JPS6037209A - Method and device for manufacturing cold drawn steel pipe - Google Patents

Method and device for manufacturing cold drawn steel pipe

Info

Publication number
JPS6037209A
JPS6037209A JP14388683A JP14388683A JPS6037209A JP S6037209 A JPS6037209 A JP S6037209A JP 14388683 A JP14388683 A JP 14388683A JP 14388683 A JP14388683 A JP 14388683A JP S6037209 A JPS6037209 A JP S6037209A
Authority
JP
Japan
Prior art keywords
pipe
cold
die
wall thickness
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14388683A
Other languages
Japanese (ja)
Inventor
Chiharu Takamadate
千春 高間舘
Yoji Kusachi
草地 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14388683A priority Critical patent/JPS6037209A/en
Publication of JPS6037209A publication Critical patent/JPS6037209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0807Tube treating or manipulating combined with, or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off

Abstract

PURPOSE:To manufacture a cold drawn steel pipe having smooth inner and outer surfaces by cold drawing a straight-seam electric welded pipe after removing the weld beads of its outer and inner surfaces by using a die having an approaching angle capable of minimizing the change of wall thickness. CONSTITUTION:A steel strip 110 is formed into a tubular steel pipe 1111 by a forming mill 12 and the pipe 1111 is welded into a blank pipe 112. Next, the pipe 112 after cutting the beads of its inner and outer surfaces by a bite 14, is cooled through a coolant zone 15 and is drawn, after aligning its center by a push pointer 17, by a continuous drawing machine 18 while supplying a lubricant from a pump 16. The drawing machine 18 consists of two dies 191, 192 arranged in tandem and a drawing mechanism 21; the dies 191, 192, having each an approaching angle capable of making the changing quantity of wall thickness to be zero in accordance with a target reduction rate of outer diam., are used for this purpose. A cold drawn blank pipe 113 is straightened by a straightener 22, and is cut into a steel pipe 114 having a prescribed dimension by a flying press cutter 23.

Description

【発明の詳細な説明】 本発明は冷間引抜鋼管の製造方法と装置に関する。[Detailed description of the invention] The present invention relates to a method and apparatus for manufacturing cold drawn steel pipes.

更に詳細には、本発明はストレートシーム電縫管から内
外面の滑らかな冷間引抜鋼管を製造する方法と装置に関
する。
More particularly, the present invention relates to a method and apparatus for manufacturing cold drawn steel pipe with smooth inner and outer surfaces from straight seam electric resistance welded pipe.

冷間引抜鋼管は表面性状及び寸法精度が良く、更にダイ
ス内面に当接しながら管が変化する変形機構自体の特性
より薄肉、小径の管や異形の管の多品種少量生産にも適
している。更に、冷間引抜条件と熱処理条件を組合せて
機械的性質をコントロールして製品の付加価値を高める
ことができる。
Cold-drawn steel pipes have good surface properties and dimensional accuracy, and the deformation mechanism itself, in which the pipe changes while abutting against the inner surface of the die, makes it suitable for high-mix, low-volume production of thin-walled, small-diameter pipes, and irregularly shaped pipes. Furthermore, the added value of the product can be increased by controlling the mechanical properties by combining cold drawing conditions and heat treatment conditions.

しかしながら鋼管、特に安価な電縫鋼管の冷間引抜加工
は複雑な工程となるため電縫管工場の電縫溶接ラインと
は別個のラインで行われたり、或いは二次加工メーカー
の手で行われてきた。電縫管の冷間引抜加工は次のよう
な工程からなる。
However, cold drawing of steel pipes, especially inexpensive ERW steel pipes, is a complicated process, so it is often performed on a line separate from the ERW welding line at an ERW pipe factory, or by a secondary processing manufacturer. It's here. Cold drawing of ERW pipes consists of the following steps.

(1)熱処理工程 電縫管継目溶接部の硬度を低減するために必要であり、
例えば焼串又は焼戻しを行う。
(1) Heat treatment process Necessary to reduce the hardness of the ERW pipe joint weld,
For example, grilling or tempering is performed.

(2)酸洗工程 熱処理により何着した表面のスケールを5〜20%硫酸
等で除去する。
(2) Pickling process The scale deposited on the surface by heat treatment is removed with 5-20% sulfuric acid or the like.

(31i’ll滑処理工程 引抜加工のためリン酸塩又は金属石ケンの潤滑皮膜を形
成する。
(31i'll lubricating process: Forms a lubricating film of phosphate or metal soap for drawing process.

(4)口絞り工程 引抜加工時に鋼管にチャ・ツクを取付けるためにロータ
リースウェージャで先端部を予め絞る。
(4) Mouth drawing process In order to attach a chuck to the steel pipe during drawing, the tip is pre-squeezed with a rotary swager.

(5)冷間引抜工程 ダイスを用いて電縫管を1本ずつ引抜く。(5) Cold drawing process Pull out the ERW tubes one by one using a die.

