JPS6037077A - Multiplying circuit - Google Patents

Multiplying circuit

Info

Publication number
JPS6037077A
JPS6037077A JP14510783A JP14510783A JPS6037077A JP S6037077 A JPS6037077 A JP S6037077A JP 14510783 A JP14510783 A JP 14510783A JP 14510783 A JP14510783 A JP 14510783A JP S6037077 A JPS6037077 A JP S6037077A
Authority
JP
Japan
Prior art keywords
output
voltage
circuit
signal
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14510783A
Other languages
Japanese (ja)
Other versions
JPS6156549B2 (en
Inventor
Hiroshi Matsumoto
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP14510783A priority Critical patent/JPS6037077A/en
Publication of JPS6037077A publication Critical patent/JPS6037077A/en
Publication of JPS6156549B2 publication Critical patent/JPS6156549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
    • G06G7/161Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division with pulse modulation, e.g. modulation of amplitude, width, frequency, phase or form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To obtain an output being proportional to the product of a pulse frequency and a DC voltage by scanning an output voltage by a prescribed period, whenever a pulse is inputted, comparing a scanning output and an input DC voltage, and integrating its output. CONSTITUTION:The output pulse S1 of a feed water sensor 9 is converted to the output pulse S2 of single width by a monostable multivibrator 12, and provided to a voltage scanning circuit 43. The output signal S3 of the circuit 43 is compared with a DC voltage Vdeg generated by a temperature difference detecting circuit 30 by a comparator 44, and its output signal obtains the shape which repeats an inversion between the first level and the second level. When the output signal Vy of the comparator 44 is inputted to an average value circuit 14, an average output voltage signal Vy (avg.) is obtained in an output terminal T0. For instance, when a flow rate, and a temperature difference between a set temperature and a feed water temperature are denoted as L and DEG, respectively, Vy (avg.)proportional L.DEG is obtained, and the average output voltage signal Vy (avg.) is proportional to the product of the flow rate L and the temperature difference DEG.

Description

【発明の詳細な説明】 本発明は乗算回路の改良に関し、殊に、q−いに独立に
可変する周波数と直流電圧の積に比例した出力を得る乗
算回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a multiplier circuit, and more particularly to a multiplier circuit that obtains an output proportional to the product of a q-independently variable frequency and a direct current voltage.

入力されてくる周波数と直流電圧の積を取ってこれに比
例した出力信号を得る必要は、例えば瞬間型給湯機や湯
沸器の燃焼量制御に見ることができる。
The need to obtain an output signal proportional to the product of the input frequency and DC voltage can be seen, for example, in the combustion amount control of instantaneous water heaters and water heaters.

従来のこの種給湯装置において、使用者が設定した設定
温度に対し、実際に出湯される湯の温度、即ち給湯温度
をできるだ(1等しく保つように制御するための最も基
本的な方法としては、k6’lJJ温度を検出し、これ
を設定温度と比較して所定の演算を成し、その結果の信
号値に基いて燃料の供給路中に配した比例制御電磁−f
tを制御する)j法があった。
In conventional water heaters of this type, the temperature of the hot water actually dispensed, that is, the hot water temperature, can be controlled to be equal to the set temperature set by the user. , k6'lJJ temperature is detected and compared with the set temperature to perform a predetermined calculation, and based on the resulting signal value, a proportional control electromagnetic-f placed in the fuel supply path is activated.
There was a j method to control t.

然し、このように唯単に給湯温度と設定温度どの差にの
み基いての制御方式であると、給湯y龜が増加し、給湯
装置の給湯能力を越えた時には給湯温度は大幅に低下す
るし、また給湯量が急激に変動すると給湯温度も大幅に
変動する等の欠点があリ、殊にシャワー等を使用してい
る時には危険な状jlJにもなりかねなかった。
However, if the control method is based solely on the difference between the hot water supply temperature and the set temperature, the hot water supply temperature will increase and when the hot water supply capacity of the water heater is exceeded, the hot water supply temperature will drop significantly. Further, there is a drawback that if the amount of hot water to be supplied changes rapidly, the temperature of the hot water to be supplied also fluctuates considerably, which can lead to a dangerous situation, especially when using a shower or the like.

