JPS6036537B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS6036537B2
JPS6036537B2 JP15787376A JP15787376A JPS6036537B2 JP S6036537 B2 JPS6036537 B2 JP S6036537B2 JP 15787376 A JP15787376 A JP 15787376A JP 15787376 A JP15787376 A JP 15787376A JP S6036537 B2 JPS6036537 B2 JP S6036537B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration system
refrigerant liquid
impeller
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15787376A
Other languages
Japanese (ja)
Other versions
JPS5383142A (en
Inventor
康夫 小川
正美 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15787376A priority Critical patent/JPS6036537B2/en
Publication of JPS5383142A publication Critical patent/JPS5383142A/en
Publication of JPS6036537B2 publication Critical patent/JPS6036537B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単段又は複数段羽根車の遠心圧縮機を用いた冷
凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system using a centrifugal compressor with a single-stage or multiple-stage impeller.

〔従来の技術〕[Conventional technology]

ターボ冷凍機においては運転条件によっては、圧縮機吐
出冷煤ガス温度が高温となり、袷媒分解温度以上に上昇
することがある。
In a centrifugal chiller, depending on operating conditions, the temperature of the cold soot gas discharged from the compressor becomes high and may rise above the liner decomposition temperature.

これを防止するために、従来、例えば単段圧縮機では袷
煤ガス吸込管にスプレーノズルを配設し、フロート弁室
より凝縮器−吸込管の差圧を利用して凝縮冷媒液を噴射
して吐出温度を下げる方法か、スプレーノズルを冷媒ガ
ス吐出管に配設し、冷媒ポンプを使ってフロート弁室よ
りの凝縮冷媒液を噴射し吐出温度を下げる、等の方法が
とられていた。〔発明が解決しようとする問題点〕 しかし前者の場合、袷煤液が吸入されることにより湿り
圧縮となり、羽根車の損耗等の原因となり、又、後者の
場合は冷媒ポンプを必要とする、などの欠点があった。
To prevent this, conventionally, for example, in a single-stage compressor, a spray nozzle was installed in the soot gas suction pipe, and the condensed refrigerant liquid was injected from the float valve chamber using the differential pressure between the condenser and the suction pipe. Alternatively, a spray nozzle is installed in the refrigerant gas discharge pipe and a refrigerant pump is used to inject condensed refrigerant liquid from the float valve chamber to lower the discharge temperature. [Problems to be solved by the invention] However, in the former case, the soot liquid is sucked in, resulting in wet compression, which causes wear and tear on the impeller, and in the latter case, a refrigerant pump is required. There were drawbacks such as.

本発明は、羽根車出口付近のケーシング内が反動度1よ
り可なり低〈吐出圧力よりも低い静圧を示すことを利用
して、羽根車出口付近に冷媒液導入径路を導くことによ
り、冷煤を湿り圧縮状態とせずに、また特にポンプを必
要ともせずに吐出流体に混入せしめることができる冷凍
装置を提供することを目的とするものである。〔問題点
を解決するための手段〕 本発明は、問題点を解決するための手段として、羽根車
出口付近より渦巻室までのく出口付近及び渦巻室自体も
含む)ケーシング部に冷煤液導入径路の端部閉口を備え
た遠心圧縮機、凝縮器、蒸発器及びこれらの機器を接続
する冷媒径路を有し、前記凝縮器にて凝縮した冷媒液の
一部を前記袷媒液導入径路にて前記ケーシング内部に導
くよう構成したことを特徴とする冷凍装置を提供せんと
するものである。
The present invention utilizes the fact that the inside of the casing near the impeller outlet exhibits a static pressure that is considerably lower than the reaction rate 1 (lower than the discharge pressure), and by guiding a refrigerant liquid introduction path near the impeller outlet, cooling is achieved. It is an object of the present invention to provide a refrigeration system that can mix soot into a discharge fluid without bringing it into a wet compressed state and without particularly requiring a pump. [Means for Solving the Problems] As a means for solving the problems, the present invention introduces cold soot liquid into the casing portion (including the vicinity of the exit from the impeller outlet to the volute chamber and the volute chamber itself). A centrifugal compressor, a condenser, an evaporator, and a refrigerant path connecting these devices are provided with a closed end of the path, and a part of the refrigerant liquid condensed in the condenser is transferred to the refrigerant liquid introduction path. It is an object of the present invention to provide a refrigeration system characterized in that the refrigeration system is configured such that the refrigeration system is guided into the inside of the casing.

〔実施例〕〔Example〕

本発明を実施例につき図面を用いて説明すれば、第1図
において、1は蒸発器、2は圧縮機で単段の羽根車3が
電動機4により駆動され、5は凝縮器、6はフロート弁
室、9は冷水配管、10は冷却水配管である。
To explain the present invention with reference to the drawings, 1 is an evaporator, 2 is a compressor, a single-stage impeller 3 is driven by an electric motor 4, 5 is a condenser, and 6 is a float. A valve chamber, 9 a cold water pipe, and 10 a cooling water pipe.

