JPS603728B2 - Insulated conductor molding equipment - Google Patents

Insulated conductor molding equipment

Info

Publication number
JPS603728B2
JPS603728B2 JP12719380A JP12719380A JPS603728B2 JP S603728 B2 JPS603728 B2 JP S603728B2 JP 12719380 A JP12719380 A JP 12719380A JP 12719380 A JP12719380 A JP 12719380A JP S603728 B2 JPS603728 B2 JP S603728B2
Authority
JP
Japan
Prior art keywords
molding
jig
insulating layer
mold
insulated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12719380A
Other languages
Japanese (ja)
Other versions
JPS5753013A (en
Inventor
哲之 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12719380A priority Critical patent/JPS603728B2/en
Publication of JPS5753013A publication Critical patent/JPS5753013A/en
Publication of JPS603728B2 publication Critical patent/JPS603728B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電気機器の縦黍劇線輪又はこれに接続する絶縁
鋼帯等の熱硬化性樹脂を含んだ絶縁層を加熱加圧加工硬
化する絶縁導体のモールド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated conductor molding device for hardening an insulating layer containing a thermosetting resin such as a vertical mill wire ring of an electrical device or an insulating steel strip connected thereto by heating and pressing. .

最近の電気機器は大容量化、又は同出力では4・形化さ
れ、これに使用される絶縁線輪又はその線論に接続する
絶縁鋼帯等、導体の絶縁も絶縁層が薄く、絶縁特性が良
好で、さらにその絶縁特性のばらつきが少ない均一なも
のが要求されるようになってきている。
Recent electrical equipment has increased in capacity, or has become 4-shaped with the same output, and the insulation of conductors, such as the insulated wire ring used for this or the insulated steel strip connected to the wire, has a thin insulation layer and has insulation characteristics. Increasingly, there is a demand for a material with good insulation properties and uniform insulation properties with little variation.

導体の絶縁方式としては、真空加圧含浸方式及びレジン
リッチ方式があるが、いずれもマィカ、ガラス等の無機
質材料にェポキシ樹脂又はポリエステル樹脂等の熱硬化
性合成樹脂を含ませて、加熱加圧硬化させる事により、
絶縁層を一体化させるのが最近の絶縁の一般的な構造で
ある。
There are two methods of insulating conductors: the vacuum pressure impregnation method and the resin-rich method, both of which involve impregnating an inorganic material such as mica or glass with a thermosetting synthetic resin such as epoxy resin or polyester resin and applying heat and pressure. By hardening,
A common structure for insulation these days is to integrate the insulation layers.

しかしがら、真空加圧含浸方式又はしジンリッチ方式の
いずれの絶縁方式でも、加熱加圧硬化させる際に用いる
モールド装置の構造により、絶縁特性は大中に変化する
。第1図は従釆のモールド装置の一般的なモールド絵具
と、それを用いて絶縁導体をモールドしている状態の断
面図を示す。
However, in both the vacuum pressure impregnation method and the gin-rich insulation method, the insulation properties vary greatly depending on the structure of the molding device used for curing under heat and pressure. FIG. 1 shows a general molding paint of a secondary molding device and a cross-sectional view of a state in which an insulated conductor is molded using the molding paint.