そこで、この欠陥を解消するために、単に給湯温度を監
視するのみに留めず、給湯装置に入ってくる水の流量及
び温度、即ち給水量及び給水温の両値を別途に検出する
ようにし、これら両値から燃焼量=(給水量)X(設定
温度−給水温)を演算し、この演算結果が当該給湯装置
の給湯能力を越えないように給湯路中に別途に設けた弁
の開閉角を制御し、給湯温度の低下や変動を少なくしよ
うどした製品が市場に出回り始めている。尚、給水;1
:と給湯量は実質的に同じであるから上記式において給
水量は給湯量と読み代えても良い。
Therefore, in order to eliminate this defect, instead of simply monitoring the hot water temperature, the flow rate and temperature of the water entering the water heater, that is, the values of both the water supply amount and the water supply temperature, are separately detected. From these two values, the combustion amount = (water supply amount) Products that attempt to control water temperature and reduce the drop and fluctuation of hot water temperature are beginning to appear on the market. In addition, water supply; 1
: and the amount of hot water supplied are substantially the same, so in the above equation, the amount of water supplied may be read as the amount of hot water supplied.

然して、このような製品においては、上記給湯、Iii
、乃至給水量の検出には一般に速度対周波数変換型の検
出器が用いられ、一方、給水温の検出には一般の温度検
出と同様にサーミスタ等の温度対抵抗値乃至電圧変換型
のものが用いられる。従って、冒頭に述べたように、こ
の種の燃焼量制御回路装置において周波数と直流電位の
乗算回路が必要とされるのである。
However, in such products, the above-mentioned hot water supply, III
A speed-to-frequency conversion type detector is generally used to detect the water supply amount, while a temperature-to-resistance value or voltage conversion type detector such as a thermistor is used to detect the water supply temperature, similar to general temperature detection. used. Therefore, as mentioned at the beginning, a frequency and DC potential multiplier circuit is required in this type of combustion amount control circuit device.

本発明は、このような乗算回路を廉価且つ簡単で調整も
容易なものとすることをその目的として成されたもので
あるが、ここで従来例に就き説明をして置く。
The present invention has been accomplished with the object of making such a multiplication circuit inexpensive, simple, and easy to adjust. Here, a conventional example will be explained.

第1図は給湯装置の装置的な概略を示しているが、廓か
すべき水は給水口lから本装置内に供給され、熱交換器
2を通って給湯口3から給湯されて行く。燃料としての
この場合のガスはガス配管4からガス比例制御電磁弁5
を通すバーナ6に至り、熱交換器2を加熱する。給水量
は給水量センサ9で検出され、一般にパルス周波数の形
に変換される。一方、給水温は上記したサーミスタ等の
抵抗値乃至電圧値変換型の給水温センサ11で検出され
る。また、実際に出湯されていく湯の温度は給湯量セン
サ7で検出される。
FIG. 1 shows a schematic diagram of a hot water supply apparatus. Water to be circulated is supplied into the apparatus from a water supply port 1, passes through a heat exchanger 2, and is supplied from a hot water supply port 3. The gas in this case as fuel is supplied from the gas pipe 4 to the gas proportional control solenoid valve 5.
The heat exchanger 2 is heated by the heat exchanger 2. The water supply amount is detected by a water supply amount sensor 9 and is generally converted into the form of a pulse frequency. On the other hand, the water supply temperature is detected by the water supply temperature sensor 11 of the resistance value to voltage value conversion type, such as the above-mentioned thermistor. Further, the temperature of the hot water that is actually dispensed is detected by a hot water supply amount sensor 7.

