JPS6036818A - Denitrating controller for composite cycle power generating plant - Google Patents

Denitrating controller for composite cycle power generating plant

Info

Publication number
JPS6036818A
JPS6036818A JP14599483A JP14599483A JPS6036818A JP S6036818 A JPS6036818 A JP S6036818A JP 14599483 A JP14599483 A JP 14599483A JP 14599483 A JP14599483 A JP 14599483A JP S6036818 A JPS6036818 A JP S6036818A
Authority
JP
Japan
Prior art keywords
flow rate
deviation
gas
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14599483A
Other languages
Japanese (ja)
Inventor
Masayuki Toubou
昌幸 当房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14599483A priority Critical patent/JPS6036818A/en
Publication of JPS6036818A publication Critical patent/JPS6036818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Chimneys And Flues (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To perform rational denitrating control, by a method wherein a flow rate of a reducing material being injected is controlled at each turbine system so that a deviation between a desired value and a detected value corresponding thereto is brought to zero. CONSTITUTION:A deviation signal (g) represents a deviation between a desired value at each turbine system and an actual value, and is inputted as a desired value signal for a flow rate of the injected reducing material to a subtractor 18 through a PI computer 15 and an upper limit value 16. An output signal (i) from a second detector 17 is inputted as an actual signal for a flow rate of the injected reducing material to the subtractor 18. From the two signals, the subtractor 18 computes a deviation between a desired value and an actual value, and a deviation signal (j) thereof is inputted to a PI computer 19. A flow rate of a reducing material, injected to each denitrating device through a regulator 20 for a flow rate of the injected reducing material, is controlled so that a deviation is brought to zero by means of an output signal (k) from the PI computer 19. Addition of a total amount control function to an individual control system enables the other control systems to compensate each other for the one control system which is happened to be forced into a condition in which it is deviated out of a control range.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、はぼ等容量の腹数台のガスタービンと、こね
、らのガスタービンの排ガスに誼まれる熱を利用して発
生された蒸気により駆動きれる少なくとも1台の蒸気タ
ービンとを何する複合ザーrクル発電グランドにおける
燃焼生成ガス中の窒素酸化物をこれにアンモニア等の還
元物質を注入して除去する、複合ザイクル発′1Lノラ
ントの脱6t9 iti制御〔発明の技術(−19背景
とその問題点〕上記形式の、いわゆる排熱回収方式の複
合サイクル発電グラン−トには大別して一軸型と多軸壓
がある。−軸型というのは、力゛スタービン、蒸気ター
ビン、および発電機が共通軸で結合さ11でいる方式の
ものであり、多軸型というのは、ガスタービンと蒸気タ
ービンが別々の軸に分離され、各軸に発電機が結合され
る方式のものである。本発明は、この分類に則して述べ
るならば、−軸型のものを複数系列設ける構成のもの、
および単−寸たけ複数の蒸気タービン系列に対して複数
のガスタービン系!リヲ設QJる多軸型構成のものの両
者を対象トシており、いずれにしても複数台のガスター
ビ/分有するグランドを対象とするものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention utilizes several gas turbines of approximately equal capacity and heat generated by the exhaust gas of the gas turbines. Composite cycle generation '1L norant, which removes nitrogen oxides from the combustion generated gas by injecting a reducing substance such as ammonia into the combustion generated gas in a complex cycle power generation ground that is connected to at least one steam turbine driven by steam. [Technology of the Invention (-19 Background and Problems thereof)] The above-mentioned type of combined cycle power generation granite using the exhaust heat recovery method can be roughly divided into single-shaft type and multi-shaft type.-shaft type This is a type in which the power turbine, steam turbine, and generator are connected by a common shaft.In the multi-shaft type, the gas turbine and steam turbine are separated into separate shafts, and each The present invention is of a type in which a generator is coupled to the shaft.If the present invention is to be described according to this classification, - a structure in which a plurality of shaft-type products are provided in series;
And multiple gas turbine systems as opposed to multiple steam turbine systems! This applies to both types of multi-axis configurations installed in QJs, and in any case, it is intended for glands with multiple gas turbines.

