JPS6036910A - Optical splitting and synthesizing device for optical fiber gyroscope - Google Patents

Optical splitting and synthesizing device for optical fiber gyroscope

Info

Publication number
JPS6036910A
JPS6036910A JP58144670A JP14467083A JPS6036910A JP S6036910 A JPS6036910 A JP S6036910A JP 58144670 A JP58144670 A JP 58144670A JP 14467083 A JP14467083 A JP 14467083A JP S6036910 A JPS6036910 A JP S6036910A
Authority
JP
Japan
Prior art keywords
optical fiber
laser beam
semi
prism
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58144670A
Other languages
Japanese (ja)
Inventor
Hisayuki Suganuma
菅沼 久幸
Hidehiko Akatsuka
赤塚 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58144670A priority Critical patent/JPS6036910A/en
Publication of JPS6036910A publication Critical patent/JPS6036910A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To interfere efficiently the respective laser luminous flux parts emitted respectively from both open ends of an optical fiber by providing the 1st polarizing beam splitter provided with a translucent film and the 2nd polarizing beam splitter and placing said splitters to face both open ends of the optical fiber. CONSTITUTION:An optical fiber gyroscope 10 has an optical fiber 11, a laser light source 12 and a detecting circuit 13. An optical splitting and synthesizing device 20 is interposed between the fiber 11 and the source 12. Biconvex lenses 21, 22 are provided to face respective both open ends 11a, 11b. The device 20 has prisms 23-26 formed to the same triangular shape. The base 24c is superposed and fixed via a translucent film g1 on the base 23c and the base 26c to the base 25c via a translucent film g2. The side face 25a is superposed and adhered to the side face 24b by means of a transparent adhesive agent in such a way that respective ridges 24a, 25d attain about 45 deg. angle with each other.

Description

【発明の詳細な説明】 本発明は光フアイバジャイロスコープに係り、特に光フ
アイバジャイロスコープを構成スるコイル状の光ファイ
バとレーザ光源との間に介装するに適した光フアイバジ
ャイロスコープのための光分割合成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber gyroscope, and particularly to an optical fiber gyroscope suitable for being interposed between a coiled optical fiber constituting the optical fiber gyroscope and a laser light source. This invention relates to a light splitting and synthesizing device.

従来、この皿の光分割合成装置としては、例えハ、ハー
フミラ−があるが、このハーフミラ−においては、レー
ザ光源からのレーザ光束の透過し易い偏光面とレーザ光
束を反射し易い偏光面とが互いに角度を異にしている。
Conventionally, as a light splitting/synthesizing device for this dish, there is a half mirror, for example, but in this half mirror, there is a polarization plane that easily transmits the laser beam from the laser light source and a polarization plane that easily reflects the laser beam. They are at different angles.

従って、レーザ光源からのレーザ光来がハーフミラ−の
反射透過作用のもとに第1と第2のレーザ光東部として
光フアイバ内にその第1と第2の開口端部からそれぞれ
入射した後これら第1と第2の開口端部からそれぞれ出
射する第2と第1のレーザ光束部がハーフミラ−に達し
たとき、第1出創レーザ光東部がハーフミラ−を透過す
る部分と、第2出躬V−ザ光東部がハーフミラ−により
反射される部分とが、その各偏光面の差異に基き、互い
に部分的にしか干渉し合わないという不具合が生じる。
Therefore, after the laser beam from the laser light source enters the optical fiber from the first and second opening ends as the first and second laser beams under the reflection-transmission action of the half mirror, these beams are When the second and first laser beam parts emitted from the first and second opening ends respectively reach the half mirror, the first part of the first generated laser beam passes through the half mirror, and the second part of the laser beam passes through the half mirror. A problem arises in that the eastern part of the V-the light and the part reflected by the half mirror only partially interfere with each other due to the difference in their respective planes of polarization.

また、光ファイバとして従来から採用されている単一モ
ードファイバにおいては、このファイバ内を各レーザ光
東部が伝搬している間にこれら各レーザ光東部の偏光状
態が、ファイバの曲率、周囲温度の変化、振動等の外部
擾乱により乱れて時間と共に変化し、その結果、ファイ
バ内を互いに逆方向に伝搬する各レーザ光東部の実効的
光路長に差異が生じるという不具合がある。
In addition, in single-mode fibers that have been conventionally used as optical fibers, while the eastern parts of each laser beam propagate within the fiber, the polarization state of each eastern part of each laser beam changes depending on the curvature of the fiber and the ambient temperature. There is a problem in that the effective optical path lengths of the respective laser beams propagating in opposite directions within the fiber differ as a result of disturbances caused by external disturbances such as vibrations and vibrations.

本発明はこのようなことに対処してなされたもので、そ
の目的とするところは、光ファイバの両端開口部からそ
れぞれ出射する各レーザ光東部を効率よく干渉させるよ
うにした光フアイバジャイロスコープのための光分割合
成装置を提供することにある。
The present invention has been made in response to these problems, and its purpose is to provide an optical fiber gyroscope that efficiently interferes the eastern parts of each laser beam emitted from the openings at both ends of the optical fiber. An object of the present invention is to provide a light splitting and synthesizing device for the purpose of the present invention.

かかる目的の達成にあた9、本発明の構成上の特徴は、
光フアイバジャイロスコープにおケルコイル状の光ファ
イバとレーザ光源との間に介装される光分割合成装置に
おいて、前記レーザ光源に対向しその光軸に対し約45
°にて交叉する半透膜を備えた第1偏光ビームスブリツ
クと、この第1偏光ビームスプリツタの後方に配置され
て当該第14m光ビームスプリッタを前記光軸を軸とし
てそのまま約45°回転させたときこの第1偏光ビーム
ヌプリツタの半透膜が前記光軸との間に形成する空間的
位置関係に一致するように前記光軸に交叉する半透膜を
備えた第2偏光ビームスプリツタとを設け゛、かつこの
第2偏光ビームヌプリツタの半透膜の両表面をそれぞれ
前記光ファイバの両開口端部に対向させるようにしたこ
とにある。
In order to achieve this object, the structural features of the present invention are as follows:
In an optical fiber gyroscope, a light splitting/synthesizing device is installed between a Kelcoil-shaped optical fiber and a laser light source, which faces the laser light source and is located at a distance of about 45 mm with respect to its optical axis.
a first polarizing beam splitter having a semi-transparent film that intersects at an angle of 45°; and a 14m optical beam splitter arranged behind the first polarizing beam splitter, which rotates the optical axis by approximately 45°. a second polarizing beam splitter, the second polarizing beam splitter having a semi-transparent film intersecting the optical axis so as to match the spatial relationship formed between the semi-transparent film of the first polarizing beam splitter and the optical axis when The optical fiber is provided with a vine, and both surfaces of the semi-transparent film of the second polarizing beam nullifier are arranged to face the opening ends of the optical fiber.

