS6021728Y2 (en) Heat pump refrigeration equipment
JPH0330769Y2 (en)
JPH0652141B2 (en) Air conditioner
JPH01222168A (en) Heat pump type refrigerating device