複合サイクル発電グランドは、−軸型の場合を例示する
ならば第1図のように構成される。第1図において、コ
ングラン、す(CP)1、ガスタービア(GT)2、発
電機3、および蒸気タービン4は共通の軸5を介して互
いに連結されている。
The combined cycle power generation gland is constructed as shown in FIG. 1, illustrating a negative axis type case. In FIG. 1, a CP 1, a GT 2, a generator 3, and a steam turbine 4 are connected to each other via a common shaft 5.

燃料調整弁6の開V調節によりvIj量制御された燃料
がコンプレッサlからの圧縮空気と共に燃焼器7に供給
され、ここで混合して等圧燃焼され、高温・高圧の燃焼
ガスが生成される。この燃焼ガスによってガスタービン
2が駆動される。ガスタービン2の排ガスは排熱回収ボ
イラ8に導かれて蒸る。排熱回収ボイラ8で発生された
蒸気は蒸気加減弁9を介して蒸気タービン4に導かれ、
これを駆動する。蒸気タービン4を通った蒸気は復水器
10に導かれ、ここで1妄水される。この十夏合すイク
ル発酸グランドは、入力として燃焼器7に燃料を供給し
、最終出力として発電機3からFE気出力を得る。
The fuel whose vIj amount is controlled by adjusting the opening V of the fuel adjustment valve 6 is supplied to the combustor 7 together with compressed air from the compressor 1, where it is mixed and combusted at equal pressure to generate high-temperature and high-pressure combustion gas. . The gas turbine 2 is driven by this combustion gas. Exhaust gas from the gas turbine 2 is led to an exhaust heat recovery boiler 8 and steamed. Steam generated in the exhaust heat recovery boiler 8 is guided to the steam turbine 4 via the steam control valve 9.
Drive this. The steam passing through the steam turbine 4 is led to a condenser 10, where it is dehydrated. This cycle acid generating gland supplies fuel to the combustor 7 as an input and obtains FE gas output from the generator 3 as a final output.

さて、排熱回収、tjイラ8から大気中にυト出される
排ガス、すなわち燃焼器7の燃焼器1戊ガス中には、N
O,No2.NO3など、一般にNOxで総称される窒
素酸化物が含壕れている。この窒素鹸化物は有害とされ
、その許容量が法的に規■1[[されている。そこで燃
焼生成ガスeこ含まれる窒素鹸化物を除去するためにv
V熱回収?イラ8に脱硝装置が設けられる。脱硝装置と
いうのは、燃焼生成ガスにアンモニア等の還元物質を触
媒の中で反応させて窒素酸化物を窒素と水に還元して除
去する装置である。その場合、未反応の窒素酸化物はそ
のまま大気中に排出されることになる。例えば還元物質
としてアンモニアを使用する場合、その供給量が少なす
ぎでは未反応の窒素鹸化物が増えることになり、また、
多すき−では未反応のアンモニアが排出されることしこ
なる。前者の場合に不都合で、ちるのは当然として、(
’D者の場合もアンモニア自体が有害であるばかりでな
く、経済的(・こも無駄を生ずることになる。そのため
、燃焼生成ガス中の窒素酸化物の量に見合った量の還元
物質、例えばアンモニアを供給することが必要になる。
Now, during exhaust heat recovery, the exhaust gas released into the atmosphere from the tj heater 8, that is, the combustor 1 gas of the combustor 7, contains N.
O, No.2. It contains nitrogen oxides such as NO3, which are generally referred to as NOx. This nitrogen saponification product is considered harmful, and its permissible amount is legally regulated. Therefore, in order to remove the nitrogen saponified products contained in the combustion generated gas,
V heat recovery? A denitrification device is installed in the furnace 8. A denitrification device is a device that reacts combustion generated gas with a reducing substance such as ammonia in a catalyst to reduce and remove nitrogen oxides into nitrogen and water. In that case, unreacted nitrogen oxides will be directly discharged into the atmosphere. For example, when using ammonia as a reducing substance, if the amount supplied is too small, unreacted nitrogen saponification products will increase;
With a large number of plows, unreacted ammonia is often discharged. In the former case, it is inconvenient and of course it would be boring (
In the case of 'D', ammonia itself is not only harmful but also economical (and also wasteful). It will be necessary to supply

この還元物への供給計を制御するための装置が脱硝1t
tll #装置である。
The device for controlling the supply meter to this reduced product is 1 ton of denitrification.
tll #device.