導体1は絶縁層2を巻付けられ、さらにその外面には2
個の断面L字形のモールド俗臭3によって囲まれている
。モールドの際は、このモールド治具3の外部から、液
圧、収縮テープの続付圧力又はスプリング等による機械
的な圧力により、加圧されると同時に加熱装置により加
熱され、絶縁層2に含まれた熱硬化性合成樹脂が硬化し
、堅固な絶縁層を形成する。導体4は通常複数本の素線
を束ねたり、或は複数ターンの線輪を形成したりしてい
るが一般に断面は4辺形をしているので、2個のL字形
モールド治具で4辺を押付けられる。この加圧の際のモ
ールド治具3の働きは、上下部絶縁層2aには、これに
垂直な方向の力Faが加わり、両側部絶縁層2bには、
これに垂直な方向の力Fbが加わる。このとき絶縁層2
とモールド治具3との間の摩擦係数をれとすれば、上下
部絶縁層2a表面には、これと同一方向の力Fc=Fa
×仏、両側部絶縁層2b表面には、これと同一方向の力
Fd=Fb×ムが加わり、モールド治具3のL字の曲り
角に向いた側を閉側コーナー、L字の辺の端部側を開側
コーナーと呼ぶことにすると、導体の開側コーナーlc
を支点に力Fc、力Fdにより閉側コーナーの絶縁層2
c表面には引張力が加わり、その閉側コーナーの絶縁層
2cは薄くなる。又、導体の関側コーナーld側は力F
cと力Fdにより関側コーナーの絶縁層2d表面には圧
縮力が加わり、その開側コーナーの絶縁層2dは逆に厚
くなる。近年電気機器の大容量化に伴い、高電圧化が進
んで来ると、絶縁層2の厚みも従来より厚くなり、絶縁
層2が厚くなればなるほど、各コーナーの絶縁層2c,
2dの厚みの不均一が著しくなる。
The conductor 1 is wrapped with an insulating layer 2, and further has an insulating layer 2 on its outer surface.
It is surrounded by a mold 3 having an L-shaped cross section. During molding, the molding jig 3 is pressurized from the outside by liquid pressure, the pressure of a shrink tape, or mechanical pressure from a spring, etc., and at the same time heated by a heating device. The thermosetting synthetic resin cures and forms a solid insulating layer. The conductor 4 is usually made by bundling multiple wires or forming a wire ring with multiple turns, but since the cross section is generally quadrilateral, two L-shaped molding jigs are used to make the conductor 4. The sides are pressed. The function of the mold jig 3 during this pressurization is that a force Fa is applied to the upper and lower insulating layers 2a in a direction perpendicular thereto, and to the both side insulating layers 2b,
A force Fb in a direction perpendicular to this is applied. At this time, the insulating layer 2
If the coefficient of friction between the mold jig 3 and the mold jig 3 is set as
A force Fd=Fb×mu in the same direction as this is applied to the surface of the insulating layer 2b on both sides, and the side facing the curved corner of the L-shape of the mold jig 3 is the closed corner, and the end of the side of the L-shape is If the side is called the open side corner, the open side corner lc of the conductor
The insulating layer 2 at the closed corner is
A tensile force is applied to the surface c, and the insulating layer 2c at the closed corner becomes thinner. Also, the force F on the conductor corner ld side is
c and force Fd, a compressive force is applied to the surface of the insulating layer 2d at the open corner, and the insulating layer 2d at the open corner becomes thicker. In recent years, with the increase in the capacity of electrical equipment and the increase in voltage, the thickness of the insulating layer 2 has also become thicker than before, and the thicker the insulating layer 2 is, the more
The non-uniformity of the thickness of 2d becomes significant.

絶縁厚は絶縁破壊電圧に直接的に影響を及ぼし、特にコ
ーナーの絶縁層2cが著しく薄くなる事は絶縁破壊電圧
を極端に低下させる原因となる。従って、従来はコーナ
ーの絶縁層2cの薄くなる分を見込んで、絶縁層2の厚
みを全体的により厚く設計しなければならず、高電圧化
、小型化が難かしくなり、製造コストが高くなる欠点を
有していた。本発明は導体の絶縁層のどの部分について
も局部的に絶縁厚みが薄くなることなく、かえってコー
ナー部では幾分厚くし、低電圧機器用で絶縁層が薄い場
合も、高電圧機器用で絶縁層が厚い場合も、絶縁特性が
良好で「かっぱらつきの少ない信頼性の優れた絶縁導体
を製造できる絶縁導体のモールド装置を提供することを
目的とする。
The insulation thickness has a direct effect on the dielectric breakdown voltage, and in particular, if the insulating layer 2c at the corners becomes extremely thin, this causes an extremely low dielectric breakdown voltage. Therefore, conventionally, the thickness of the insulating layer 2 had to be designed to be thicker overall in consideration of the thinning of the insulating layer 2c at the corners, making it difficult to increase the voltage and downsize, and increasing manufacturing costs. It had drawbacks. In the present invention, the insulation thickness of the insulation layer of a conductor is not locally thinned in any part, but rather it is made somewhat thicker at the corners. An object of the present invention is to provide an insulated conductor molding device that can manufacture an insulated conductor with good insulation properties and low crackling and excellent reliability even when the conductor is thick.