(6)口絞り部の切落とし及び精整工程このような従来
の冷間引抜加工は、多数の工程を内包し、(1)処理に
長時間を要する(通常2乃至3日) 、(21処理コス
トが高額になる(脱脂費用も含む酸洗費用、潤滑処理費
用等’) 、f3)歩留まりが悪い(口絞り部の切落と
し等が必要なため通常2乃至3%悪化してしまう)等の
欠点を持っている。
(6) Process of cutting off and refining the opening part This conventional cold drawing process involves many processes, including (1) a long processing time (usually 2 to 3 days); (21) Processing cost becomes high (pickling cost including degreasing cost, lubrication treatment cost, etc.), f3) Yield is poor (usually deteriorates by 2 to 3% because it is necessary to cut off the opening part, etc.), etc. has the disadvantages of

他方、電縫管から小径の鋼管を製造する方法としては熱
間ストレンチレデューサ又は冷間レデューサを用いるこ
とがある。しかしながら、これらの設備は大がかりなも
ので設備費が高く、且つ変形機構が複雑なため一定の寸
法、形状の製品を得ることが困難である。
On the other hand, as a method for manufacturing small diameter steel pipes from electric resistance welded pipes, a hot trench reducer or a cold reducer may be used. However, these facilities are large-scale and expensive, and the deformation mechanism is complex, making it difficult to obtain products with fixed dimensions and shapes.

従って、本発明の目的は上述の従来技術の問題を解決し
、より単純な電縫管の冷間引抜方法を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a simpler method for cold drawing an ERW tube.

更に、本発明の目的はストレートシーム電縫管から内外
面の滑らかな冷間引抜鋼管を製造する方法と装置とを提
供することにある。
A further object of the present invention is to provide a method and apparatus for manufacturing cold-drawn steel pipes with smooth inner and outer surfaces from straight seam electric resistance welded pipes.

発明の原理 従来の電縫管の冷間引抜加工を複雑且つ長時間のものと
する最大の原因は溶接部の硬度を低減するための熱処理
工程にあると本発明者らは考え、これを省略する可能性
を検討して本発明を完成したものである。もし熱処理を
省略することが可能ならば、スケール除去のための酸洗
工程も省略可能であり、他の工程は電縫管製造ラインの
電)M溶接機の後方に溶接ビード除去手段、潤滑油付与
手段、引抜ダイス等をタンデムに配置することによって
電縫工程と連続して行うことが可能となる。
Principle of the Invention The inventors of the present invention believe that the main reason why the conventional cold drawing process of electric resistance welded pipes is complicated and takes a long time is the heat treatment process to reduce the hardness of the welded part, so this process was omitted. The present invention was completed by examining the possibility of doing so. If it is possible to omit heat treatment, the pickling process for scale removal can also be omitted, and the other processes include weld bead removal means and lubricating oil at the rear of the electric welding machine on the ERW pipe manufacturing line. By arranging the applying means, the drawing die, etc. in tandem, it becomes possible to carry out the process continuously with the electric resistance stitching process.

即ち、熱処理工程を省略すると、従来別のライン又は工
場で行われていた冷間引抜加工を電縫管製造ラインと同
一のライン上で連続処理することが可能である点に本発
明者らは着眼したものである。
In other words, the present inventors have discovered that by omitting the heat treatment process, cold drawing, which was conventionally performed on a separate line or factory, can be continuously performed on the same line as the ERW tube manufacturing line. This is what I focused on.

第1図は電縫鋼管の溶接部及びその近傍の硬度分布を示
す。硬度試験片は0.4%C−1,5%Mn鋼帯を溶接
速度30m/分でヒート係数13.2の条件で45Φm
mX4.Ovaにサーマツール溶接した後、内外面の溶
接ビードを除去したものである。図中、横軸Wは溶接部
中心からの周方向の距離を示し、緬軸はlok+rの荷
重をかけて測定したビッカース硬度HvlOを示す。こ
のように溶接部は加熱・加圧、溶融、冷却の熱サイクル
を受けるため著しく硬度が上昇し、塑性変形が困難とな
っている。
Figure 1 shows the hardness distribution in and around the welded part of an ERW steel pipe. The hardness test piece was a 0.4%C-1.5%Mn steel strip of 45Φm at a welding speed of 30m/min and a heat coefficient of 13.2.
mX4. The weld beads on the inner and outer surfaces were removed after thermage tool welding was performed on Ova. In the figure, the horizontal axis W indicates the circumferential distance from the center of the weld, and the vertical axis indicates the Vickers hardness HvlO measured under a load of lok+r. In this way, the welded part undergoes thermal cycles of heating, pressurizing, melting, and cooling, so its hardness increases significantly, making it difficult to deform plastically.

第2図は溶接部の硬度低減のための熱処理を受けていな
い、即ち電1溶接後に内外面溶接ビードを除去したまま
の電縫管を冷間引抜加工した場合の溶接部とその他の部
分の肉厚の変化量の差を示している。試験片は0.12
%C−0,4%Mn鋼帯を50m/分の速度で300 
、KHzの高周波誘導溶接で製造した電縫鋼管であり、
アプローチ角度の異なるダイスを用いて空引き引抜加工
を行った。引抜加工前の試験片の直径Doは34Φn1
肉厚TOは4.511であった。第2図(A)に示すよ
うに、引抜加工後の溶接部の肉厚をT1、その他の部分
の肉厚をT2とし、外径の減小量をΔDとする。外径リ
ダクション率ΔD/D。(%)を変えて試験した結果を
第2図(B)に示す。
Figure 2 shows the welded part and other parts when cold drawing is performed on an ERW pipe that has not undergone heat treatment to reduce the hardness of the welded part, i.e. with the inner and outer weld beads removed after 1st electric welding. It shows the difference in the amount of change in wall thickness. The test piece is 0.12
%C-0,4%Mn steel strip at a speed of 50 m/min.
It is an electric resistance welded steel pipe manufactured by high frequency induction welding of , KHz.
Dry drawing was performed using dies with different approach angles. The diameter Do of the test piece before drawing is 34Φn1
The wall thickness TO was 4.511. As shown in FIG. 2(A), the thickness of the welded part after drawing is T1, the thickness of the other parts is T2, and the amount of decrease in the outer diameter is ΔD. Outer diameter reduction rate ΔD/D. Figure 2 (B) shows the results of tests with different (%) values.