燃焼量制御回路8では既に述べた制御態様に即して制御
信号を発し、ガス比例電磁制御弁5及び給湯路中に設け
た給湯量調整弁10を制御する。
The combustion amount control circuit 8 issues a control signal according to the control mode already described, and controls the gas proportional electromagnetic control valve 5 and the hot water supply amount adjusting valve 10 provided in the hot water supply path.

然して、燃焼量制御回路8中にあって上述した従来の改
良点に係る乗算部分の構成は第2図示のようになってい
る。
However, the structure of the multiplication part in the combustion amount control circuit 8, which is related to the above-mentioned conventional improvements, is as shown in the second figure.

電源13から電力を供給されている給水量センサ9の出
力パルスは単安定マルチバイブレータ12で波形を整形
され、単一の幅の安定な出力パルスとされる。このパル
ス周波数F (Hz)は従って給水量L(17分)に比
例する。
The output pulse of the water supply amount sensor 9, which is supplied with power from the power source 13, is shaped into a waveform by the monostable multivibrator 12, and is made into a stable output pulse with a single width. This pulse frequency F (Hz) is therefore proportional to the water supply amount L (17 minutes).

Focl、 ・・・・・・(1) このパルス周波数信号は後続の平均値回路14に人力さ
れ、時間的に平均された直流電位信号Vlとされる。当
該平均値回路14の構成は通常の良く見られる積分をの
構成であって、時定数要素としての抵抗23とキャパシ
タ24を有する積分部分の演算増幅器25とその出力信
号電位を適当に増幅する増幅部の演算増幅器28とから
成っている。
Focl, (1) This pulse frequency signal is manually input to the subsequent average value circuit 14, and is made into a temporally averaged DC potential signal Vl. The configuration of the average value circuit 14 is a common integration configuration, and includes an operational amplifier 25 as an integral part having a resistor 23 and a capacitor 24 as time constant elements, and an amplifier that appropriately amplifies the output signal potential. It consists of an operational amplifier 28.

従って、この平均値回路出力電圧v1は上記入力パルス
に比例し、勿論、流量にも比例する。
Therefore, this average value circuit output voltage v1 is proportional to the input pulse and, of course, also proportional to the flow rate.

VlocF ・−−−−−(2) VlocL −−・−−−(3) この出力電圧v1は、次いでアナログ乗算IC32の一
人力■に入力される。
VlocF --- (2) VlocL --- (3) This output voltage v1 is then input to the analog multiplier IC 32.

一方、使用者が設定した設定温度と給水温センサ11の
検出した給水温の差は温度差検出回路30にて検出され
て直流電圧に変化されて出力され、アナログ乗算IC3
2の他人力■に与えられる。この電圧をVdeg、設定
温度と給水温の温度差をDEC、とすると、当然、次式
が満たされてる。
On the other hand, the difference between the set temperature set by the user and the feed water temperature detected by the feed water temperature sensor 11 is detected by the temperature difference detection circuit 30, changed to a DC voltage, and outputted.
2. It is given to the power of others ■. Assuming that this voltage is Vdeg and the temperature difference between the set temperature and the water supply temperature is DEC, the following equation is naturally satisfied.

Vdeg父DEG・・・・・・(4) 尚、この(4)式における比例定数は実効的にアナログ
乗算ICのゲインを定めるポテンショ・メータ(29,
31)により定まる。
Vdeg father DEG (4) Note that the proportional constant in equation (4) is the potentiometer (29,
31).

アナログ乗算1032には周知のようにオフセント調整
用の可変抵抗器群33’、34.35等が設けられるが
、これ等を適当に調整することにより、当該アナログ乗
算IC32の出力端子TOには内入力端子への印加電圧
の積に比例した出力電圧Vxが現れる。
As is well known, the analog multiplier 1032 is provided with a group of variable resistors 33', 34, 35, etc. for off-cent adjustment, and by appropriately adjusting these, the output terminal TO of the analog multiplier IC 32 can be An output voltage Vx appears that is proportional to the product of the voltages applied to the input terminals.