窒素鹸化物の排出量を減少させるための方法として、燃
焼器の火炎面内に蒸気(または水〕を前噴射方式も知ら
れている。しかL7、この方法たけでは不十分である。
A pre-injection method of steam (or water) into the flame plane of the combustor is also known as a method for reducing the amount of nitrogen saponide emissions. However, this method alone is insufficient.

特に、例えは成るガスタービンの始動中においては、蒸
気発生の時間遅れが・bつて蒸気噴射用の蒸気が得られ
ず、この蒸気噴射方式は適用することができない。一方
、ガスタービンの始動時には、脱硝装置においても触媒
器の温度が低く、還元反応が不十分にしか行なわれない
ので、過渡的に窒素鹸化物のす出量が増大することにな
る。
Particularly, during the startup of a gas turbine, for example, the time delay in steam generation makes it impossible to obtain steam for steam injection, and this steam injection method cannot be applied. On the other hand, when the gas turbine is started, the temperature of the catalyst in the denitrification device is low, and the reduction reaction is insufficiently carried out, resulting in a transient increase in the amount of saponified nitrogen produced.

従来、個りのガスタービン系列ごとに脱硝制御を行なっ
ていたが、上述の理由により、待Wのガスタービン系列
が1i111瞬軛囲を逸脱したり、それに近い制6+状
態に陥ったりしで、グランド全体とし゛て規1■1]鼠
を超える窒素酸化物を排出してしまうおそれがあった。
Conventionally, denitrification control was carried out for each individual gas turbine series, but due to the reasons mentioned above, the waiting W gas turbine series sometimes deviated from the 1i111 instantaneous yoke range or fell into a 6+ state close to it. There was a risk that the entire ground would emit nitrogen oxides exceeding the standard 1.1.

〔発明の目的〕[Purpose of the invention]

本発明は以上の事1′i¥を考y!1.(、てなされた
もので、特定のガスタービンの始動時などの過渡時全才
めて、より合理的な脱硝fii制御を行ない得る脱硝制
仰〔発明の概要〕 この目的を達成するために本発明は、各ガスタービン系
列ごとの窒素酸化物排出流量を検出する検出器群と、こ
の検出器群によって検出された各窒素酸化物排出流量の
総和を演算する加算手段と、プラント全体の窒素酸化物
排出流量の目標値を設定する総排出流輸設定手段と、前
記目標値と前記総和との間の偏差に基づいて各ガスター
ビン系列の窒素酸化物排出流量目標値を形成する演算制
御手段と、この演算制御手段から与えら1する目標値と
それに対応する前記検出器の検出値との間の偏差を零に
するように各タービン系列ごとに前記還元物質の注入流
量を制御する制御部群とを備えたこと全特徴とするもの
である。
The present invention considers the above points! 1. (Summary of the Invention) To achieve this purpose, the present invention is a denitrification control system that can perform more rational denitrification control during transient periods such as when starting a specific gas turbine. The invention provides a group of detectors for detecting the nitrogen oxide exhaust flow rate for each gas turbine series, an adding means for calculating the sum of the nitrogen oxide exhaust flow rates detected by the detector group, and a nitrogen oxide exhaust flow rate for the entire plant. total exhaust flow setting means for setting a target value of a nitrogen oxide discharge flow rate; and arithmetic control means for forming a target value of a nitrogen oxide discharge flow rate for each gas turbine series based on a deviation between the target value and the sum total. , a control unit group for controlling the injection flow rate of the reducing substance for each turbine series so as to make the deviation between the target value given by the arithmetic control means and the corresponding detected value of the detector to zero; It is characterized by having the following.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示すものであるうこの実施
例は、腹数台の一例として3台のカスタービンを+1!
5定し、各ガスタービンの排ガス系統中に配置された排
熱回収ヴイラに設けられている脱硝装置を対象として個
りに脱硝制御を行なうために第1、第2、および第3の
個別制御装置11A。
FIG. 2 shows an embodiment of the present invention. In this embodiment, three cast turbines are used as an example of the number of turbines.
The first, second, and third individual controls are configured to perform denitrification control individually for the denitrification equipment provided in the exhaust heat recovery villa arranged in the exhaust gas system of each gas turbine. Device 11A.