この第2図(B)で文字aで示すように、アンダーカッ
トiが比較的大きい(約0.1m)場合、折線Aのよう
に、外径リダクション率が増加すると共に溶接部以外が
増肉する結果アンダーカット量も増加している。これに
対して、文字すで示すようにアンダーカット量が小さい
(約Owm)場合、外径リダクション率の増加に伴いア
ンダーカットの仰向が増していくが、折線Bを折線Aと
比較して見ると、その傾向ばAの場合程顕著でないこと
がわかる。逆に、文字Cで示すようにハイカットの場合
(約−0,1mm) 、折線Cのように、外径リダクシ
ョン率の増加に従って溶接部以外が増肉してT1とT2
の差は縮小していく。しかしながら、ハイカットのコー
ナ一部(両縁)が残存してノツチ状になっていく。
As shown by the letter a in Fig. 2 (B), when the undercut i is relatively large (approximately 0.1 m), as shown by the broken line A, the outer diameter reduction rate increases and the thickness increases in areas other than the welded part. As a result, the amount of undercut has also increased. On the other hand, as shown in the text above, when the undercut amount is small (approximately Owm), the verticality of the undercut increases as the outer diameter reduction ratio increases, but when comparing broken line B with broken line A, It can be seen that this tendency is not as pronounced as in case A. On the other hand, in the case of a high cut (approximately -0.1 mm) as shown by the letter C, as shown by the broken line C, as the outer diameter reduction rate increases, the thickness increases in areas other than the welded part, resulting in T1 and T2.
The difference is shrinking. However, some of the corners (both edges) of the high cut remain and become notched.

このように、連続して空引き引抜加工によって外径を絞
ると、ビード部近傍のアンダーカット量は外径リダクシ
ョン率の増加に従って増加する一般的傾向がある。この
増カ旧頃向は引抜加工前のアンダーカット量が大きい程
顕著である。溶接部近傍の形状がアンダーカットになっ
ていると、鋼管としての商品価値を著るしく低下させる
だけでな(、溶接部の内面にノツチ状の溝として残り、
実用的な機械的性質に悪影響を与えて腐食などの問題も
発生する。こうした機械的性質の悪化と腐食の問題はビ
ード部近傍がハイカットの場合にも無縁ではない。この
場合もハイカットコーナ一部に2本のノツチ状の溝が残
るがらである。
As described above, when the outer diameter is continuously reduced by dry drawing, the amount of undercut near the bead generally tends to increase as the outer diameter reduction rate increases. This increase in strength becomes more pronounced as the amount of undercut before drawing increases. If the shape near the weld is undercut, it will not only significantly reduce the commercial value of the steel pipe (it will remain as a notch-shaped groove on the inner surface of the weld,
Practical mechanical properties are adversely affected and problems such as corrosion occur. Such problems of deterioration of mechanical properties and corrosion are not unrelated even when the vicinity of the bead is high cut. In this case as well, two notch-shaped grooves remain in a part of the high cut corner.

従って、従来技術に於いてはこの溶接部の硬度の影響を
除去するために熱処理を不可欠の工程としていたもので
ある。
Therefore, in the prior art, heat treatment is an essential step in order to remove the influence of the hardness of the welded portion.

本発明者らは上述した電縫管の冷間引抜加工の工程合理
化、更には電流ラインとの連続化の目的のもとに種々実
験を市ね、次のことを発見したものである。即ち、電縫
溶接したままの電縫管であってもアプローチ角度及び外
径リダクション率を適当に組合せると肉厚部の変化量を
ゼロとすることが可能であることを発見したものである
The inventors of the present invention conducted various experiments with the aim of streamlining the process of cold drawing of the above-mentioned electric resistance welded pipe and furthermore, making it continuous with the current line, and discovered the following. In other words, it was discovered that even if the ERW pipe is ERW-welded, it is possible to reduce the amount of change in the wall thickness to zero by appropriately combining the approach angle and outer diameter reduction rate. .

本発明はこの発見に基づくものであり、内外面溶接ビー
トを除去したままの電縫素管(勿論定寸に切断した電縫
鋼管であってもよい)を冷間引抜加工するに際し、目標
外径リダクション率(電縫管外径と加工すべき冷間引抜
鋼管の外径より予め決められている)に応じて肉厚の変
化量をゼロにするアプローチ角度のダイスを選び、この
ダイスにより引抜加工して内面の滑らかな鋼管を提供す
ることに成功したものである。
The present invention is based on this discovery, and when cold-drawing an ERW raw pipe (ERW steel pipe cut to size may of course be used) with the welded bead removed from the inner and outer surfaces, it is possible to Select a die with an approach angle that makes the amount of change in wall thickness zero according to the diameter reduction rate (predetermined from the outer diameter of the ERW tube and the outer diameter of the cold-drawn steel tube to be processed), and draw with this die. Through processing, we succeeded in providing a steel pipe with a smooth inner surface.