VxccVdeg−Vl −−−・・−(5)従って、
制御信号出力端子Toに生ずる電圧Vzは既述の(3)
、(4)式から給水量(給湯量)Lと設定温度と給水温
度との温度差DECに比例したものとなる。
VxccVdeg-Vl ---...-(5) Therefore,
The voltage Vz generated at the control signal output terminal To is as described in (3) above.
, (4), it is proportional to the water supply amount (hot water supply amount) L and the temperature difference DEC between the set temperature and the water supply temperature.

VzecL−DEG −−−・−−(8)このようにし
て目的の信号が得られたならば、適当に演算増幅器36
を介する等して適当な電圧値範囲にこの信号を加工し、
先に述べたような制御に用いることができる。
VzecL-DEG ---・--(8) Once the desired signal is obtained in this way, use the operational amplifier 36 as appropriate.
Process this signal to an appropriate voltage value range through
It can be used for control as described above.

このような従来回路においては、アナログ乗算TOを用
いることにより、そのオフセット調整やゲイン調整は可
変抵抗器で行なうため、演算精度が比較的良好で、部品
点数も少ない等の長所があるが、当該精度を出すための
可変抵抗器調整作業が極めて厄介であり、また何分にも
アナログ乗算ICの単価が高いという欠点を有している
In such conventional circuits, by using an analog multiplication TO, the offset adjustment and gain adjustment are performed with variable resistors, so the calculation accuracy is relatively good and the number of parts is small. The disadvantage is that the work of adjusting the variable resistor to achieve accuracy is extremely troublesome, and the unit cost of the analog multiplication IC is extremely high.

本発明は先にも述べたが、こうした従来回路の欠点を解
消するために成されたもので、高度な制御能力を持つこ
の種部品に必要な乗算回路自体を廉価なものとし、各種
応用製品の普及を図るのみならず、面倒な調整作業を極
力回避できる回路構成を提供せんとするものである。
As mentioned earlier, the present invention was made to eliminate the drawbacks of these conventional circuits, and it makes the multiplication circuit itself necessary for this type of component with advanced control capabilities inexpensive, and it can be used in various applied products. The objective is not only to popularize the system, but also to provide a circuit configuration that can avoid troublesome adjustment work as much as possible.

第3図は本発明の望ましい一実施例を上記してきた給湯
装置の燃焼量制御に応用して示している。第1図及び第
2図中と同一の符号は当該従来例中の対応する構成子と
同一乃至機能的に同等の構成子を示している。
FIG. 3 shows a preferred embodiment of the present invention applied to the combustion amount control of the water heater described above. The same reference numerals as in FIGS. 1 and 2 indicate components that are the same or functionally equivalent to the corresponding components in the conventional example.

本発明の回路では、給水量センサ9の出力パルスに同期
した単一幅の出力パルスを発生ずる単安定マルチバイブ
レータ12の出力に対して同期的に一サイクル毎の動作
をし、当該−サイクル中にあって時間に対して振巾を変
化させる電圧走査回路43を有することに一つの特徴が
ある。例えばこうした回路の代表としては砺波発生回路
等がある。即ち、トリガされる度に出力電圧を成る基準
電位から別の電位に向けて予定の速度で上yl乃至下降
させて行く回路である。本発明のこの実施例においても
簡単のためにこの回路を用いるものとする。
In the circuit of the present invention, the circuit operates every cycle synchronously with respect to the output of the monostable multivibrator 12 that generates a single-width output pulse synchronized with the output pulse of the water supply amount sensor 9. One of the features is that it includes a voltage scanning circuit 43 that changes the amplitude with respect to time. For example, a typical example of such a circuit is a tornado wave generation circuit. That is, it is a circuit that increases or decreases the output voltage from a reference potential to another potential at a predetermined speed every time it is triggered. This circuit will also be used in this embodiment of the invention for simplicity.