11B、IICを設ける場合を例示するものであり、以
下、これに基づいて詳細tこ説明する。
This is an example of a case where 11B and IIC are provided, and the details will be explained below based on this.

各個別flt制御装詩11A 、 118 、11C+
は同一内部+4成を持っており、図には装置41Aの内
部構成しか詳細に示していないが、装fill B 、
 11 Cも装置印抗と同様に構成さハ、ているものと
する1、各([・■別ff1ll N装置11A 、 
11 B 、 IICには−Cれそれのガスタービン系
統の排ガスにぎまれる窒素酸化物リド出υILハを検出
する第]の検出器12と、脱硝装置に注入された還元物
質、171Jえばアン七ニアの流量を検出するi2の検
出器17とが設けられている。各系統のくヱ素W化物j
非出流陵を表わす各相1の検出器12の出力信号al 
、 a2 、 a3は加算器21に導かれ、その総和と
してここでグランド全体の嵯索酸化物排出流量力稲f算
され、総排出流量伯号すか出力きれる。
Each individual flt control unit 11A, 118, 11C+
have the same internal +4 configuration, and although only the internal configuration of device 41A is shown in detail in the figure,
11C shall also be constructed in the same way as the device impression.
11B, IIC includes a detector 12 for detecting the nitrogen oxides produced in the exhaust gas of the gas turbine system, and a reducing substance injected into the denitration equipment, 171J, and An i2 detector 17 for detecting the near flow rate is provided. Each system of carbon dioxide j
The output signal al of the detector 12 of each phase 1 representing the non-flow ridge
, a2, and a3 are led to an adder 21, where the total discharge flow rate of the entire ground is calculated, and the total discharge flow rate is output.

この総排出流量信号すは、設定器四によって設定される
蟹累酸化物総排出流歇目標Ilk信号Cと共に減算器乙
に人力され、ここで両人力信号の偏差を表わす(g号d
1すなわち望系璽化物の認IJ1出θ1ら量実際値と設
定目標[直との間の偏差を表わす信号dが形成される。
This total discharge flow rate signal S is manually inputted to the subtractor O together with the crab accumulation oxide total discharge flow rate target Ilk signal C set by the setting device 4, and here the deviation between the two human input signals is expressed (G d
1, i.e., a signal d representing the deviation between the actual value of the quantity and the set target value is formed.

この信号dは上限制限・器274を介してP1演算器乙
に導かれ、ここで各個別制御装置11A 、 IIB 
、 IJ、Cに与える飼料排出流量目標値信号eが形成
される。レリえば個別排出流量目標11αは総排出流量
目標値の孝ずっに設定される。この信号eは各タービ/
の負荷状態のいかんにかかわらず共通に各藺別制イ卸装
置11A 、 LIB 、 IIGの減算器14に上限
H7l)銀器13を介して入力さiする。各個別制御装
置znA、IIB 、JICにオイて、減算器14には
上限制限器I3からの(fi号fのほかに、第Jの検出
器12の出力’lrU ”i a lも入力され、ここ
で内入力の偏差信号gか形成される。この偏差信号gは
各タービン系統ごとの目標値と実際値との間の偏差を表
わすものであって、Pi演算器15および上限制限器1
6ケ介して減算器18に脱硝用還元物質の注入流量目標
値信号として減n器18に入力される。
This signal d is led to the P1 computing unit B via the upper limit limiter 274, where it is connected to each individual control unit 11A, IIB.
, IJ, and C, a feed discharge flow rate target value signal e is formed. If so, the individual discharge flow rate target 11α is set to be equal to the total discharge flow rate target value. This signal e is transmitted to each turbine/
Regardless of the load condition, the upper limit (H7l) is commonly input to the subtractor 14 of each individual control device 11A, LIB, IIG via the silverware 13. In each of the individual control devices znA, IIB, and JIC, in addition to the (fi) from the upper limit limiter I3, the output 'lrU''ia l of the J-th detector 12 is also input to the subtracter 14. Here, an internal input deviation signal g is formed. This deviation signal g represents the deviation between the target value and the actual value for each turbine system, and is input to the Pi calculator 15 and the upper limiter 1.
The input signal is inputted to the subtracter 18 through the subtractor 18 as a target value signal for the injection flow rate of the reducing substance for denitrification.