更に、1回の引抜加工で肉厚の変化量をゼロにするアプ
ローチ角度が大きすぎ、機械的に冷間引抜が不可能或い
は著しく困難なときは冷間引抜加工をアプローチ角度の
相違するダイスを使用して、2回以上に分けて冷間引抜
加工を行い、1回目の肉厚増加分を2回目以降の引抜加
工で肉厚を減少せしめて吸収し、全体として肉厚変化量
をゼロ又は小さな値にすることが可能である。
Furthermore, if the approach angle to achieve zero change in wall thickness in one drawing process is too large and cold drawing is mechanically impossible or extremely difficult, cold drawing may be performed using dies with different approach angles. The cold drawing process is performed in two or more times, and the increase in wall thickness from the first time is absorbed by reducing the wall thickness in the second and subsequent drawing processes, resulting in zero or no change in wall thickness as a whole. It is possible to make it a small value.

従って、現存の電縫管製造ラインの電縫溶接機の後方に
アプローチ角度の相違する2つのダイスをタンデムに設
けて、これらのダイスを適宜アプローチ角度、外径リダ
クション率を変更するようラインを改造すると、所定寸
法の電縫素管から大きな製品寸法幅且つ種々の形状で内
面の清らかな冷間引抜鋼管を連続的に製造することが可
能である。
Therefore, two dies with different approach angles are installed in tandem behind the ERW welding machine on the existing ERW pipe manufacturing line, and the line is modified to change the approach angle and outer diameter reduction ratio of these dies as appropriate. Then, it is possible to continuously manufacture cold-drawn steel pipes with a clean inner surface in a wide range of product dimensions and in various shapes from an electric resistance welded raw pipe of a predetermined size.

この本発明の基礎となるダイスのアプローチ角度、外径
リダクション率による肉厚変化のデータを第3図を参照
して説明する。
Data on wall thickness changes depending on the approach angle of the die and the outer diameter reduction rate, which are the basis of the present invention, will be explained with reference to FIG.

第3図において、(A)、(B)、(C)および(D)
は、それぞれ、素管の肉厚/外径比To/Do−5%、
10%、15%および20%という代表的な場合°に対
応する実験データのグラフであって、異なったアプロー
チ角αをパラメータとして引抜加工した場合の増肉率Δ
T / To (%)を外径リダクション率ΔD / 
Do(%)に対してプロットしてものである。ここで、
Toは引抜加工前の肉厚、ΔTは加工による増肉を表し
ている。尚、冷間引抜は一定速度で行ったものである。
In Figure 3, (A), (B), (C) and (D)
are the wall thickness/outer diameter ratio of the raw pipe To/Do-5%, respectively.
Graphs of experimental data corresponding to representative cases of 10%, 15% and 20% °, showing thickness increase rates Δ when drawing with different approach angles α as parameters.
T / To (%) is the outer diameter reduction rate ΔD /
It is plotted against Do (%). here,
To represents the wall thickness before the drawing process, and ΔT represents the thickness increase due to the process. Note that cold drawing was performed at a constant speed.

第3図に見られるように、素管の肉厚/外径比To/ 
Doについてダイスのアプローチ角αを選定すると増肉
率ΔT / T o(%)が外径リダクション率ΔD/
Do(%)のある関数としてプロットできることがわか
る。換言すれば、所定の外径リダクション率に刻してア
プローチ角度を選定すれば増肉率が決定されるわけであ
る。従って、素管の肉厚/外径比のグラフを始めに選択
し、次にそのグラフから、la械的に無理のない外径リ
ダクション率の範囲(通常2%ないし35%)で増肉率
をゼロにするアプローチ角のダイスを選定するスケジュ
ールを決定する。選定したダイスを用いて引抜加工を行
う。もしこの引抜で意図した外径リダクション率が上記
の範囲内であればこの1回のパスで加工を終了する。し
かし、製品とするのに必要な外径リダクション率が該範
囲を越えている場合は、1回目のパスの後、新たに肉厚
/外径比を測定して、その測定比に対応するグラフを選
択して、そのグラフから、前回の増肉を吸収するよう減
肉して、トータルとして増肉をゼロにするアプローチ角
を選定するスケジュールを決定し、選定したアプローチ
角のダイスで引抜加工を行う。この2回目のパスで所望
の外径まで縮径し引抜加工を終了する。しかしながら、
未だに所望の外径に通していなければ、3回目以降のパ
スを同様なスケジュールで繰り返す。
As seen in Figure 3, the wall thickness/outer diameter ratio To/
When the approach angle α of the die is selected for Do, the thickness increase rate ΔT / T o (%) becomes the outer diameter reduction rate ΔD /
It can be seen that it can be plotted as a function of Do (%). In other words, the thickness increase rate is determined by selecting the approach angle at a predetermined outer diameter reduction rate. Therefore, first select a graph of the wall thickness/outside diameter ratio of the raw pipe, and then use that graph to determine the wall thickness increase rate within a mechanically reasonable outside diameter reduction rate range (usually 2% to 35%). Determine the schedule for selecting a die with an approach angle that makes the value zero. Perform the drawing process using the selected die. If the intended outer diameter reduction rate in this drawing is within the above range, the machining is completed with this one pass. However, if the outer diameter reduction ratio required to produce the product exceeds the range, measure the wall thickness/outer diameter ratio anew after the first pass, and graph the corresponding ratio. , and from that graph, determine a schedule to reduce the thickness to absorb the previous thickness increase and select an approach angle that will make the total thickness increase zero, and then perform the drawing process using a die with the selected approach angle. conduct. In this second pass, the diameter is reduced to the desired outer diameter and the drawing process is completed. however,
If the desired outer diameter has not yet been achieved, repeat the third and subsequent passes using the same schedule.