しかして、このように本発明を構成したことによシ、前
記レーザ光束が直線偏光面或いは円偏光dを有すれば、
前記レーザ光束が直線偏光面を維持しつつ前記第1偏光
ビームスプリツタをその半透膜を通り直進透過して前記
第2偏光ビームスプリツタに入射し、このようにこの第
2偏光ビームヌプリソタに入射したレーザ光束が、当該
第2偏光ビームスプリツタの半透膜にて互いに直角な直
線偏光面をそれぞれ有する二つのレーザ光束に分割され
、これら面分割レーザ光束の一方が前記第2偏光ビーム
ヌプリンタをその半透膜を通フそのまま直進透過して前
記光フアイバ内にその一開口端部から入射し、前記面分
割レーザ光束の他方が前記第2偏光ビームヌプリツタの
半透膜にて前記一方の分割レーザ光束に対し直角に反射
されて前記第2偏光スプリツタを透過して前記光フアイ
バ内にその他開口端部から入射し、前記各分割レーザ光
束が前記光フアイバ内にて互いに反対方向に伝搬した後
これら面分割レーザ光束の一方及び他方が前記光ファイ
バの他開口端部及び−開口端部からそれぞれ出射して前
記第2偏光ビームメプリノタ内にその半透膜の各表面に
向けて入射し、このように入射した前記一方の分割レー
ザ光来が前記第2偏光ビームヌプリツタの半透膜にて直
角に反射されてこの第1偏光ビームスプリツタ内にその
半透膜に向けて直線偏光面を有する修正分割レーザ光束
として入射するとともに、前記第2偏光ビームスデリソ
タ内に入射した前記他方の分割レーザ光束が第2偏光ビ
ームヌプリソタの半透膜を通りそのまま直進し前記修正
分割レーザ光束の直線偏光面と直交する直線偏光面を備
えた修正分割レーザ光束として前記第1偏光ビームスプ
リツタ内にその半透膜に向けて入射し、このように第1
偏光ビームスプリンタ内に入射した両修正分割レーザ光
束が当該第1偏光ビームヌプリソクの半透膜にて共に分
割反射されてこの第1偏光ビームスプリンタから互いに
同一の直線偏光面を有する検出レーザ光束として出射す
るので、これら雨検出レーザ光束が、その同−直線偏光
面及び前記光ファイバからの両出射分割レーザ光束の位
相差に基き、互いに有効に効率よく干渉し合う高精度の
安定した干渉光として得られ、その結果かかる干渉光の
強度を利用すれば、光ファイバの角速度を常に精度のよ
い安定した値としてめることができる。また、前記光フ
ァイバから出射する面分割レーザ光束に上述した外部擾
乱に基〈偏光面の乱れが生じていても、面分割レーザ光
束が、前記第2偏光ビームヌプリツタにより、各所定の
直線偏光面を有する前記修正分割レーザ光束に修正され
るので、前記干渉光が上述した偏光面の乱れに基く実効
的光路長差の影響を受けることもない。
Therefore, by configuring the present invention in this way, if the laser beam has a linearly polarized plane or a circularly polarized light d,
The laser beam passes straight through the first polarized beam splitter through its semi-transparent film while maintaining a linearly polarized plane, and enters the second polarized beam splitter, and thus the second polarized beam splitter The laser beam incident on the second polarizing beam splitter is split into two laser beams each having a linear polarization plane perpendicular to each other by the semi-transparent film of the second polarizing beam splitter, and one of these plane-splitting laser beams becomes the second polarizing beam. The beam is transmitted straight through the semi-transparent membrane of the polarizing beam printer and enters the optical fiber from one opening end thereof, and the other side of the surface-splitting laser beam passes through the semi-transparent membrane of the second polarizing beam beam printer. The one split laser beam is reflected at right angles, passes through the second polarization splitter, and enters the optical fiber from the other open end, and each of the split laser beams is directed in opposite directions within the optical fiber. After propagating, one and the other of these plane-splitting laser beams exit from the other open end and the -open end of the optical fiber, respectively, and enter the second polarized beam meplinator toward each surface of its semi-transparent membrane. The one of the split laser beams incident in this way is reflected at right angles by the semi-transparent film of the second polarizing beam splitter, and enters the first polarizing beam splitter in a straight line toward the semi-transparent film. The other divided laser beam enters as a modified split laser beam having a plane of polarization, and the other split laser beam enters the second polarization beam nulli-sota, passes straight through the semi-transparent membrane of the second polarization beam nulli-sota, and passes straight through the modified split laser beam. The first polarized beam splitter enters the first polarized beam splitter as a modified split laser beam with a linear polarization plane orthogonal to the linear polarization plane of the beam, and thus the first
Both modified split laser beams entering the polarizing beam splinter are split and reflected by the semi-transparent film of the first polarizing beam splitter, and exit from the first polarizing beam splinter as a detection laser beam having the same linear polarization plane. These rain detection laser beams effectively and efficiently interfere with each other as highly accurate and stable interference light based on the same linear polarization plane and the phase difference between the two emitted split laser beams from the optical fiber. By using the resulting intensity of the interference light, the angular velocity of the optical fiber can always be determined as a highly accurate and stable value. In addition, even if the surface-split laser beam emitted from the optical fiber is disturbed in the plane of polarization due to the external disturbance described above, the surface-split laser beam is converted into each predetermined linearly polarized beam by the second polarization beam nupritzer. Since the interference light is corrected into the corrected split laser beam having a plane, the interference light is not affected by the effective optical path length difference based on the above-mentioned disturbance of the polarization plane.