以下、本発明を第2図に示す一実施例について説明する
。尚、第2図において第1図と同一部分には同一符号を
付して説明を省略する。断面が4辺形をした導体1の絶
縁層2の4面には、それぞれ平板な第1のモールド治具
4を当接しLその外側の各コーナーにそれぞれ断面がL
字形の第2のモールド拾具5を当接する。加圧装置はク
ランプ6とスプリング7により機械的に加圧するものを
、導体1の長手方向に交互に角度を変えて装着したもの
を示すが、この他に、熱収縮材、気圧、液圧又は粉圧等
によるものでもよい。そして、第1のモールド沼具4の
絶縁層2に接触する面には図示しない粘着テープを設け
て、絶縁層2と第1のモールド拾具4との間の摩擦係数
を大きくし、第2のモールド袷具5の第1のモールド治
具4との接触面には図示しないテフロンを暁付けて、第
1と第2のモールド治具4,5間の摩擦係数を小さくし
、加圧の際第2のモールド治具5が第1のモールド治具
に対してすべるようにしする。この他に第1と第2のモ
ールド拾具4,5間の摩擦係数を小さくする手段として
、テフロン暁付けを第1のモールド拾臭4側に行なって
もよいし、第1、第2の両モールド治具に行なってもよ
い。又、第1、第2のモ−ルド袷具4,5間の接触面の
うち、少なくとも一方に、シリコングリース等の潤滑剤
を塗布するか、擁付ける手段、又は、テフロンをスプレ
−する手段、又は、テフロンシートを貼着あるいは巻回
する手段等がある。そして又、絶縁層2と第1のモール
ド拾臭4間の摩擦係数を大きくする他の手段として、こ
れらの接触面に、接着剤、高粘度ワニス等を塗布して第
1のモールド拾具4を絶縁層2へ接着させる手段、第1
のモールド治具4の絶縁層2への接触面を機械的、化学
的に荒らす手段等がある。次に作用について説明する。
Hereinafter, one embodiment of the present invention shown in FIG. 2 will be described. In FIG. 2, the same parts as in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted. A flat first molding jig 4 is brought into contact with each of the four sides of the insulating layer 2 of the conductor 1, which has a quadrilateral cross section.
A letter-shaped second mold pick-up tool 5 is brought into contact. The pressurizing device is one that mechanically pressurizes using a clamp 6 and a spring 7, which is installed at alternate angles in the longitudinal direction of the conductor 1. In addition, heat shrinkable material, atmospheric pressure, hydraulic pressure, or It may also be done by powder pressing or the like. Then, an adhesive tape (not shown) is provided on the surface of the first mold pick-up tool 4 that comes into contact with the insulating layer 2 to increase the coefficient of friction between the insulating layer 2 and the first mold pick-up tool 4. Teflon (not shown) is applied to the contact surface of the mold holder 5 with the first mold jig 4 to reduce the coefficient of friction between the first and second mold jig 4 and 5, and to reduce the pressure. In this case, the second molding jig 5 is made to slide against the first molding jig. In addition, as a means to reduce the coefficient of friction between the first and second mold pick-up tools 4 and 5, Teflon coating may be applied to the first mold odor pick-up 4 side, and It may be applied to both mold jigs. Also, means for applying or supporting a lubricant such as silicone grease, or means for spraying Teflon on at least one of the contact surfaces between the first and second mold linings 4 and 5. Alternatively, there is a method of attaching or winding a Teflon sheet. As another means of increasing the coefficient of friction between the insulating layer 2 and the first mold odor pick-up 4, adhesive, high viscosity varnish, etc. may be applied to the contact surfaces of the first mold pick-up tool 4. means for adhering the to the insulating layer 2, the first
There is a method of mechanically or chemically roughening the contact surface of the mold jig 4 to the insulating layer 2. Next, the effect will be explained.