上の記載では、1回目から2回目のパスに移行する際肉
厚/外径比を測定してか、1回目のパスに対応するグラ
フから、増肉率ΔT/To(%)をゼロにする外径リダ
クション率ΔD / Do(%)を読み取り、この値か
ら縮径後の直径を計算して、肉厚も同様にグラフから読
取り、計算して、新たに肉厚/外径比を計算してその計
算比に対応するグラフを選択することもできる。これを
繰り返せば、グラフからΔD/Do(%)等を読み取る
作業と肉厚/外径比を計算する簡単な作業だけで、数回
のパス(電縫鋼管ミルラインではアプローチ角の相違す
る複数個のダイス)を用いれば増肉なしに所望の外径リ
ダクション率が得られることが容易にわかり、その全ス
ケジュールに従って連続して引抜加工をライン中で行う
ことができる。
In the above description, the thickness increase rate ΔT/To (%) is set to zero by measuring the wall thickness/outer diameter ratio when moving from the first pass to the second pass, or from the graph corresponding to the first pass. Read the outer diameter reduction rate ΔD / Do (%), calculate the diameter after diameter reduction from this value, read and calculate the wall thickness from the graph, and calculate a new wall thickness / outer diameter ratio. You can also select the graph corresponding to the calculated ratio. If you repeat this process, you can simply read ΔD/Do (%) etc. from the graph and calculate the wall thickness/outer diameter ratio, and it will take several passes (in the case of an ERW steel pipe mill line, multiple passes with different approach angles). It is easy to see that the desired outer diameter reduction ratio can be obtained without increasing the thickness by using the die), and the drawing process can be performed continuously in the line according to the entire schedule.

つまり、複数回で引抜加工を行うときは、最終的に母材
の増肉をゼロ又は最小にすれば良いので、各回のパスで
増肉率をゼロにするスケジュールを選ばなくともよい。
In other words, when drawing is performed multiple times, the thickness increase in the base material can be made zero or minimal in the end, so it is not necessary to select a schedule in which the thickness increase rate is zero in each pass.

たとえば、各パスで選定すべきアプローチ角が運転上で
制限を受けて増肉(又は減肉)があっても、その後それ
を打ち消すように減肉(又は増肉)するスケジュールを
用いて最終的に増肉をゼロ又は最小に抑えることもでき
る。
For example, even if there is an increase (or decrease) in the approach angle to be selected for each pass due to operational restrictions, a schedule for decreasing (or increasing) the thickness to cancel out the increase may be used to make the final decision. It is also possible to reduce the thickness increase to zero or to a minimum.

このようにすれば、加工条件自体に制約があってもその
制約の範囲で自由にスケジュールの数と内容を選択でき
るわけである。
In this way, even if there are constraints on the processing conditions themselves, the number and content of schedules can be freely selected within the constraints.

本発明の詳細な説明 以下に本発明による電縫管から冷間引抜鋼管を製造する
方法を適用するミルライン10のレイアウトを第4図を
参照して説明する。まず材料となる鋼帯11゜を例えば
、複数対の■(バーチカル)ロール12aとH(ホリゾ
ンタル)ロール12bとからなるフォーミングミル12
で成形し管形の鋼帯111にする。この管形の鋼帯11
1の継目を、例えば、高周波誘導加熱溶接のウエルダ1
3で接合して製管する。ウエルダ13は、ワーク(イン
ダクション)コイル13aと一対のスクイズロール13
bとから構成しである。溶接後の素管112は、外面用
のパイ目4(内面用のバイトは図示省略)でその内外面
ビード切削をした後、クーラント帯15を通すことによ
って冷却する。バイト14はクーラント帯15の下流に
位置してもよい。冷却後の素管112は、連続引抜加工
を行う前に、給油ポンプ16から潤滑油の供給を受ける
と共にブツシュ・ポインタ17によって芯合わせされて
、本発明の方法に用いる連続引抜機18によって引抜加
工される。
DETAILED DESCRIPTION OF THE INVENTION The layout of a mill line 10 to which the method of manufacturing cold-drawn steel pipes from electric resistance welded pipes according to the present invention is applied will be described below with reference to FIG. 4. First, a steel strip 11°, which is a material, is processed through a forming mill 12 consisting of a plurality of pairs of ■ (vertical) rolls 12a and H (horizontal) rolls 12b.
to form a tubular steel strip 111. This tubular steel strip 11
1 seam, for example, using welder 1 of high frequency induction heating welding.
Join in step 3 and make a pipe. The welder 13 includes a work (induction) coil 13a and a pair of squeeze rolls 13.
It consists of b. After welding, the raw tube 112 is bead-cut on its inner and outer surfaces with a piezo 4 for the outer surface (the cutting tool for the inner surface is not shown), and then cooled by passing it through the coolant zone 15. The cutting tool 14 may be located downstream of the coolant zone 15. Before performing continuous drawing, the cooled raw pipe 112 is supplied with lubricating oil from an oil supply pump 16 and aligned by a bushing pointer 17, and then drawn by a continuous drawing machine 18 used in the method of the present invention. be done.