以下、本発明の一実施例を図面により説明すると、第1
図は、本発明が適用された光フアイバジャイロスコープ
10を示している。光フアイバジャイロスコープ10は
、光ファイバ11と、レーザ光源12と、検出回路16
とを備えてお9、光ファイバ11とレーザ光源12との
間には、本発明の要部を構成する光分割合成装置20が
介装されている。光ファイバ11はコイル状の単一モー
ドファイバからなり、この元ファイバ11の両開[口端
部11a、11bには、光分割合成装置を構成する両凸
レンズ21.22がそれぞれ対向している。レーザ光源
12はその先軸に沿い作動と同時に光分割合成装置20
に向けてレーザ光束A。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The figure shows a fiber optic gyroscope 10 to which the present invention is applied. The fiber optic gyroscope 10 includes an optical fiber 11, a laser light source 12, and a detection circuit 16.
Between the optical fiber 11 and the laser light source 12, a light splitting/synthesizing device 20, which constitutes the main part of the present invention, is interposed. The optical fiber 11 is made of a coiled single mode fiber, and biconvex lenses 21 and 22 constituting a light splitting and combining device are opposed to the biconvex end portions 11a and 11b of the original fiber 11, respectively. The laser light source 12 operates along its leading axis and at the same time the light splitting and combining device 20
Laser beam A towards.

を発する。この場合、レーザ光束A。は直線偏光面PA
O(第6図参照)を有する。
emits. In this case, the laser beam A. is the linear polarization plane PA
O (see Figure 6).

光分割合成装置20は、第1図及び第2図に示すごとく
、互いに同一の三角柱形状に形成したプリズム25,2
4,25.26を有している。プリズム26は、90°
の頂角を形成する両側面26a。
As shown in FIGS. 1 and 2, the light splitting and combining device 20 includes prisms 25 and 2 formed into the same triangular prism shape.
4,25.26. The prism 26 is 90°
Both side surfaces 26a forming an apex angle of.

23bと、前記頂角に対向する底面23cを有しており
、両側面23a、23bが前記頂角にて形成する稜23
 (1(、底面23cに平行となっている)に直交する
プリズム26の断面は二等辺三角形状となっている。か
かる場合、プリズム26の側面23.2はレーザ光源1
2からのレーザ光束Aoの進路(即ち、レーザ光源の光
軸)に直交しておυ、両側面23a、231)の稜23
dはレーザ光束A。
23b, and a bottom surface 23c opposite to the apex angle, and a ridge 23 formed by both side surfaces 23a and 23b at the apex angle.
(1 (parallel to the bottom surface 23c)) The prism 26 has an isosceles triangular cross section. In this case, the side surface 23.2 of the prism 26 is
The ridge 23 on both sides 23a, 231) is perpendicular to the course of the laser beam Ao from 2 (that is, the optical axis of the laser light source).
d is the laser beam A.

の直線偏光面PAOに対し直交する。プリズム24は、
プリズム26の両側面26a、231)、底面26c及
び稜23dにそれぞれ相当する両側面24a。
is perpendicular to the linear polarization plane PAO. The prism 24 is
Both side surfaces 24a correspond to both side surfaces 26a, 231), bottom surface 26c, and edge 23d of the prism 26, respectively.

24b、底面24C及び稜24aを有しており、このプ
リズム24の底面24cは、各校26d。
24b, a bottom surface 24C, and a ridge 24a, and the bottom surface 24c of this prism 24 has a base 26d.

24aが共に同一方向となるようにプリズム26の底面
23cに半透膜glを介し重合固着されている。
24a are polymerized and fixed to the bottom surface 23c of the prism 26 via a semi-permeable membrane GL so that they are both oriented in the same direction.

プリズム25は、プリズム24と同様に、プリズム26
の両側面23a、231)、底面23c及び稜23C1
にそれぞれ相当する両側面25/I、 25b。
Similar to prism 24, prism 25 is similar to prism 26.
Both sides 23a, 231), bottom 23c and edge 23C1
Both sides 25/I and 25b respectively correspond to .

底面25c及び稜25′dを有しており、このプリズム
25の側面25.2は、各校24ti、25cLが互い
に約45°の角度をなすように、プリズム24の側面2
41)に透明接着剤により重合接着されている。また、
プリズム26は、両プリズム24゜25と同様に、プリ
ズム26の両側面23a、 23b。
The prism 25 has a bottom surface 25c and an edge 25'd, and the side surfaces 25.2 of the prism 25 are arranged so that the respective sides 24ti, 25cL form an angle of about 45 degrees with each other.
41) with a transparent adhesive. Also,
The prism 26 has both sides 23a and 23b of the prism 26, as well as both prisms 24 and 25.

底面230及び稜23dにそれぞれ相当する両側面25
a、251)、底面25c及び稜25dを有しており、
このプリズム26の底面26Cは、各校2!5d、26
(1が共に同一方向となるようにプリズム25の底面2
5cに半透膜り2を介し重合固着されている。かかる場
合、プリズム25の側面251)は凸レンズ22を介し
光ファイバ11の開口端部111)に対向しておシ、ま
たプリズム26の側面26bは凸レンズ21を介し光フ
ァイバ11の開口端部11a’KJj向している。なお
、検出回路13は、光センサ13a及び増幅器131)
を有している。
Both side surfaces 25 correspond to the bottom surface 230 and the edge 23d, respectively.
a, 251), has a bottom surface 25c and a ridge 25d,
The bottom surface 26C of this prism 26 is
(The bottom surface 2 of the prism 25 is
5c through a semipermeable membrane 2. In such a case, the side surface 251) of the prism 25 faces the open end 111) of the optical fiber 11 through the convex lens 22, and the side surface 26b of the prism 26 faces the open end 11a' of the optical fiber 11 through the convex lens 21. I'm facing KJJ. Note that the detection circuit 13 includes an optical sensor 13a and an amplifier 131).
have.