加圧の際は上下部絶縁層2aにはこれに垂直な方向の力
Faが加わり、両側部絶縁層2bにはこれに垂直な方向
の力Fbが加わり、これらの力により絶縁層2が加圧さ
れることは従来の加圧の原理と同じである。ここで上下
部絶縁層2aと両側部絶縁層2bとの表面に、従来加わ
っていた第1図に示す力FcとFdについて考察すると
、本実施例の第2図に示すものにおいては、各モールド
治具4,5が外力により加圧された時、第2のモールド
拾具5は第1のモールド治具4に対してすべってしまう
から、力Fc及びFdは発生しない。そして第1のモー
ルド絵具4によって押された反力となる力Fe、Ffの
みが各コーナーの絶縁層2c,2dに加わり、第1図に
示した従釆の閉側コーナーの絶縁層2cのように絶縁厚
さが薄くなることがなく。かえって各コーナーの絶縁層
2c,2dが全部均一に上下部及び両側部絶縁層2a,
2bより厚めに形成できる。尚、上下部及び両側部絶縁
層2a,2bが均一な厚さになることは勿論である。そ
して第1のモールド拾具4に粘着テープを取付けること
、および第2のモールド治臭5にテフロンを暁付けるこ
とは工業生産的に極めて容易である。導体11はさきに
も述べた通り、断面が4辺形をしているため、各コーナ
ー部絶縁層2c,2dの電界は上下部及び両側部の絶縁
層2a,2bの電界よりも高くなるが、本実施例の装置
によって製造された絶縁導体の各コーナー部の絶縁層2
c,2dの厚さは上託した通り、上下部及び両側部絶縁
層よりも厚いため、最弱点部の絶縁強度を高め、絶縁特
性を向上することが出来る。
When applying pressure, a force Fa is applied to the upper and lower insulating layers 2a in a direction perpendicular to this, and a force Fb in a direction perpendicular to this is applied to the insulating layers 2b on both sides, and the insulating layer 2 is applied with these forces. The principle of being pressurized is the same as that of conventional pressurization. Now, considering the forces Fc and Fd shown in FIG. 1 that are conventionally applied to the surfaces of the upper and lower insulating layers 2a and both side insulating layers 2b, in the one shown in FIG. 2 of this embodiment, each mold When the jigs 4 and 5 are pressurized by an external force, the second mold pick-up 5 slides relative to the first mold jig 4, so the forces Fc and Fd are not generated. Then, only the forces Fe and Ff, which are the reaction forces pushed by the first mold paint 4, are applied to the insulating layers 2c and 2d at each corner, and the insulating layers 2c at the closed corners of the subordinate columns shown in FIG. without reducing the insulation thickness. On the contrary, the insulating layers 2c and 2d at each corner are all uniformly coated with the upper and lower insulating layers 2a,
It can be formed thicker than 2b. It goes without saying that the upper and lower insulating layers 2a and 2b on both sides have a uniform thickness. It is extremely easy in terms of industrial production to attach adhesive tape to the first mold pick-up tool 4 and to attach Teflon to the second mold odor control 5. As mentioned earlier, the conductor 11 has a quadrilateral cross section, so the electric field in the insulating layers 2c and 2d at each corner is higher than the electric field in the insulating layers 2a and 2b at the top and bottom and on both sides. , an insulating layer 2 at each corner of the insulated conductor manufactured by the apparatus of this example.
As mentioned above, the thicknesses of c and 2d are thicker than the upper, lower, and both side insulating layers, so that the insulating strength at the weakest point can be increased and the insulating properties can be improved.

第3図は従来のモールド装置と本実施例のモールド装置
とを使用して製造した絶縁導体の絶縁特性を示たもので
ある。縦軸は絶縁破壊電圧をとり、機軸は絶縁層の絶縁
テープ巻回数をとる。これによってみれば従来のものを
示す曲線aより本実施例のものを示す曲線bの方が遥か
にすぐれていることが分る。第4図は他の実施例を示し
、加圧装置を熱収縮材8に変更したことが異なり、他は
第2図と同様である。
FIG. 3 shows the insulation characteristics of insulated conductors manufactured using the conventional molding device and the molding device of this embodiment. The vertical axis shows the dielectric breakdown voltage, and the mechanical axis shows the number of turns of the insulating tape on the insulating layer. It can be seen from this that the curve b representing the present embodiment is far superior to the curve a representing the conventional one. FIG. 4 shows another embodiment, which is the same as FIG. 2 except that the pressurizing device is replaced with a heat-shrinkable material 8.