第4図は第3図示回路の要部波形を示しているが、同図
(A)は給水量センサ9で検出される給水量信号S1の
波形を示しており、同図(B)は単安定マルチバイブレ
ータ12により十分狭いトリガパルス形に変換された、
但し周波数情報は給水量センサのそれと同一の信号S2
の波形を示している。
FIG. 4 shows the waveform of the main part of the circuit shown in the third diagram, while (A) shows the waveform of the water supply amount signal S1 detected by the water supply amount sensor 9, and (B) shows the waveform of the water supply amount signal S1 detected by the water supply amount sensor 9. converted into a sufficiently narrow trigger pulse shape by the stable multivibrator 12,
However, the frequency information is the same signal S2 as that of the water supply amount sensor.
The waveform is shown.

然して、先に述べた砺波発生回路43の出力信号S3の
波形は、この実施例の場合、単安定マルチバイブレータ
12の出力パルスの各−発毎にトリガされて基準電位零
から成る特定電位Voまで直線的に電圧振111を走査
、可変させる形のものとなっている。
Accordingly, in this embodiment, the waveform of the output signal S3 of the above-mentioned tornado wave generation circuit 43 is triggered every time the output pulse of the monostable multivibrator 12 is generated, and reaches a specific potential Vo consisting of a reference potential of zero. It is of a type that linearly scans and varies the voltage oscillation 111.

この信号S3は、先に述べた従来例と同様で良い温度差
検出回路30の発生する直流電圧Vdegと比較器44
にて比較され(第4図(G)参照)、従って比較器44
の出力信号波形Vyは第4図(II)に示すようにその
時々の電圧Vdegに応じて第一レベルと第ニレベルと
の間で反転を繰返す形のものとなる。この場合、第一レ
ベルは零電位であり第ニレベルは電圧vOである。
This signal S3 is connected to the DC voltage Vdeg generated by the temperature difference detection circuit 30, which may be similar to the conventional example described above, and the comparator 44.
(see FIG. 4(G)), so the comparator 44
As shown in FIG. 4 (II), the output signal waveform Vy of is inverted repeatedly between the first level and the second level depending on the voltage Vdeg at each time. In this case, the first level is zero potential and the second level is voltage vO.

同様に第4各図から顕かなように次のような関係が導け
る。
Similarly, the following relationships can be derived from each figure in Figure 4.

単安定マルチバイブレータ12の発生する出力パルスの
周期をtとすると、この周期は入力信号パルスの周波数
F、ひいては流量りに対して逆比例の関係になる。
Assuming that the period of the output pulse generated by the monostable multivibrator 12 is t, this period is inversely proportional to the frequency F of the input signal pulse, and thus to the flow rate.

tc−:l/F ・・・・・・(7) tOc1/L ・−−−−・(8) 一方、給水温度と設定温度との温度差DECが変動する
に伴って温度差検出回路30の発生する直流電圧Vde
gが変動すれば、第4図(C)から顕かなように比較器
44の反転閾値Vdegが変動することになるからその
出力信号vyのパルス@T1は当該温度差及びその変換
電圧に比例したものとなる。
tc-:l/F (7) tOc1/L (8) On the other hand, as the temperature difference DEC between the water supply temperature and the set temperature changes, the temperature difference detection circuit 30 DC voltage Vde generated by
If g fluctuates, the inversion threshold Vdeg of the comparator 44 will fluctuate as is obvious from FIG. Become something.

Tlcl:VdegocDEG・・・・・・(8)従っ
て、比較器44の出力信号VTを平均値回路14に入力
してその時間平均を採ると、出力端子Toに現れる当該
平均出力電圧信号Vy(avg、)は入力信号vyのピ
ーク値を先のようにVoとして次式で表せるものとなる
Tlcl: VdegocDEG (8) Therefore, when the output signal VT of the comparator 44 is input to the average value circuit 14 and its time average is taken, the average output voltage signal Vy (avg , ) can be expressed by the following equation, with the peak value of the input signal vy being Vo as described above.