以上のように構成した本実施例において、レーザ光源1
2からレーザ光束Ao (直線偏光面PAOを有する)
が生じると、このレーザ光束A。が、第3図に示すごと
く、プリズム26の側面23aに入射する。すると、レ
ーザ光束A。の直線偏光面PAOが両プリズム23.2
4の各校23d、 24dと直角になっているため、レ
ーザ光束A。がそのままの直線偏光面PAOを維持しつ
つ半透膜g1を直進透過しプリズム24の側面24.b
から出射してプリズム25の側面25aに入射する。つ
いで、レーザ光束Aoがプリズム25の半3fi I漢
92に達すると、両プリズム24.25の各校24d、
 25t1が互いに約45°の角度をなすため、レーザ
光束A。
In this embodiment configured as above, the laser light source 1
2 to laser beam Ao (with linear polarization plane PAO)
occurs, this laser beam A. is incident on the side surface 23a of the prism 26, as shown in FIG. Then, the laser beam A. The linear polarization plane PAO of both prisms 23.2
The laser beam A is perpendicular to the beams 23d and 24d of 4. is transmitted straight through the semi-transparent membrane g1 while maintaining the same linear polarization plane PAO, and is transmitted straight through the side surface 24 of the prism 24. b
The light exits from the beam and enters the side surface 25a of the prism 25. Next, when the laser beam Ao reaches the half 3fi I part 92 of the prism 25, each part 24d of both prisms 24.25,
25t1 make an angle of about 45° to each other, so the laser beam A.

が、半透膜92にて、直線偏光面FBIを有するレーザ
光束B1と、直線偏光面Pa+ (直線偏光面FBIに
直交する)を有するレーザ光束Pc1とにほぼ均等に分
割され、レーザ光束B1がプリズム26の側面26bに
向けて直進透過し、一方レーザ光束C1が半透膜g2に
てレーザ光束Aoの進行方向に対し直角に反射されてプ
リズム25の側面25’bに向けて直進透過する。この
ことは、両プリズム25.26及び半透膜g2が、両プ
リズム26゜24及び半透膜glとの空間的位置関係と
の関連において、直線偏光面PAoを有するレーザ光束
A。
However, the semi-transparent film 92 divides the laser beam B1 almost equally into a laser beam B1 having a linear polarization plane FBI and a laser beam Pc1 having a linear polarization plane Pa+ (orthogonal to the linear polarization plane FBI). The laser beam C1 is transmitted straight toward the side surface 26b of the prism 26, while the laser beam C1 is reflected by the semi-transparent film g2 at right angles to the traveling direction of the laser beam Ao, and is transmitted straight toward the side surface 25'b of the prism 25. This means that both prisms 25, 26 and semi-transparent membrane g2 have a linear polarization plane PAo in relation to the spatial positional relationship with both prisms 26, 24 and semi-transparent membrane gl.

を、互いに直角な各直線偏光面PBl及びPotをそれ
ぞれ有するレーザ光束Bl及びC1に分割するという偏
光ビームヌプリツタとしての強い偏光面選択性を有する
ことを意味する。
This means that it has strong polarization plane selectivity as a polarization beam nullifier in that it splits the laser beam into laser beams Bl and C1 having linear polarization planes PBl and Pot perpendicular to each other, respectively.

上述したごとく、各レーザ光束B1及びC1がそれぞれ
プリズム26の側面261)及びプリズム25の側面2
5bから出射すると、レーザ光束B。
As described above, each of the laser beams B1 and C1 is directed to the side surface 261 of the prism 26 and the side surface 2 of the prism 25, respectively.
When emitted from 5b, a laser beam B is emitted.

が、第1図に示すごとく、凸レンズ21を通り光フアイ
バ11内にてその開口端部1112から入射して光フア
イバ11内を伝搬するとともにレーザ光束C1が凸レン
ズ22を通り光フアイバ11内にその開口端部11bか
ら入射して光フアイバ11内をレーザ光束B1とは反対
方向に伝搬する。このようにして光フアイバ11内の伝
搬を終了すると、レーザ光束B1が、楕円偏光面FB2
を有するレーザ光束B2として光ファイバ11の開口端
部111)から出射して凸レンズ22を通りプリズム2
5の側面25bに入射するとともに、レーザ光束C7が
、楕円偏光面PO2を有するレーザ光束C2として光フ
ァイバ11の開口端部11aから出射して凸レンズ21
を通りプリズム26の側面26bに入射する。かかる場
合、光ファイバ11が角速度ωにて回転しているものと
すれば、両レーザ光束B2及び02間には位相差△φが
生じる。なお、両ンーザ光束”2+ 02の各楕円偏光
面PB 2 + ”C! 2の長径、短径の各方向及び
楕円率は不定である。
As shown in FIG. 1, the laser beam C1 passes through the convex lens 21, enters the optical fiber 11 from its open end 1112, and propagates inside the optical fiber 11, and the laser beam C1 passes through the convex lens 22 and enters the optical fiber 11. The light enters from the open end 11b and propagates within the optical fiber 11 in the opposite direction to the laser beam B1. When the propagation in the optical fiber 11 is completed in this way, the laser beam B1 is transferred to the elliptically polarized light plane FB2.
The laser beam B2 is emitted from the open end 111) of the optical fiber 11, passes through the convex lens 22, and enters the prism 2.
The laser beam C7 enters the side surface 25b of the optical fiber 11 as a laser beam C2 having an elliptically polarized plane PO2, and exits from the open end 11a of the optical fiber 11 and passes through the convex lens 21.
and enters the side surface 26b of the prism 26. In such a case, assuming that the optical fiber 11 is rotating at an angular velocity ω, a phase difference Δφ will occur between the two laser beams B2 and 02. In addition, each elliptical polarization plane PB 2 + "C! of both laser beams "2+02" Each direction of the major axis and minor axis of No. 2 and the ellipticity are indefinite.