各機器間は管路13,15,16袷煤液導入径路として
の冷媒液導入管11により接続され、フロート弁室6に
はフロート弁8が設けられている。第2図は羽根車3付
近の詳細図で、ケーシング17は渦巻室18とディフュ
ーザ12を有する。
The respective devices are connected by pipes 13, 15, 16 and a refrigerant liquid introduction pipe 11 as a soot liquid introduction path, and a float valve 8 is provided in the float valve chamber 6. FIG. 2 is a detailed view of the vicinity of the impeller 3, in which the casing 17 has a swirl chamber 18 and a diffuser 12.

導入管11の先端の端部は羽根車3の出口付近のケーシ
ング17の内部に開口している。このような構成の冷凍
装置を運転すれば、羽根車3にて圧縮された袷媒は凝縮
器5に入り冷却されて凝縮し、袷媒液となりフロート弁
室6に入り、フロート弁8より下に流下し一部は導入管
11に入る。
The tip end of the introduction pipe 11 opens into the inside of the casing 17 near the outlet of the impeller 3. When the refrigeration system with such a configuration is operated, the liner medium compressed by the impeller 3 enters the condenser 5, is cooled and condensed, becomes liner liquid, enters the float valve chamber 6, and flows below the float valve 8. A part of the water flows down into the introduction pipe 11.

残りの大部分の冷嬢液は更に蒸発器1に導かれて蒸発し
、冷媒蒸気は圧縮機2の吸込口に吸い込まれ、羽根車3
で再び圧縮される。導入管11に入った袷媒液は第2図
に示す如く羽根車3の出口付近でデイフューザ12の入
口付近に導かれる。単段変速遠心圧縮機においては−般
に羽根車の出口付近でディフューザの入口部においては
反動度は1より可なり低く0.5〜0.扮聖度であり、
静圧が低〈吸込圧と吐出圧との中間圧となるのでフロー
ト弁室6からの冷媒液を吸い欠むことができ、管路16
からの蒸気と混合して再び凝縮器5に入り冷凍サイクル
が繰り返される。本実施例はこのように構成され作用す
るので、フロート弁室の冷媒液が羽根車出口に噴射され
、冷媒ガス吐出温度を下げることができるが、この際に
騒動力を増すこともなく、又特に冷煤ポンプを使うこと
も必要なくなる。第3図は別の実施例を示し、遠心圧縮
機の吐出以降の高圧流体径路と、羽根車出口付近より渦
巻室までのケーシング部との間を接続する循環径路とし
て、管路13と羽根車3の出口付近の間を循環径路19
,2川こより接続し、その間にェゼク夕21を設けたも
ので、導入管11はェゼクタ21の低圧部に接続され、
導入管11、ェゼクタ21、循環径路201こより流体
導入径路が形成されているもので、ヱゼクタ21の吸込
効果により冷煤液が導入される。
Most of the remaining refrigerant liquid is further led to the evaporator 1 and evaporated, and the refrigerant vapor is sucked into the suction port of the compressor 2, and the impeller 3
is compressed again. The medium liquid that has entered the introduction pipe 11 is guided near the outlet of the impeller 3 and near the inlet of the diffuser 12, as shown in FIG. In a single-speed centrifugal compressor, the degree of reaction is generally much lower than 1 and 0.5 to 0.0 at the impeller outlet and diffuser inlet. It is disguised holiness,
Since the static pressure is low (between the suction pressure and the discharge pressure), the refrigerant liquid from the float valve chamber 6 can be sucked out, and the pipe line 16
The refrigeration cycle is repeated by mixing with the steam from the refrigeration tank and entering the condenser 5 again. Since the present embodiment is configured and operates in this way, the refrigerant liquid in the float valve chamber is injected to the impeller outlet, and the refrigerant gas discharge temperature can be lowered, but at this time, the turbulent force is not increased, and In particular, there is no need to use a cold soot pump. FIG. 3 shows another embodiment, in which a conduit 13 and an impeller are used as a circulation path connecting the high-pressure fluid path after the discharge of the centrifugal compressor and the casing section from near the impeller outlet to the volute chamber. Circulation path 19 runs between the vicinity of the exit of 3.
, two rivers are connected, and an ejector 21 is provided between them, and the introduction pipe 11 is connected to the low pressure part of the ejector 21.
A fluid introduction path is formed from the introduction pipe 11, the ejector 21, and the circulation path 201, and cold soot liquid is introduced by the suction effect of the ejector 21.