減算器18Kには」61元物質(例えはアン七ニア)の
注入?jf :R実際1直信号として第2の検出器17
の出力1、M’r4i7りエλ勺−IX?1人−?ED
’eaシ嬰IQIrトr+柘1@11−シーLJ1、r
−目標値と実際1直との間の偏差を演算し、その偏差信
号jをPI演算器19に人力する。PI演栃、器19の
出力信号kにより」1記偏差か零になるように還元物質
注入流賞調節8:20i介して各脱硝装置に注入する還
元物′h流量が1lill IIされる。
Is the subtractor 18K injected with a 61-element substance (for example, Anne Sevenia)? jf :Ractual direct signal as second detector 17
Output 1, M'r4i7riEλ勺-IX? One person? ED
'ea Shiyo IQIr To r + 柘1@11- Sea LJ1, r
- Calculates the deviation between the target value and the actual first shift, and inputs the deviation signal j to the PI calculator 19; According to the output signal k of the PI controller 19, the flow rate of the reducing material injected into each denitrification device through the reducing material injection flow adjustment 8:20i is adjusted to 1 liter II so that the deviation becomes zero.

第2図の装置において各ガスタービン系列とも安定運転
を行なっているときは各個別1lilI側1装置とも安
定運転側@を行ない、プラント全体の総排出流量が設定
8S22によって設定される総″A1出vIC爪目標値
に一致するように各個別f1il1画装置11A、11
B。
In the equipment shown in Fig. 2, when each gas turbine series is in stable operation, each individual 1liI side and 1 unit are in stable operation, and the total exhaust flow rate of the entire plant is set by the setting 8S22. Each individual f1il1 image device 11A, 11 so as to match the vIC claw target value.
B.

JICによる個別Hi制御が行なわlしる。次tこ例え
ば成るタービン系列からの窒素酸化物排出σ1L量が、
ψ1」えばすでに述べたタービン始動などに際して過妓
的に著しく増大し、制御範囲を逸脱したような場合であ
るが、このような場合1は第1の検出器12によって検
出される窒素【ズ化物利;−出流11゛の総和かそ−の
目標値を大幅に上まわり、誠算器乙の出力、つまりはP
!演q器2!5を介して与えられる谷側別制御装置11
A 、 11+3 、 IICへの人力目標値eか減少
方向に抑制される、この目、暫藺抑n1ilは正常に1
ljll Mni動作している制御系でも同様に行なわ
れ、より小さな目標値に向って各個別制御が行なわれる
ことになる。この制御動作は総排出流量実際f直と総排
出流量目標値との間の偏差が零になるように行なわれる
。以上の制御動作は、制御範囲を逸脱した系列の制御を
他の健全な系列の制御によって補い合う相互扶助動作を
行なうところに特徴がある。
Individual Hi control is performed by JIC. For example, the amount of nitrogen oxide emissions σ1L from the turbine series consisting of:
ψ1'' is a case where the amount of nitrogen detected by the first detector 12 increases significantly and exceeds the control range due to excessive increase in the amount of nitrogen detected by the first detector 12. It greatly exceeded the target value of profit; - the sum of the output currents of 11゛, and the output of the calculator, in other words, P.
! Valley-side separate control device 11 given via q operator 2!5
A, 11+3, human power target value e for IIC is suppressed in the decreasing direction, temporary suppression n1il is normally 1
The same operation is performed in the control system operating ljll Mni, and each individual control is performed toward a smaller target value. This control operation is performed so that the deviation between the actual total discharge flow rate f value and the total discharge flow rate target value becomes zero. The above-described control operation is characterized in that a mutual assistance operation is performed in which the control of the series that deviates from the control range is supplemented by the control of other healthy series.