上述のごとく、各レーザ光束B2及びC2がそれぞれプ
リズム25の側面251)及びプリズム26の側面26
1)に入射すると、レーザ光束B2がプリズム25内を
直進し半透膜q2にて直角に(レーザ光束A。の進行方
向とは反対方向に一致する)反射されて、直線偏光面P
B21を有するレーザ光束B21としてプリズム24の
側面24bに入射するとともに、レーザ光束C2が両プ
リズム26.25を側面261)から側面25bに向け
て直進し、直線偏光面PO21(直線偏光面PB2]に
直交する)を有するレーザ光束C21としてプリズム2
4の側面24bに入射する。
As described above, each of the laser beams B2 and C2 is directed to the side surface 251 of the prism 25 and the side surface 26 of the prism 26, respectively.
1), the laser beam B2 travels straight through the prism 25, is reflected by the semi-transparent film q2 at right angles (corresponding to the direction opposite to the direction of travel of the laser beam A), and forms a linear polarization plane P.
The laser beam C2 enters the side surface 24b of the prism 24 as a laser beam B21 having a polarization angle B21, and the laser beam C2 travels straight through both prisms 26, 25 from the side surface 261) to the side surface 25b, and becomes a linearly polarized plane PO21 (linearly polarized plane PB2). prism 2 as a laser beam C21 with
The light is incident on the side surface 24b of 4.

すると、両プリズム24.25の各校24d。Then, each school 24d of both prisms 24.25.

25(iが互いに約45°の角度をなすため、レーザ光
束B21が、半透膜9□にて、直線偏光面PB211を
有するレーザ光束B211と、直線偏光面PE212を
有するレーザ光束B2+。とにほぼ均等に分割されると
ともに、レーザ光束C21が、半透膜り、にて、直線偏
光面PC!211 (直線偏光面”B211に一致する
)を有するレーザ光束C211と、直線偏光面PO21
2(直線偏光面PB2]2に一致する)を有するレーザ
光束C212とにほぼ均等に分割される。とのことは、
両プリズム24.23及び半透膜glが、両プリズム2
5゜26及び半透膜7□との空間的位置関係との関連に
おいて、直線偏光面FB2+ (又はPC2+ )を有
するレーザ光束B21(又はC21)を、互いに直角な
各1頁線偏光面PB211(又はPO211)及びFB
2+2(又は”02+2 )を有するレーザ光束B21
1 (又はC21□)及びB212 (又は02+2 
)に分割するという偏光ビームヌプリノタとしての強い
偏光面選択性を有することを意味する。
25 (Since i forms an angle of about 45 degrees with each other, the laser beam B21 is divided into a laser beam B211 having a linear polarization plane PB211 and a laser beam B2+ having a linear polarization plane PE212 at the semi-transparent film 9□. The laser beam C21 is divided almost equally, and the semi-transparent film divides the laser beam C21 into a laser beam C211 having a linear polarization plane PC!211 (corresponding to the linear polarization plane "B211") and a linear polarization plane PO21.
2 (coinciding with the linear polarization plane PB2]2) and the laser beam C212 is almost equally divided. That means,
Both prisms 24 and 23 and semipermeable membrane gl are connected to both prisms 2
5°26 and the spatial positional relationship with the semi-transparent film 7□, the laser beam B21 (or C21) having the linear polarization plane FB2+ (or PC2+) is transferred to each one-page linear polarization plane PB211 (or PC2+) at right angles to each other. or PO211) and FB
Laser beam B21 having 2+2 (or "02+2")
1 (or C21□) and B212 (or 02+2
), meaning that it has strong polarization plane selectivity as a polarization beam controller.

上述のごとく、各レーザ光束B21.C21が共に分割
されると、両レーザ光束B212 + 0212がプリ
ズム2乙の111面23dに向けて直進透過してレーザ
光源12に向けて帰還し、一方残余の両レーザ光束B2
11 + 0211が、半透膜g1にて、レーザ光束A
As described above, each laser beam B21. When C21 is split together, both laser beams B212 + 0212 are transmitted straight toward the 111th surface 23d of the prism 2B and returned to the laser light source 12, while the remaining laser beams B2
11 + 0211 is the laser beam A at the semi-transparent membrane g1
.

の進行方向に対し直角に反射されてプリズム24の側面
24bに向けて直進透過して出射し検出回路16の光セ
ンサ13.2に入射する。かかる場合、両レーザ光束B
211及びC211の各直線偏光面が互いに一致してい
るので、両レーザ光束B211及びC2,1が前記位相
差Δφとの関連により有効に干渉し合い干渉レーザ光束
D(第1図参照)として光センサ13aに入射する。ま
た、両プリズム25.26により、各レーザ光束B2.
C2の一定の直線偏光面のみを取出しているため、偏光
面の乱れによる実効光路長差がレーザ光束の相反性によ
り確実に解消され、その結果、前記干渉レーザ光束りが
、本明細書の冒頭にて述べた外部1表乱の影響を受ける
ことなく、高精度の安定した光として得られる。
The light is reflected perpendicularly to the traveling direction of the prism 24, passes straight through toward the side surface 24b of the prism 24, is emitted, and enters the optical sensor 13.2 of the detection circuit 16. In such a case, both laser beams B
Since the respective linear polarization planes of B211 and C211 coincide with each other, both laser beams B211 and C2,1 effectively interfere with each other due to the phase difference Δφ and form an interfering laser beam D (see Fig. 1). The light enters the sensor 13a. Also, each laser beam B2.
Since only a constant linear polarization plane of C2 is taken out, the effective optical path length difference due to disturbance of the polarization plane is reliably eliminated by the reciprocity of the laser beam, and as a result, the interference laser beam beam is Highly accurate and stable light can be obtained without being affected by external disturbances as described in .

従って、かかる干渉レーザ光束りの強度Pが光センサ1
3aにより検出されれば、検出回路16が、光センサ1
6aの検出結果の増幅器131)による増幅作用のもと
に強度Pを表わす電気信号を生じるので、サグナック効
果による関係式Δφ=4πAω/λC(但し、A:光フ
ァイバ11の光路断面積、λ:レーザ光束の波長、C:
真空中の光速)及びP、(c o s2△φに基き、前
記電気信号の値Pから光ファイバ11の角速度ωを精度
のよい安定した値として常にめることができる。
Therefore, the intensity P of the interference laser beam is
3a, the detection circuit 16 detects the optical sensor 1.
Since an electric signal representing the intensity P is generated under the amplification effect of the detection result 6a by the amplifier 131), the relational expression Δφ=4πAω/λC due to the Sagnac effect (where A: optical path cross-sectional area of the optical fiber 11, λ: Wavelength of laser beam, C:
Based on the value P of the electrical signal, the angular velocity ω of the optical fiber 11 can always be determined as an accurate and stable value based on the speed of light in vacuum) and P, (cos2Δφ).