第4図は別の実施例を示し、導入管11の先端がノズル
22となり羽根車3の出口のディフューザ12の入口で
、流れの方向に向いて設けられているもので、前述の例
と同様な効果を有する。
FIG. 4 shows another embodiment, in which the tip of the introduction pipe 11 becomes the nozzle 22, which is provided at the inlet of the diffuser 12 at the outlet of the impeller 3, facing in the direction of flow, similar to the previous example. It has a great effect.

なお第5図は別の実施例を示し、なお渦巻室18部内流
体の速度は羽根車出口部における速度と比較して相当減
速されていて吐出管25内の速度に近くなっているが、
圧縮機の吐出部には通常拡大管23があるので吐出管内
速度よりおそくなっている。それ故渦巻室18内の圧力
はフロート弁室6内圧力より低くなっている。それ故渦
巻室18部に配管11の閉口部を設けることも可能であ
る。また液冷媒をケ−シング内に入れるときは第5図の
如くスプレーノズル24を用いて霧状にして冷煤ガスと
良く混合するようにするのが望ましい。以上の実施例は
単段羽根車のものについて記してあり、単段圧縮機では
中間圧の部分を得ることが困難であったので、特に効果
は大なるものであるが、複数段羽根車のものに用いても
勿論同様な効果を有する。
Note that FIG. 5 shows another embodiment, in which the velocity of the fluid in the swirl chamber 18 is considerably reduced compared to the velocity at the impeller outlet and is close to the velocity in the discharge pipe 25.
Since there is usually an expansion tube 23 in the discharge section of the compressor, the speed is slower than the velocity inside the discharge tube. Therefore, the pressure in the swirl chamber 18 is lower than the pressure in the float valve chamber 6. Therefore, it is also possible to provide a closed part of the pipe 11 in the volute chamber 18. Further, when the liquid refrigerant is introduced into the casing, it is preferable to use a spray nozzle 24 as shown in FIG. 5 to atomize the liquid refrigerant so that it mixes well with the cold soot gas. The above examples have been described for single-stage impellers, and since it was difficult to obtain an intermediate pressure part with a single-stage compressor, the effect is particularly large, but multi-stage impellers are suitable. Of course, it has the same effect even when used for things.

また、冷凍サイクル用のみならず、熱を汲み上げるヒー
トポンプサイクル用として用いる場合においても同様な
効果を有する。
Further, similar effects can be obtained not only when used in a refrigeration cycle but also when used in a heat pump cycle that pumps up heat.