潤滑油としては硫黄分を3〜15w t%含み、40℃
に於ける粘度が200〜5000 cstの硫化油脂を
使用するのが好ましい。さらに上記硫化油脂に粒径20
0μm以下の熱可塑性高分子ポリマーの粉体を5〜30
w t%混入したものを使用することができる。
The lubricating oil contains 3 to 15 wt% sulfur and is heated at 40°C.
It is preferred to use a sulfurized oil or fat having a viscosity of 200 to 5000 cst. In addition, the above sulfurized oil has a particle size of 20
5 to 30 thermoplastic polymer powders of 0 μm or less
It is possible to use a mixture containing wt%.

この連続引抜機18は、例えば2個のタンデム配置のダ
イス191及び192と、このダイス191及び192
と組み合わせて素管112を連続して冷間引抜加工する
引抜機構21とから構成される。ダイスのアプローチ角
αは、上述するように、絞り条件に従って適当に選ぶも
のである。また、ダイスの個数は2個以上でもよい。引
抜機構21は、ミルライン上にタンデム配置されている
一対のキャッチング装置をマウントしたキャリッジ21
aが相補的に素管112を、キャッチング−引抜−関放
一原点復帰を繰り返すことによって、連続的にライン方
向の引抜力を発生する機構である。
This continuous drawing machine 18 includes, for example, two tandemly arranged dies 191 and 192;
and a drawing mechanism 21 that continuously cold-draws the raw pipe 112 in combination. As mentioned above, the approach angle α of the die is appropriately selected according to the drawing conditions. Further, the number of dice may be two or more. The extraction mechanism 21 includes a carriage 21 mounted with a pair of catching devices arranged in tandem on the mill line.
A is a mechanism that continuously generates a pulling force in the line direction by complementarily repeating the process of catching, pulling out, and returning to the origin of the raw pipe 112.

キャリッジ21aの素管送り速度はスクイズロール13
bによる素管の送り速度と同期している。この速度はロ
ール13bの速度を検出し、各個所の素管の外径、肉厚
とから体積一定の法則によって容易に算出することがで
きる。
The raw tube feeding speed of the carriage 21a is the same as that of the squeeze roll 13.
It is synchronized with the feeding speed of the raw pipe according to b. This speed can be easily calculated by detecting the speed of the roll 13b and from the outer diameter and wall thickness of the raw pipe at each location according to the law of constant volume.

冷間引抜された素管113は、ストレートナ22で曲が
り矯正を行った後所望の寸法にフライングプレスカッタ
23を用いて切断される。切断後の鋼管115は、通常
のように、管端加工と防食加工等を行って製品として出
荷される。
The cold-drawn blank tube 113 is straightened by a straightener 22 and then cut into desired dimensions by a flying press cutter 23. The cut steel pipe 115 is subjected to pipe end processing, anti-corrosion processing, etc. as usual, and then shipped as a product.

以下に、本発明の方法を実施例により説明する。The method of the present invention will be explained below using examples.

実施例 内外面の溶接ビードをバイトにより除去した電縫溶接素
管(D = 34++un、 T = 3.5mm )
を23.1φnx3.52mに引抜加工した。この場合
以下の(1)、(2)の2バスで行った。
Example ERW welded pipe (D = 34++un, T = 3.5mm) with weld beads on the inner and outer surfaces removed using a cutting tool
was drawn into a size of 23.1φn x 3.52m. In this case, we used the following two buses (1) and (2).

(11To / D o = 10.3 (%)、α=
30°でΔD/D=15(%)の外径リダクションを加
える。
(11To/D o = 10.3 (%), α=
Add an outer diameter reduction of ΔD/D=15(%) at 30°.

る。この場合、近似的には第4図(B)の文字dで示し
であるように、このバスによる冷間引抜で、素管は28
.9φvna X 3.5 ta (増肉なし)に加工
される。
Ru. In this case, as shown by the letter d in Fig. 4(B), approximately 28 mm of raw pipe is obtained by cold drawing using this bath.
.. Processed to 9φvna x 3.5 ta (no thickening).

(2)加工後は、”T”o/ Do= 12.1%にな
り、今度はアプローチ角20°で20%の外径絞りを加
える。
(2) After processing, “T”o/Do=12.1%, and this time, 20% outer diameter reduction is applied at an approach angle of 20°.

この2回目のバスで、素管は23.1Φ、 X 3.5
2mm!(増肉は0.6%)に引抜加工される。
In this second bus, the raw pipe is 23.1Φ, X 3.5
2mm! (The thickness increase is 0.6%).

この結果母材増肉は0 、02mmに抑えられた。As a result, the base metal thickness increase was suppressed to 0.02 mm.

これに反して、同じ34φ龍X3,5mの素管を1パス
でα−20%のダイスを用いて引抜加工すると、To 
/D。= 10.3 (%)であるから、近似的には第
4図(B)の文字eで示される絞り条件となる。
On the other hand, if the same 34φ dragon
/D. = 10.3 (%), the aperture condition is approximated by the letter e in FIG. 4(B).

この場合ΔD/Do=32%となり、得られる増肉ばグ
ラフ上では3.5 Xo、02B =0.1 (mm)
となる。
In this case, ΔD/Do = 32%, and the resulting thickening graph shows 3.5 Xo, 02B = 0.1 (mm)
becomes.

この場合の実績値は、flられた冷間引抜鋼管の母材肉
厚が3.63 (mm)でアンダー化が0.120であ
った。
The actual values in this case were that the base metal wall thickness of the cold-drawn steel pipe was 3.63 (mm) and the undercut was 0.120.