以上説明したとおり、前記実施例においては、光ファイ
バシャイロヌコープにおけるコイル状の光ファイバとレ
ーザ光源との間に介装される光分割合成装置において、
頂角90°の二等辺三角形状断面と前記頂角を形成する
両側面と前記頂角に対向する底面とを有する三角柱状に
それぞれ形成した第1.第2.第6及び第4の透明立体
を設け、前記第1透明立体をその両側面の一方にて前記
レーザ光源から生じるレーザ光束を受けるように配置し
、前記第2透明立体の両側面が形成する稜と前記第1透
明立体の両側面が形成する稜とが共に] 同一方向とな
るように前記第2透明立体をその底面にて前記第1透明
立体の底面に第1半透膜を介して重合し、前記第6透′
明立体の両側面が形成する稜と前記第2透明立体の両側
面が形成する稜とが約45°の角度をなすように前記第
6透明立体をその両側面の一方にて前記第2透明立体の
両側面の一方に重合踵前記第4透明立体の両側面が形成
する稜と前記第6透明立体の両側面が形成する稜とが共
に同一方向となるように前記第4透明立体をその底面に
て前記第6透明立体の底面に第2半透膜を介して重合し
、かつ前記第6透明立体の両側面の他方及びこれに直交
す゛る前記第4透明立体の両側面の一方を前記光ファイ
バの両端開口部にそれぞれ対向させるようにしたことに
ある。
As explained above, in the above embodiment, in the light splitting and combining device interposed between the coiled optical fiber and the laser light source in the optical fiber Shironu Coop,
The first one is each formed into a triangular prism shape having an isosceles triangular cross section with an apex angle of 90°, both side faces forming the apex angle, and a bottom face opposite to the apex angle. Second. A sixth and a fourth transparent solid body are provided, the first transparent solid body is arranged to receive a laser beam generated from the laser light source on one of its both sides, and a ridge formed by both sides of the second transparent solid body is provided. and ridges formed by both side surfaces of the first transparent solid body], the second transparent solid body is superposed on the bottom surface of the first transparent solid body via a first semipermeable membrane so that the second transparent solid body is oriented in the same direction. and the sixth transparent
The sixth transparent solid is attached to one of its two sides so that the edge formed by both sides of the clear solid and the edge formed by both sides of the second transparent solid forms an angle of approximately 45°. A superimposed heel is formed on one of both sides of the solid. The fourth transparent solid is oriented so that the ridge formed by both sides of the fourth transparent solid and the ridge formed by both sides of the sixth transparent solid are in the same direction. The bottom surface of the sixth transparent solid body is polymerized through a second semipermeable membrane, and the other of the both sides of the sixth transparent solid body and one of the both sides of the fourth transparent solid body perpendicular thereto are This is because the openings at both ends of the optical fiber are arranged to face each other.

しかして、このように本発明を構成したことにより、前
記レーザ光束が直線偏光面或いは円偏光面を有すれば、
前記レーザ光束が、その偏光面をそのまま維持しつつ、
前記第1及び第2の透明立体を前記第1透明立体の両側
面の一方から第1と第2の透明立体の重合面、即ち前記
第1半透膜を通り前記第2と第6の透明立体の重合面に
向けて直進透過して、前記第6と第4の重合面、即ち前
記第2半透膜にて、互いに直角な直線偏光面をそれぞれ
有する二つのレーザ光束に分割され、これら両分側レー
ザ光束の一方が前記第4透明立体内をそのまま直進しこ
の第4透明立体の両側面の一方から出射して前記光フア
イバ内にその一開口端部から人則し、前記両分側レーザ
光束の他方が前記第2半透膜にて前記一方の分割レーザ
光束に列し直角に反==+され前記第6透明立体の前記
第4透明立体における出U=t [111面に直交する
両側面の一方から出4・jシて前記光フアイバ内にその
低量口端部から入射し、前記各分割レーザ光束が前記光
フアイバ内にて互いに反対方向に伝搬した後これら両分
側レーザ光束の一方及び他方が前記光ファイバの低量「
コ端部及び−開口端部からそれぞれ出射してj3iJ記
第6と第4の透明立体内にその各前記両側面の一方から
入射し、前記第6透明立体内に入射した前記一方の分割
レーザ光来が前記第2半透膜にて直角に反射されて前記
第2透明立体内に直線偏光面を有する修正分割レーザ光
束として入射するとともに、前記第4透明立体内に入射
した前記他方の分割レーザ光来がそのまま直進して前記
第6透明立体を通り前記第2透明立体内に前記修正分割
レーザ光束の直線偏光面と直交する直線偏光面を備えた
修正分割レーザ光束として入射し、このように第2透明
立体内に入射した両修正分割レーザ光束が前記第1半透
膜にて共に分割反射されて前記第2透明立体の側面から
互いに同一の直線偏光面を有する検出レーザ光束として
出射するので、これら雨検出V−ザ光来が、その同−直
線偏光面及び前記光ファイバからの両出射分割レーザ光
束の位相差に基き、互いに有効に効率よく干渉し合う高
精度の安定した干渉光として得られ、その結果かかる干
渉光の強度を利用すれば、光ファイバの角速度を常に精
度のよい安定した値としてめることができる。また、前
記光ファイバから出射する両分側レーザ光束に上述した
外部擾乱に基〈偏光面の乱れが生じていても、両分側レ
ーザ光来が、前記第6と第4の透明立体によジ、各所定
の直線偏光面を有する前記修正分割レーザ光束に修正さ
れるので、前記干渉光が上述した偏光面の乱れに基く実
効的光路長差の影響を受けることもない。
By configuring the present invention in this way, if the laser beam has a linearly polarized plane or a circularly polarized plane,
The laser beam maintains its polarization plane as it is,
The first and second transparent solids are passed through the overlapping surface of the first and second transparent solids, that is, the first semi-permeable membrane, from one of both sides of the first transparent solid, and the second and sixth transparent solids are The laser beam is transmitted straight toward the three-dimensional polymerization surface, and is split into two laser beams each having a linear polarization plane perpendicular to each other at the sixth and fourth polymerization surfaces, that is, the second semi-transparent film. One of the laser beams on both sides travels straight through the fourth transparent solid body, exits from one of both sides of the fourth transparent solid body, enters the optical fiber from one opening end, and enters the optical fiber into the optical fiber. The other side laser beam is aligned with the one divided laser beam by the second semi-transparent film and is perpendicularly opposite to the divided laser beam so that the output of the sixth transparent solid in the fourth transparent solid is U=t [on the 111th plane] The laser beams are emitted from one of the two orthogonal side surfaces and enter the optical fiber from its low-volume end, and after the divided laser beams propagate in opposite directions within the optical fiber, they are divided into two beams. One and the other of the side laser beams are connected to the optical fiber with a low
The one of the split lasers is emitted from the A end and the opening end, respectively, and enters the sixth and fourth transparent solids from one of the both sides thereof, and enters the sixth transparent solid. The light is reflected at right angles by the second semi-transparent film and enters the second transparent solid body as a modified split laser beam having a linear polarization plane, and the other split laser beam enters the fourth transparent solid body. The laser light beam goes straight as it is, passes through the sixth transparent solid body, and enters the second transparent solid body as a modified split laser beam having a linear polarization plane perpendicular to the linear polarization plane of the modified split laser beam, and thus Both corrected split laser beams incident on the second transparent solid body are split and reflected together by the first semi-transparent film, and are emitted from a side surface of the second transparent solid body as a detection laser beam having the same linear polarization plane. Therefore, based on the same linear polarization plane and the phase difference between the two emitted split laser beams from the optical fiber, these rain detection V-the optical beams produce highly accurate and stable interference light that effectively and efficiently interfere with each other. As a result, by using the intensity of such interference light, the angular velocity of the optical fiber can always be determined as an accurate and stable value. Furthermore, even if the plane of polarization is disturbed due to the above-mentioned external disturbance in the laser beams on both sides emitted from the optical fiber, the laser beams on both sides will not be affected by the sixth and fourth transparent solid bodies. Second, since the modified split laser beams are modified to have respective predetermined linear polarization planes, the interference light is not affected by the difference in effective optical path length due to the disturbance of the polarization planes described above.