本発明により、動力増加もなく、ポンプも特に設ける必
要なく、冷媒液を羽根車出口付近に噴出せしめて湿り圧
縮に基づく羽根車の損耗を招くことなく冷却し冷媒の分
解を防ぐことができる冷凍装置を提供することができ、
実用上極めて大なる効果を奏するものである。
According to the present invention, there is no increase in power, there is no need to specifically install a pump, and the refrigerant liquid can be jetted near the impeller outlet to cool the impeller without causing wear and tear due to wet compression, and to prevent refrigerant decomposition. can provide equipment,
This has an extremely large practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はフローシート、
第2図は羽根車付近の詳細断面図、第3図及び第4図は
それぞれ別の実施例の羽根車付近の詳細断面図、第5図
は別の実施例の断面側面図である。 1・・・・・・蒸発器、2・・・・・・圧縮機、3・・
・・・・羽根車、4・・・・・・電動機、5・・・・・
・凝縮器、6・・・・・・フロート弁室、8・・・・・
ワロート弁、9・・・・・・冷水配管、10・・・・・
・冷却水配管、11・・・・・・導入管、12・・・・
・・ディフューザ、13,15,16……管路、17…
…ケーシング、18・・・・・・渦巻室、19,20・
・・・・・循環径路、21・・・・・・ェゼクタ、22
・・・・・・ノズル、23・・・・・・拡大管、24・
・・…スプレーノズル、25・・・・・・吐出管。 第1図 第2図 第3図 第4図 第5図
The drawings show an embodiment of the present invention, and FIG. 1 is a flow sheet;
FIG. 2 is a detailed sectional view of the vicinity of the impeller, FIGS. 3 and 4 are detailed sectional views of the vicinity of the impeller of another embodiment, and FIG. 5 is a sectional side view of another embodiment. 1...Evaporator, 2...Compressor, 3...
... Impeller, 4 ... Electric motor, 5 ...
・Condenser, 6...Float valve chamber, 8...
Waroth valve, 9...Cold water piping, 10...
・Cooling water piping, 11...Introduction pipe, 12...
... Diffuser, 13, 15, 16... Pipeline, 17...
...Casing, 18... Vortex chamber, 19, 20.
... Circulation path, 21 ... Ejector, 22
...Nozzle, 23... Enlargement tube, 24.
...Spray nozzle, 25...Discharge pipe. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 羽根車出口付近より渦巻室までのケーシング部に冷
媒液導入径路の端部開口を備えた遠心圧縮機、凝縮器、
蒸発器及びこれらの機器を接続する冷媒径路を有し、前
記凝縮器にて凝縮した冷媒液の一部を前記冷媒液導入径
路にて前記ケーシング部に導くよう構成したことを特徴
とする冷凍装置。 2 前記ケーシングがデイフユーザを有し、前記端部開
口が前記デイフユーザ入口に設けられている特許請求の
範囲第1項記載の冷凍装置。 3 前記冷媒液導入径路が、前記遠心圧縮機の吐出口以
降の高圧流体径路と、前記羽根車出口付近より前記渦巻
室までの前記ケーシング部との間を接続する循環径路中
に設けたエゼクタの吸引部に接続され、エゼクタ以降の
前記循環径路を前記冷媒液導入径路の一部とするよう構
成された特許請求の範囲第1項記載の冷凍装置。 4 前記端部開口が、前記羽根出口付近の流れの方向に
向かつているノズルである特許請求の範囲第1項記載の
冷凍装置。 5 前記冷媒液導入径路の前記端部開口にスプレーノズ
ルを取りつけた特許請求の範囲第1項記載の冷凍装置。
[Scope of Claims] 1. A centrifugal compressor, a condenser, and a condenser having an opening at the end of a refrigerant liquid introduction path in a casing portion from near the impeller outlet to the vortex chamber;
A refrigeration device comprising an evaporator and a refrigerant path connecting these devices, and configured to introduce a part of the refrigerant liquid condensed in the condenser to the casing part through the refrigerant liquid introduction path. . 2. The refrigeration system according to claim 1, wherein the casing has a differential user, and the end opening is provided at the inlet of the differential user. 3. An ejector in which the refrigerant liquid introduction path is provided in a circulation path connecting a high-pressure fluid path after the discharge port of the centrifugal compressor and the casing section from near the impeller exit to the swirl chamber. 2. The refrigeration system according to claim 1, wherein the refrigeration system is connected to a suction part and configured to make the circulation path after the ejector part of the refrigerant introduction path. 4. The refrigeration system according to claim 1, wherein the end opening is a nozzle facing in the direction of flow near the blade outlet. 5. The refrigeration system according to claim 1, wherein a spray nozzle is attached to the end opening of the refrigerant liquid introduction path.
JP15787376A 1976-12-29 1976-12-29 Refrigeration equipment Expired JPS6036537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15787376A JPS6036537B2 (en) 1976-12-29 1976-12-29 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15787376A JPS6036537B2 (en) 1976-12-29 1976-12-29 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5383142A JPS5383142A (en) 1978-07-22
JPS6036537B2 true JPS6036537B2 (en) 1985-08-21

Family

ID=15659262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15787376A Expired JPS6036537B2 (en) 1976-12-29 1976-12-29 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6036537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214697A (en) * 1982-06-08 1983-12-13 Ebara Corp Centrifugal type heat pump
US4571151A (en) * 1983-08-26 1986-02-18 General Electric Company Liquid injection control in multi-stage compressor

Also Published As

Publication number Publication date
JPS5383142A (en) 1978-07-22

Similar Documents

Publication Publication Date Title
CN102037245B (en) Methods and systems for injecting liquid into screw compressor for noise suppression
US20140182317A1 (en) Economized Centrifugal Compressor
WO2015014211A1 (en) Spiral flow constant pressure pump
US2967410A (en) Motor cooling arrangement for hermetically sealed refrigerant compressor unit
CN109162934A (en) Compressor and air-conditioning system
KR102105660B1 (en) A turbo chiller
JPS54131104A (en) Centrifugal compressor
US3390545A (en) Boundary layer control on interstage guide vanes of a multistage centrifugal compressor in a refrigeration system
JPS6036537B2 (en) Refrigeration equipment
CN111373213B (en) Two-stage oil power injector system
US3006164A (en) Reversible refrigeration system
US5499509A (en) Noise control in a centrifugal chiller
RU2413141C2 (en) Jet pump for cooling or heating systems
JP2009185708A (en) Turbo compressor and refrigerator
JPS6114427B2 (en)
JP2626253B2 (en) Turbo compressor
US3045603A (en) Self-priming centrifugal pump
US3185107A (en) Vortex jet pump
JPS6360301B2 (en)
CN210033882U (en) Compressor and air conditioning system
EP3434999A1 (en) Refrigeration cycle apparatus
US3188976A (en) Jet pump
SU1566085A1 (en) Liquid-ring machine
WO2023225930A1 (en) Valve arrangement for refrigerant compressor
SU1379586A1 (en) Steam-to-liquid heat exchanger