・・・・・・(lO) この(10)式に先に述べた(8) 、 (9)式を代
入すれば、 Vy(avg、)oc L −DEC−−・−−(11
)となって、従来例回路方式に即してめた先掲の(6)
式と同様の結果が得られる。即ち、負荷RLの両端に現
れる信号Vy(avg、)は先の制御信号Vxと同一の
制御情報を持つことになる。
......(lO) By substituting the above-mentioned equations (8) and (9) into this equation (10), we get Vy(avg,)oc L -DEC--・--(11
), and the above (6) was created based on the conventional example circuit system.
A similar result is obtained as in Eq. That is, the signal Vy(avg,) appearing at both ends of the load RL has the same control information as the previous control signal Vx.

この実施例においては給湯装置における燃焼量制御のた
めに必要な乗算部分に本発明の乗算回路を適用したが、
センサ9の発するパルス周波数信号をSlを一般的にそ
の値が変動する周波数信号として考え、温度差検出回路
30の発する直流電圧信PyVdegをこれまた一般的
にその値が変動する直流電圧信号として取扱えば、本発
明の乗算回路は互いに独立に変動する周波数と直流電圧
の積に比例した出力を高価で調整の難しいアナログ乗算
ICを用いずに実現できる回路であることが分かる。
In this embodiment, the multiplication circuit of the present invention was applied to the multiplication part necessary for controlling the combustion amount in the water heater.
The pulse frequency signal Sl generated by the sensor 9 is generally treated as a frequency signal whose value fluctuates, and the DC voltage signal PyVdeg generated by the temperature difference detection circuit 30 is also generally treated as a DC voltage signal whose value fluctuates. For example, it can be seen that the multiplier circuit of the present invention is a circuit that can realize an output proportional to the product of a frequency and a DC voltage that vary independently from each other without using an analog multiplier IC that is expensive and difficult to adjust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は互いに変動する周波数と直流電圧の積に比例し
た出力を得ることが必要な場合の一例としての給湯装置
における燃焼量制御の装置的な概略構成図、第2図は第
1図示装置に従来用いられている燃焼量制御回路の要部
の概略構成図、第3図は本発明の一実施例を燃焼量制御
回路に応用した場合の概略構成図、第4図は第3図示回
路の動作説明図、である。 図中、1は給水口、2は熱交換器、3は給湯口、5はガ
ス比例制御電磁弁、6はバーナ、7は給湯温センサ、8
は燃焼量制御回路、9は給水量センサ、10は流量制御
弁、11は給水量センサ、12は単安定マルチパイブレ
ーク、14は平均値回路、32はアナログ乗算IC14
3は電圧走査回路、44は比較器、である。
Fig. 1 is a schematic diagram of a device for controlling the amount of combustion in a water heater as an example of a case where it is necessary to obtain an output proportional to the product of a mutually varying frequency and a DC voltage, and Fig. 2 is a diagram of the device shown in Fig. 1. FIG. 3 is a schematic configuration diagram of the main part of a combustion amount control circuit conventionally used in a combustion amount control circuit, FIG. 3 is a schematic configuration diagram when an embodiment of the present invention is applied to a combustion amount control circuit, and FIG. This is an explanatory diagram of the operation. In the figure, 1 is a water supply port, 2 is a heat exchanger, 3 is a hot water supply port, 5 is a gas proportional control solenoid valve, 6 is a burner, 7 is a hot water supply temperature sensor, 8
9 is a combustion amount control circuit, 9 is a water supply amount sensor, 10 is a flow rate control valve, 11 is a water supply amount sensor, 12 is a monostable multi-pie break, 14 is an average value circuit, 32 is an analog multiplication IC 14
3 is a voltage scanning circuit, and 44 is a comparator.