なお、前記実施例においては、レーザ光束A。Note that in the above embodiment, the laser beam A is the laser beam A.

が直線偏光面IPAoを有する例について説明したが、
これに代えて、レーザ光束A。が円偏光面を有する場合
であっても、プリズム24からプリズム25に入射する
レーザ光来が直線偏光面PAOを有するようにプリズム
23.24及び半透膜gIにより修正されるので、前記
実施例と同様の作用効果を達成できる。
An example was explained in which has a linear polarization plane IPAo, but
In place of this, laser beam A. Even if the prism has a circularly polarized plane, the laser beam incident from the prism 24 to the prism 25 is modified by the prism 23, 24 and the semi-transparent film gI so that it has a linearly polarized plane PAO. The same effect can be achieved.

また、前記実施例においては、両プリズム24゜25の
各校24a、25dが第2図のごとく約45゜の角度を
なすように、プリズム25の側面25aをプリズム24
の側面241)に重合接着した例について説明したが、
これに限らず、例えば、各校24d、25(1が第2図
とは逆方向に約45°の角度をなすように、プリズム2
5の1111面25aをプリズム24の側面24bに重
合接着するようにしてもよく、また両プリズム24.2
5の接合面も各側面24b、2512に限ることはない
Further, in the embodiment, the side surface 25a of the prism 25 is aligned with the side surface 25a of the prism 25 so that the angles 24a and 25d of the prisms 24 and 25 form an angle of about 45 degrees as shown in FIG.
An example was explained in which polymerization was adhered to the side surface 241) of
For example, the prisms 24d and 25 (1) are arranged at an angle of about 45° in the opposite direction to that in FIG.
The 1111 surface 25a of the prism 24.5 may be polymerized and bonded to the side surface 24b of the prism 24.
The joint surfaces of No. 5 are not limited to the respective side surfaces 24b and 2512.

また、本発明の実施にあたっては、レーザ光源12に対
向しその光軸に対し約45°にて交叉する半透膜を備え
た第1ハーフミラ−と、この第1ハーフミラ−の後方に
配置されて当該第1ハーフミラ−を前記光軸を軸として
そのまま約45°回転させたときこの第1ハーフミラ−
の半透膜が前記光軸との間に形成する空回的位置関係に
一致するように前記光軸に交叉する半透膜を備えた第2
ハーフミラ−とヲ設ケ、かつとの第2ハーフミラ−の半
透膜の両表面をそれぞれ光ファイバ110両開口端部に
対向させるようにしても、前記実施例と実質的に同様の
作用効果を達成し得る。かかる場合、前記第1及び第2
のハーフミラ−に代えて、板状の第1及び第2のビーム
スプリッタを採用し、これら第1及び第2のビームスプ
リッタの各半透膜を前記第1及び第2のハーフミラ−の
各半透膜と同じように配置しても、前記実施例と実質的
に同様の作用効果を達成し得る。
Further, in carrying out the present invention, a first half mirror provided with a semi-transparent film facing the laser light source 12 and intersecting at about 45 degrees with respect to the optical axis thereof, and a first half mirror disposed behind the first half mirror are provided. When the first half mirror is rotated about 45 degrees about the optical axis, the first half mirror
a second semi-permeable membrane that intersects the optical axis so as to match the circular positional relationship formed between the semi-permeable membrane and the optical axis;
Even if both surfaces of the semi-permeable film of the second half mirror of the half mirror and the other half mirrors are arranged to face both open ends of the optical fiber 110, substantially the same effect as that of the embodiment described above can be obtained. It can be achieved. In such a case, the first and second
In place of the half mirror, plate-shaped first and second beam splitters are adopted, and each semi-transparent membrane of the first and second beam splitters is connected to each semi-transparent membrane of the first and second half mirror. Even if arranged in the same manner as the membrane, substantially the same effects as in the previous embodiment can be achieved.