尚、本発明は上記し、かつ図面に示した実施例のみに限
定されるものではなく、その要旨を変更しない範囲で、
種々変形して実施できることは勿論である。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but may include the following without changing the gist thereof:
Of course, it can be implemented with various modifications.

以上説明したように、本発明によれば、絶縁層外側の4
面にそれぞれ平板な第1のモールド拾具を当接し、その
外側の各コーナーにそれぞれ断面がL字形の第2のモー
ルド拾具を当綾し、加圧の際第2のモールド俗臭が第1
のモールド治具に対してすべるようにしたことにより、
製造される絶縁導体の各コーナーの絶縁層が均一に上下
部及び両側部絶縁層より厚めになり、かつ上下部及び両
側部絶縁層の厚さも均一になり、しかもこれが、高電圧
機器用の厚い絶縁層でも、低電圧機器用の薄い絶縁層で
も同様に実現でき、常に高い絶縁特性を有し、特性のは
らつきの少ない信頼性の高い絶縁導体を製造することが
できる。
As explained above, according to the present invention, the outer four parts of the insulating layer
A flat first mold pick-up tool is brought into contact with each of the surfaces, and a second mold pick-up tool with an L-shaped cross section is put in contact with each of the outer corners of the first mold pick-up tool.
By making it slide against the mold jig,
The insulating layer at each corner of the manufactured insulated conductor is uniformly thicker than the upper, lower, and both side insulating layers, and the thickness of the upper, lower, and both side insulating layers is also uniform. This can be similarly achieved with an insulating layer or a thin insulating layer for low-voltage equipment, and it is possible to manufacture a highly reliable insulated conductor that always has high insulating properties and has little variation in properties.

従って、むだに絶縁層厚さを厚くせず、薄く設計、製造
できるため、冷却効果を高め、機器の4・形、軽量化が
可能となる。
Therefore, it is possible to design and manufacture a thin insulating layer without increasing the thickness of the insulating layer unnecessarily, thereby increasing the cooling effect and making it possible to reduce the size and weight of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の絶縁導体のモールド装置の要部を示す断
面図、第2図は本発明の絶縁導体のモ‐ルド装置の一実
施例を示す断面図、第3図は従来及び本発明の一実施例
にて製造された絶縁導体の絶縁特性を比較して示す曲線
図、第4図は他の実施例を示す断面図である。 1…・・・導体、2・・…・絶縁層、4・・・・・・第
1のモールド治具、5・・・・・・第2のモールド俗臭
、6,7・・・・・・加圧装置であるクランプとスプリ
ング、8・・・・・・加圧装置である熱収縮材。 第1図 第2図 第3図 第4図
FIG. 1 is a sectional view showing the main parts of a conventional insulated conductor molding device, FIG. 2 is a sectional view showing an embodiment of the insulated conductor molding device of the present invention, and FIG. 3 is a sectional view of the conventional insulated conductor molding device and the present invention. FIG. 4 is a curve diagram showing a comparison of insulation properties of insulated conductors manufactured in one embodiment, and FIG. 4 is a sectional view showing another embodiment. 1... Conductor, 2... Insulating layer, 4... First mold jig, 5... Second mold vulgarity, 6, 7... - Clamp and spring that are pressurizing devices, 8...Heat shrink material that is pressurizing devices. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 断面が4辺形の導体に巻付けられ熱硬化性樹脂を含
んだ絶縁層を加熱加圧硬化する絶縁導体のモールド装置
において、絶縁層外側の4面にそれぞれ平板な第1のモ
ールド治具を当接し、その外側の各コーナーにそれぞれ
断面がL字形の第2のモールド治具を当接し、第2のモ
ールド治具の外側に加圧装置を設け、絶縁層と第1のモ
ールド治具との間の摩擦係数を第1と第2のモールド治
具間の摩擦係数より大にして、加圧の際第2のモールド
治具が第1のモールド治具に対してすべるようにしたこ
とを特徴とする絶縁導体のモールド装置。 2 第1および第2のモールド治具間の摩擦係数を小さ
くする手段は、少なくとも何れか一方のモールド治具接
触面にテフロンを焼付けたことを特徴とする特許請求の
範囲第1項記載の絶縁導体のモールド装置。 3 絶縁層と第1のモールド治具との間の摩擦係数を大
きくする手段は、第1のモールド治具の絶縁層接触面に
粘着テープを設けたことを特徴とする特許請求の範囲第
1項又は第2項記載の絶縁導体のモールド装置。
[Claims] 1. In an insulated conductor molding device for curing an insulating layer wrapped around a conductor having a quadrilateral cross section and containing a thermosetting resin under heat and pressure, a flat plate is provided on each of the four outer sides of the insulating layer. A first molding jig is brought into contact with the first molding jig, a second molding jig having an L-shaped cross section is brought into contact with each outer corner of the first molding jig, a pressure device is provided on the outside of the second molding jig, and the insulating layer is The coefficient of friction between the first mold jig and the second mold jig is set to be larger than the coefficient of friction between the first and second mold jig, so that the second mold jig is moved against the first mold jig during pressurization. An insulated conductor molding device characterized by being made to slide. 2. The means for reducing the coefficient of friction between the first and second molding jigs is an insulation according to claim 1, characterized in that Teflon is baked on the contact surface of at least one of the molding jigs. Conductor molding equipment. 3. The means for increasing the coefficient of friction between the insulating layer and the first molding jig is characterized in that an adhesive tape is provided on the contacting surface of the insulating layer of the first molding jig. The insulated conductor molding device according to item 1 or 2.
JP12719380A 1980-09-16 1980-09-16 Insulated conductor molding equipment Expired JPS603728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12719380A JPS603728B2 (en) 1980-09-16 1980-09-16 Insulated conductor molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12719380A JPS603728B2 (en) 1980-09-16 1980-09-16 Insulated conductor molding equipment