このように1パスでα−20’のダイスを使用した場合
の増肉的0.1 (mm)に比べて、本発明に従って増
肉を最小にするスケジュールを選んで2バスで引抜加工
を行えば、母材増肉は0.02 (mm)に抑えること
ができる。
In this way, compared to the increase in thickness of 0.1 (mm) when an α-20' die is used in one pass, the drawing process is performed in two passes by selecting a schedule that minimizes the increase in thickness according to the present invention. For example, the increase in thickness of the base material can be suppressed to 0.02 (mm).

以上詳述したように、本発明によれば、母材の増肉が小
さく、従って管周方向の偏肉が発生せず内外面の滑らか
な冷間引抜鋼管を製造することができる。
As described in detail above, according to the present invention, a cold-drawn steel pipe can be manufactured with a small increase in the thickness of the base material, and therefore no thickness deviation in the pipe circumferential direction and smooth inner and outer surfaces.

また、電縫素管の製造と連続して引抜加工を行うので処
理時間が大幅に短縮される。さらに、酸洗は通常行われ
ている素管のコイル酸洗によって代用するので、処理費
用も大幅に低減する。その上、口絞り加工は、連続引抜
加工のためのスタート時の1回で十分で、このため歩留
の低下は0.1%以下である。
Furthermore, since the drawing process is performed continuously with the manufacture of the electric resistance welded raw pipe, the processing time is significantly shortened. Furthermore, since the pickling process is replaced by the usual coil pickling of the raw pipe, processing costs are also significantly reduced. Furthermore, it is sufficient to carry out the mouth drawing process once at the start of the continuous drawing process, so that the yield decreases by 0.1% or less.

装造工程を大巾に短縮すること以外の本発明の効果を列
挙すると次の如くである。
The effects of the present invention other than greatly shortening the fabrication process are as follows.

■ 薄肉且つ小径の鋼管の連続製造が容易となる。■ Continuous production of thin-walled and small-diameter steel pipes becomes easy.

■ 内外面性状の良好な鋼管かえられる。■ Steel pipes with good internal and external properties can be replaced.

■ 寸法精度のよい鋼管を製造できる。■ Steel pipes with good dimensional accuracy can be manufactured.

■ 多才法仕様の鋼管を同一のフォーミングミルによっ
て製造可能となり、工数の多いロール替えを減らすこと
ができる。
■ It is now possible to manufacture steel pipes with versatile specifications using the same forming mill, reducing the number of man-hours involved in changing rolls.

■ 特殊断面形状の鋼管が製造可能となる。■ It becomes possible to manufacture steel pipes with special cross-sectional shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、素管溶接部及びその近傍の硬度分布を示すグ
ラフである。 第2図は、本発明の原理を示す・説明図で、(A)は電
F11鋼管の溶接部の拡大図、(B)は内面ビード部の
アンダーカット量を変えた空引きした場合の増肉を外径
リダクション率に対してプロットしたグラフである。 第3図は、本発明の方法を実施するスケジュールを図示
したものであり、(A)、(B)、(C)及び(D)は
、それぞれ、素管の肉厚/外径比が5%、10%、15
%および20%という代表的な場合引抜加工装置を含む
電縫鋼管製造ラインの一例を示す。 (主な参照番号) 11o:鋼帯、 111:管形の鋼帯、112:電縫素
管、113:冷間引抜素管、114:冷間引抜鋼管、1
2:フォーミングミル、13:ウェルダ、 14:内外面のビード切削用バイト、 15:クーラント帯、 18:連続引抜機、191.1
92 :ダイス、21:引抜機構、23:フライングプ
レス力ツタ、 出願人 住友金属工業株式会社 代理人 弁理士 新居止音 第1図 −y5−yo −5θ 51σ 15 Wc物4a) 第2図 j5@腸塾 Tt −T+ (s犠) 第3図 4”/To’%) To/D。=ヲ外 41;’To’%) To/Da = 70斧第3図
FIG. 1 is a graph showing the hardness distribution of the welded portion of the raw pipe and its vicinity. Figure 2 is an explanatory diagram showing the principle of the present invention, (A) is an enlarged view of a welded part of an electric F11 steel pipe, and (B) is an enlarged view of the welded part of an electric F11 steel pipe. It is a graph plotting meat against outer diameter reduction rate. FIG. 3 shows a schedule for implementing the method of the present invention, and (A), (B), (C), and (D) are respectively shown when the wall thickness/outer diameter ratio of the raw pipe is 5. %, 10%, 15
% and 20%. An example of an ERW steel pipe manufacturing line including drawing equipment is shown. (Main reference numbers) 11o: steel strip, 111: tubular steel strip, 112: electric welded raw pipe, 113: cold drawn raw pipe, 114: cold drawn steel pipe, 1
2: Forming mill, 13: Welder, 14: Tool for cutting internal and external beads, 15: Coolant zone, 18: Continuous drawing machine, 191.1
92: Dice, 21: Pulling mechanism, 23: Flying press force vine, Applicant: Sumitomo Metal Industries Co., Ltd. Agent Patent attorney: Yasune Arai Figure 1 -y5-yo -5θ 51σ 15 Wc object 4a) Figure 2 j5@ Chojuku Tt -T+ (s sacrifice) Fig. 3 4"/To'%) To/D. = wo outside 41; 'To'%) To/Da = 70 ax Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)内外面溶接ビードを除去したストレートシーム電
縫管を、肉厚の変化を最小とするアプローチ角度のダイ
スにより冷間引抜加工することを特徴とする冷間引抜鋼
管の製造方法。
(1) A method for manufacturing a cold-drawn steel pipe, which comprises cold-drawing a straight seam electric resistance welded pipe from which internal and external weld beads have been removed using a die with an approach angle that minimizes changes in wall thickness.
(2)上記の冷間引抜加工をアプローチ角度の相違する
2個以上のダイスを用いて行い、これらの冷間引抜加工
に於けるそれぞれのアプローチ角度と外径リダクション
率ば冷間引抜加工前の電縫管の肉厚と外径の比及び製造
すべき冷間引抜鋼管の外径に基づいて肉厚の変化を最小
とするように決定することを特徴とする特許請求の範囲
第1項記載の冷間引抜鋼管の製造方法。
(2) The above cold drawing process is performed using two or more dies with different approach angles, and the respective approach angles and outer diameter reduction rates in these cold drawing processes are calculated as follows: Claim 1, characterized in that the change in wall thickness is determined to be minimized based on the ratio of the wall thickness to the outer diameter of the electric resistance welded pipe and the outer diameter of the cold drawn steel pipe to be manufactured. A method for manufacturing cold drawn steel pipes.
(3)銅帯を管状に成形するフォーミングミルと;該銅
帯の継目を溶接する電縫溶接機と;溶接された素管の内
面及び外面の溶接ビードをそれぞれ除去する手段と; 第1ダイスと; 該第1ダイスとアプローチ角度の相違する第2ダイスと
; 該第2ダイスの出口から素管を連続的に引抜く手段と; 冷間引抜された素管を切断する手段; とからなり、これらが連続に同一製造ライン上に配列さ
れていることを特徴とする冷間引抜鋼管の製造装置。
(3) a forming mill that forms the copper strip into a tubular shape; an electric resistance welding machine that welds the joints of the copper strip; a means for removing weld beads on the inner and outer surfaces of the welded raw pipe; a first die; a second die having a different approach angle from the first die; a means for continuously pulling out the raw pipe from the outlet of the second die; a means for cutting the cold drawn raw pipe; , a cold drawn steel pipe manufacturing apparatus characterized in that these are continuously arranged on the same manufacturing line.
JP14388683A 1983-08-08 1983-08-08 Method and device for manufacturing cold drawn steel pipe Pending JPS6037209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14388683A JPS6037209A (en) 1983-08-08 1983-08-08 Method and device for manufacturing cold drawn steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14388683A JPS6037209A (en) 1983-08-08 1983-08-08 Method and device for manufacturing cold drawn steel pipe