なお、図示の実施例においてはP11演算器の出力信号
eを各個別制御装置LIA 、 II B 、 IIG
に一様に与えているが、場合によっては予め定めた適自
な割合に従って分配するようにしてもよい。
In the illustrated embodiment, the output signal e of the P11 arithmetic unit is sent to each individual control device LIA, IIB, IIG.
However, depending on the situation, it may be distributed according to an appropriate predetermined ratio.

また、上記実施例はアナログ市1j御回路を前提として
図示しているが、検出端および操作端を除く演算8tl
l mU回路部分はコンピュータを用いてそのソフトウ
ェアによって実現することもできる。
In addition, although the above embodiment is illustrated on the premise of an analog city 1j control circuit, the calculation 8tl excluding the detection end and the operation end
The l mU circuit portion can also be realized by software using a computer.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、個別制御系に総置制
御機能全付加することにより、成る特定のガスタービン
の始動時など、成る個別制御系がその:1ill rj
1範囲を逸脱するような重態に陥っても他の健全な制御
系がそれを相互扶助動作によって補い合うので、より広
範囲に規制値を満足させることの可能な、より合理的な
複合゛シイクル光電グランドの脱硝制御装置4を提供す
ることができる。
As described above, according to the present invention, by adding all the overall control functions to the individual control system, the individual control system can perform the following operations such as when starting a specific gas turbine: 1ill rj
Even if a critical condition occurs that deviates from the 1 range, other healthy control systems will compensate by mutual aiding operation, making it possible to satisfy regulation values over a wider range, making this a more rational composite cycle photoelectric ground. The denitrification control device 4 can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合サイクル発電り0ラツトの一楕成例を示す
系統図、 第2図は本発明による脱硝*lj?n装置の一カ流例を
示すブロック図である。 1°゛°コンプレッ丈、2・・・ガスクービン、3・・
・光電機、4・・・蒸気タービン、5・・・411.5
・・・燃料調整弁、7・・・燃焼器、8・・・排熱回収
ボイラ、9・・・蒸気加減弁、10・・・復水器、Ii
A 、 11B 、 Il、C・・・個別制御装置、1
2・・・窒素酸化物排出流出、検出器、+4 、18 
、23・・・減算器、l−5、19、25・・・P1演
算器、17・・・還元物質注入bIL量検出器、20山
還元物質注入流量調節器、21・・・加n器、22・・
・室、A酸化物総排出流量設定器。
Fig. 1 is a system diagram showing an example of zero combined cycle power generation, and Fig. 2 is a system diagram showing an example of zero combined cycle power generation. FIG. 2 is a block diagram illustrating an example of one type of device. 1°゛° compressed length, 2... gas kubin, 3...
・Photoelectric machine, 4...Steam turbine, 5...411.5
...Fuel adjustment valve, 7...Combustor, 8...Exhaust heat recovery boiler, 9...Steam control valve, 10...Condenser, Ii
A, 11B, Il, C...Individual control device, 1
2...Nitrogen oxide discharge outflow, detector, +4, 18
, 23... Subtractor, l-5, 19, 25... P1 computing unit, 17... Reducing substance injection bIL amount detector, 20-mount reducing substance injection flow rate regulator, 21... Adder , 22...
・Chamber, A total oxide discharge flow rate setting device.

Claims (1)