また、前記実施例においては、プリズム26〜26を、
それぞれ、頂角90cの二等辺三角柱状に形成したが、
これに限らず、プリズム26〜26の各頂角を900以
外の角度に変更してもよく、またプリズム26〜26を
不等辺三角柱状に形成して実施してもよい。
Moreover, in the embodiment, the prisms 26 to 26 are
Each was formed into an isosceles triangular prism shape with an apex angle of 90c,
However, the present invention is not limited to this, and the apex angles of the prisms 26 to 26 may be changed to angles other than 900, or the prisms 26 to 26 may be formed into scalene triangular prism shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用した光フアイバジャイロスコー
プの一例を示す概略図、第2図は、本発明装置の拡大図
、及び第6図は、本発明装置の作用を示す説明図である
。 符号の説明 11・・・光ファイバ、11a、11b・・・開口端部
、12・・・レーザ光源、2o・・・光分割合成装置、
26・・・第1透明立体、24・・・第2透明立体、2
5・・・第6透明立体、26・・・第4透明立体、23
(2,23b、24a、24b、25a。 25b、26(1,26’b ・・・ 倶]j面、 2
3c、24c。 25c、26c・・・底面、23d、24d、25d。 26d・・・稜、” l 1g 2 see半透膜。 出願人 日本電装株式会社 代理人 弁理士 長 谷 照 − 第1図 7 第2図
FIG. 1 is a schematic diagram showing an example of an optical fiber gyroscope to which the present invention is applied, FIG. 2 is an enlarged view of the device of the present invention, and FIG. 6 is an explanatory diagram showing the operation of the device of the present invention. . Explanation of symbols 11... Optical fiber, 11a, 11b... Open end portion, 12... Laser light source, 2o... Light splitting and combining device,
26...First transparent solid, 24...Second transparent solid, 2
5...Sixth transparent solid, 26...Fourth transparent solid, 23
(2, 23b, 24a, 24b, 25a. 25b, 26 (1, 26'b... 倶) J side, 2
3c, 24c. 25c, 26c...bottom, 23d, 24d, 25d. 26d...Redge, "l 1g 2 see semi-permeable membrane. Applicant Nippondenso Co., Ltd. Agent Patent attorney Teru Hase - Figure 1 7 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 光ファイバシャイロヌコーグにおけるコイル状の光ファ
イバとレーザ光源との間に介装される光分割合成装置に
おいて、前記レーザ光源に対向しその光軸に対し約45
°にて交叉する半透膜を備えた第1偏光ビームヌプリン
タと、この第1偏光ビームスプリンタの後方に配置され
て当該第1偏光ビームヌプリソタを前記光軸を軸として
そのまま約45°回転させたときこの第1偏光ビームス
プリツタの半透膜が前記光軸との間に形成する空間的位
置関係に一致するように前記光軸に交叉する半透膜を備
えた第2偏光ビームヌプリソタとを設け、かつこの第2
偏光ビームヌプリソタの半透膜の両表面をそれぞれ前記
光ファイバの両開口端部に対向させるようにしたことを
特徴とする光フアイバジャイロスコープのための光分割
合成装置。
In a light splitting/synthesizing device interposed between a coiled optical fiber and a laser light source in an optical fiber Shironukog, the light splitting/synthesizing device faces the laser light source and is located at a distance of about 45 mm with respect to its optical axis.
a first polarized beam printer equipped with a semi-transparent membrane that intersects at a degree of a second polarizing beam splitter having a semi-transparent film that intersects the optical axis so as to match the spatial relationship formed between the semi-transparent film of the first polarizing beam splitter and the optical axis when Sota and this second
1. A light splitting and combining device for an optical fiber gyroscope, characterized in that both surfaces of a semi-transparent film of a polarizing beam nulli-sota are opposed to both opening ends of the optical fiber.
JP58144670A 1983-08-08 1983-08-08 Optical splitting and synthesizing device for optical fiber gyroscope Pending JPS6036910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144670A JPS6036910A (en) 1983-08-08 1983-08-08 Optical splitting and synthesizing device for optical fiber gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144670A JPS6036910A (en) 1983-08-08 1983-08-08 Optical splitting and synthesizing device for optical fiber gyroscope

Publications (1)

Publication Number Publication Date
JPS6036910A true JPS6036910A (en) 1985-02-26

Family

ID=15367500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144670A Pending JPS6036910A (en) 1983-08-08 1983-08-08 Optical splitting and synthesizing device for optical fiber gyroscope

Country Status (1)

Country Link
JP (1) JPS6036910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221016A (en) * 1985-07-19 1987-01-29 Yokogawa Electric Corp Optical fiber gyroscope
JPS62201680U (en) * 1986-06-12 1987-12-22
JP2016223973A (en) * 2015-06-02 2016-12-28 株式会社小野測器 Laser beam combining/branching device and laser measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221016A (en) * 1985-07-19 1987-01-29 Yokogawa Electric Corp Optical fiber gyroscope
JPS62201680U (en) * 1986-06-12 1987-12-22
JP2016223973A (en) * 2015-06-02 2016-12-28 株式会社小野測器 Laser beam combining/branching device and laser measurement device

Similar Documents

Publication Publication Date Title
CN115014318B (en) Hollow microstructure optical fiber gyroscope
US4444503A (en) Ring interferometer with a mode diaphragm
GB2018456B (en) Optical interferometers
JPS6036910A (en) Optical splitting and synthesizing device for optical fiber gyroscope
GB2058397A (en) Ring interferometers
US4704031A (en) Rotation rate measuring device
JPS6018727A (en) Optical interferometer
JP2004309466A (en) Optical fiber gyroscope
JPS61184417A (en) Laser gyroscope
JPH02147908A (en) Fiber-optic gyroscope
JPH0715385B2 (en) Fiber optic gyro
JPH04364420A (en) Light phase modulator and interference sensor using it
JPH0626870A (en) Optical fiber gyroscope
JPS61246615A (en) Optical gyroscope
JPS59143916A (en) Manufacture of optical fiber gyro
JPS60149913A (en) Optical fiber gyroscope
JPH0763564A (en) Optical interference type gyroscope
JPH11344645A (en) Optical module and optical apparatus using the same
JPS60122312A (en) Optical heterodyne system optical fiber gyroscope
JPH05118863A (en) Optical fiber gyro
JPH07306049A (en) Optical fiber gyro
JPS61286713A (en) Optical fiber gyroscope
JPS5963510A (en) Optical fiber gyro
JPH06265362A (en) Optical rotation-detection device
JPS61116644A (en) Laser interferometer