Claims (1)

【特許請求の範囲】 周波数信号と直流電圧信号との再入力を受け、上記周波
数と直流電圧の積に比例した出力を生ずる乗算回路であ
って、 」二記周波数信号に同期して該周波数信号の各サイクル
毎に一定幅のパルス信号を出力する単安定マルチバイブ
レータと、 」−記単安定マルチパイブレータの出力パルスの−ff
i宛が入力する度に出力電圧を一定周期で走査する電圧
走査回路と、 該電圧走査回路の出力電圧と上記入力直流電圧とを比較
する比較器と、 該比較器出力を積分する平均値回路と、から成り、上記
平均値回路の出力に、上記周波数と直流電圧との積に比
例した出力を得ることを特徴どする乗算回路。
[Scope of Claims] A multiplier circuit that receives a frequency signal and a DC voltage signal again and generates an output proportional to the product of the frequency and DC voltage, comprising: ``a multiplier circuit that receives a frequency signal and a DC voltage signal again, and generates an output proportional to the product of the frequency signal and the DC voltage; a monostable multivibrator that outputs a pulse signal of a constant width for each cycle; and -ff of the output pulse of the monostable multivibrator.
A voltage scanning circuit that scans the output voltage at a constant cycle every time address i is input; a comparator that compares the output voltage of the voltage scanning circuit with the input DC voltage; and an average value circuit that integrates the comparator output. A multiplication circuit characterized in that it obtains an output proportional to the product of the frequency and the DC voltage from the output of the average value circuit.
JP14510783A 1983-08-10 1983-08-10 Multiplying circuit Granted JPS6037077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14510783A JPS6037077A (en) 1983-08-10 1983-08-10 Multiplying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14510783A JPS6037077A (en) 1983-08-10 1983-08-10 Multiplying circuit

Publications (2)

Publication Number Publication Date
JPS6037077A true JPS6037077A (en) 1985-02-26
JPS6156549B2 JPS6156549B2 (en) 1986-12-03

Family

ID=15377537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14510783A Granted JPS6037077A (en) 1983-08-10 1983-08-10 Multiplying circuit

Country Status (1)

Country Link
JP (1) JPS6037077A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151347A (en) * 1978-05-19 1979-11-28 Sanyo Electric Co Ltd Division circuit
JPS5659365A (en) * 1979-10-17 1981-05-22 Mitsubishi Electric Corp Arithmetic circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151347A (en) * 1978-05-19 1979-11-28 Sanyo Electric Co Ltd Division circuit
JPS5659365A (en) * 1979-10-17 1981-05-22 Mitsubishi Electric Corp Arithmetic circuit

Also Published As

Publication number Publication date
JPS6156549B2 (en) 1986-12-03

Similar Documents

Publication Publication Date Title
US4162379A (en) Apparatus for deriving a feedback control signal in a thermal system
US4223207A (en) Apparatus for controlling the power supplied to a load
KR850002303A (en) Thermal system for measuring liquid levels
US3365654A (en) Circuits for controlling electrical power
US5876120A (en) Apparatus and method for measuring food temperature in microwave oven
US5150611A (en) Flow sensor
JPS6037077A (en) Multiplying circuit
JPH0820910B2 (en) Piezoelectric element applied sensor
KR900003967B1 (en) Cooking method of electronic range
US4191512A (en) Apparatus and method for controlling pressure ratio in high vacuum vapor pumps
JPH09306637A (en) Heater control device
US5317910A (en) Process for determining a flow rate of a fluid
US4263501A (en) Variable proportioning control apparatus
KR0119572B1 (en) Method for control of electric rice cooker
JPH0220607Y2 (en)
JPS6021475B2 (en) High frequency heating device
JPH0421105B2 (en)
GB2102564A (en) Pyrometer signal processing
JPS6143659B2 (en)
JPH03286925A (en) Cooking device
JP2572491B2 (en) Microwave oven finish detection device
JPS6122804B2 (en)
SU859937A1 (en) Rms ac voltage value to dc code converter
JPH0538551Y2 (en)
JPH058331B2 (en)