【特許請求の範囲】 複数台のガスタービンと、これらのガスタービンの排ガ
スに含まれる熱を利用して発生された蒸気により駆動さ
れる少なくとも1台の蒸気タービンとを有する複合サイ
クル発電プラントにおける燃焼生成ガス中の窒素酸化物
ケこれeこアンモニア等の還元物質を注入して除去する
、複合サイクル発電プラントの脱硝制御装置において、
各ガスタービン系列ごとの窒素酸化物排出流量を検出す
る検出器群と、 この検出器群によって検出された各窒素に化物排出流量
の総和を演算する加算手段と、グランド全体の窒素酸化
物初出流量の目標値を設定する総排出流量設定手段と、 各ガスタービン系列の屋紮酸化物排出6tffi量目標
値を形成する演算制御手段と、 この演算制御手段から与えられる目標値とそれに対応す
る前記検出器の検出値との間の偏差を零にするように各
タービン系列ごとに+3!J ’jj己還元(肉質の注
入流量をfli制御する制御ど5群と、全備えたことを
#徴とする複合ナイクル蛇電ジ′。 ラントの脱硝!ti制御装置。
[Claims] Combustion in a combined cycle power plant having a plurality of gas turbines and at least one steam turbine driven by steam generated using heat contained in the exhaust gas of these gas turbines. In a denitrification control device for a combined cycle power plant, which removes nitrogen oxides from generated gas by injecting reducing substances such as ammonia,
A group of detectors for detecting the nitrogen oxide discharge flow rate for each gas turbine series, an addition means for calculating the sum of the nitrogen oxide discharge flow rate for each nitrogen detected by the detector group, and an initial nitrogen oxide flow rate for the entire gland. a total exhaust flow rate setting means for setting a target value for the total exhaust flow rate, an arithmetic control means for forming a target value for the amount of oxidized oxides discharged from each gas turbine series, and a target value given from the arithmetic control means and the detection corresponding thereto. +3 for each turbine series to reduce the deviation from the detected value to zero! J'jj self-reduction (fli control of the injection flow rate of flesh, etc.), and a composite Nycle snake electric diode which is fully equipped. Runt denitrification!ti control device.
JP14599483A 1983-08-10 1983-08-10 Denitrating controller for composite cycle power generating plant Pending JPS6036818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14599483A JPS6036818A (en) 1983-08-10 1983-08-10 Denitrating controller for composite cycle power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14599483A JPS6036818A (en) 1983-08-10 1983-08-10 Denitrating controller for composite cycle power generating plant

Publications (1)

Publication Number Publication Date
JPS6036818A true JPS6036818A (en) 1985-02-26

Family

ID=15397703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14599483A Pending JPS6036818A (en) 1983-08-10 1983-08-10 Denitrating controller for composite cycle power generating plant

Country Status (1)

Country Link
JP (1) JPS6036818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237805A (en) * 1985-04-13 1986-10-23 Babcock Hitachi Kk Starting method for combined cycle plant
JPS62118012A (en) * 1985-11-15 1987-05-29 Hitachi Ltd Operating method for combined plant
JPH0874515A (en) * 1995-04-21 1996-03-19 Hitachi Ltd Combined plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237805A (en) * 1985-04-13 1986-10-23 Babcock Hitachi Kk Starting method for combined cycle plant
JPS62118012A (en) * 1985-11-15 1987-05-29 Hitachi Ltd Operating method for combined plant
JPH0627484B2 (en) * 1985-11-15 1994-04-13 株式会社日立製作所 Operating method of combined plant
JPH0874515A (en) * 1995-04-21 1996-03-19 Hitachi Ltd Combined plant

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
US20080147289A1 (en) Methods and apparatus to facilitate gas turbine fuel control
JPS6333372B2 (en)
JPH0129029B2 (en)
JPS6036818A (en) Denitrating controller for composite cycle power generating plant
JPH09317499A (en) Control method for blast furnace gas monofuel combustion gas turbine
JP2693106B2 (en) DeNOx control device
JP2613248B2 (en) Load control device for single shaft combined cycle power plant
JP2519727B2 (en) Gas turbine injection steam control device
JP3263184B2 (en) DeNOx control device
JPS6362251B2 (en)
JPH0523538A (en) Denitration control device
JPH08326508A (en) Denitration control device
JPH08338263A (en) Denitration control device
JPH0461168B2 (en)
JP2772233B2 (en) DeNOx control device
JPS60173323A (en) Nox concentration control device
JPH03286150A (en) Control for turbine-compressor and power generator unit
JPH0454812B2 (en)
JPH0615142A (en) Denitrification controller
JPS62234528A (en) Method and apparatus for denitration of combined plant
JPH10159507A (en) Diesel engine/boiler load sharing controlling device
JPS62178812A (en) Air distribution controlling method for high speed fluidized bed boiler
JPS61138836A (en) Gas turbine controller
JPS5982531A (en) Discharged nitrogen-oxide concentration controller for gas turbine