Publications (2)

Publication Number Publication Date
JPS5753013A JPS5753013A (en) 1982-03-29
JPS603728B2 true JPS603728B2 (en) 1985-01-30

Family

ID=14953987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12719380A Expired JPS603728B2 (en) 1980-09-16 1980-09-16 Insulated conductor molding equipment

Country Status (1)

Country Link
JP (1) JPS603728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8916332D0 (en) * 1989-07-17 1989-08-31 Gec Alsthom Ltd Transformer winding conductor

Also Published As

Publication number Publication date
JPS5753013A (en) 1982-03-29

Similar Documents

Publication Publication Date Title
US4376904A (en) Insulated electromagnetic coil
US4400226A (en) Method of making an insulated electromagnetic coil
US6750400B2 (en) Graded electric field insulation system for dynamoelectric machine
US5636434A (en) Method of fabricating an electrical coil having an inorganic insulation system
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
US3071845A (en) Progressive winding of coils
US3050787A (en) Method for making armature conductor bar
JPS603728B2 (en) Insulated conductor molding equipment
US4276102A (en) Method for compacting transposed cable strands
CA2314916A1 (en) Method for producing impregnable fine mica tapes with an incorporated accelerator
CN1326157C (en) Corona-proof conductor
JPH06181007A (en) Tape-like enamel electric wire and manufacture thereof
US1389149A (en) Insulating-coil and method of making same
US1416036A (en) Insulation and method of making same
CA1321736C (en) Process for forming one or more insulated films on the surface of a solid body and an apparatus therefor
US2389733A (en) Articles formed from paper impregnated with polymerized material
JP2886948B2 (en) Method of forming insulating film on surface of solid object
JP2001238389A (en) Prepreg insulated coil for rotating electric machine
JPH01283913A (en) Manufacture of field coil of motor
CA2084352A1 (en) Insulated magnet wire, method of forming the same, and insulation therefor
JPS6223057Y2 (en)
SU1727189A1 (en) Method of manufacture of magnetic circuits of electric machines and mandrel to accomplish it
SU599709A2 (en) Method for making windings
RU1818661C (en) Process of manufacture of magnetic cores of electric machines
JPS58190011A (en) Insulation treating method of coil