Publications (1)

Publication Number Publication Date
JPS6037209A true JPS6037209A (en) 1985-02-26

Family

ID=15349309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14388683A Pending JPS6037209A (en) 1983-08-08 1983-08-08 Method and device for manufacturing cold drawn steel pipe

Country Status (1)

Country Link
JP (1) JPS6037209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426799A (en) * 1987-07-22 1989-01-30 Hattori Seishi Kk Kitchen paper
CN111687227A (en) * 2020-08-03 2020-09-22 赵思辉 Composite die for improving surface smoothness of cold-drawn steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426799A (en) * 1987-07-22 1989-01-30 Hattori Seishi Kk Kitchen paper
CN111687227A (en) * 2020-08-03 2020-09-22 赵思辉 Composite die for improving surface smoothness of cold-drawn steel

Similar Documents

Publication Publication Date Title
CN102873512B (en) The manufacture method of thick-walled seamless steel pipes in used in nuclear power station heavy caliber
CN105499920B (en) A kind of manufacturing method of heavy caliber thick wall seamless niobium tubing material
CN101403450B (en) Manufacture the method for the coiling pipe fitting added in brass
CN102581062A (en) Method for producing seamless titanium and titanium alloy welded pipe
CN113864537A (en) Preparation method and application of composite pipe
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
JPS6037209A (en) Method and device for manufacturing cold drawn steel pipe
RU2036031C1 (en) Method for producing seamless hot rolled tubes with outer diameter less than 170 mm
CN112404894A (en) Preparation method of large length-diameter ratio, small-caliber and ultrathin platinum and platinum-rhodium alloy crucible
US3404449A (en) Heavy walled pipe manufacture
JPS6156746A (en) Expanding method of seamless steel tube
CN105598200A (en) Manufacturing method of titanium alloy coiled tubing
CN113084452A (en) Production method of large-diameter thick-wall steel pipe
US2044491A (en) Manufacture of pipe or tubing
CN206887203U (en) The hot plating copper equipment of irony wire rod, bar, tube surfaces
JP2001162305A (en) Manufacturing method of steel tube
CN111618122A (en) Production process of high-frequency straight-seam electric welding steel pipe
JPH05228533A (en) Method and device for manufacturing welded tube
JPS6037217A (en) Method and equipment for continuously manufacturing electric welded steel pipe
JPS6037214A (en) Manufacture of electric welded steel pipe
RU2068326C1 (en) Multilayer metal pipe manufacture method
RU2791999C1 (en) Method for manufacturing longitudinally electric-welded pipe of large diameter
US20220371071A1 (en) Value stream process for roll forming and bobbin tool friction stir welding aluminum sheet to form vehicle structural rails
JP3518256B2 (en) Steel pipe manufacturing method and manufacturing equipment line
US3030482A (en) Method of producing a stock tube of weldable metal