JPS603635B2 - How to constantly monitor the health of the reactor vessel - Google Patents

How to constantly monitor the health of the reactor vessel

Info

Publication number
JPS603635B2
JPS603635B2 JP56037627A JP3762781A JPS603635B2 JP S603635 B2 JPS603635 B2 JP S603635B2 JP 56037627 A JP56037627 A JP 56037627A JP 3762781 A JP3762781 A JP 3762781A JP S603635 B2 JPS603635 B2 JP S603635B2
Authority
JP
Japan
Prior art keywords
paragraph
gas
vessel
space
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56037627A
Other languages
Japanese (ja)
Other versions
JPS57151893A (en
Inventor
章 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP56037627A priority Critical patent/JPS603635B2/en
Priority to US06/333,185 priority patent/US4495137A/en
Priority to DE19823201812 priority patent/DE3201812A1/en
Publication of JPS57151893A publication Critical patent/JPS57151893A/en
Publication of JPS603635B2 publication Critical patent/JPS603635B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 本発明は、高速増殖炉をはじめ各種原子炉の炉容器また
はガードベツ、セルの健全性に関し、更に詳しくは、炉
容器とガードベッセルとの間に形成した密閉空間からの
標識ガスの漏洩の有無を検知することによって、上記構
成部材の健全性を使用中でも監視できる方法に関するも
のである。
Detailed Description of the Invention The present invention relates to the integrity of reactor vessels, guard vessels, and cells of various nuclear reactors including fast breeder reactors, and more specifically, to the integrity of reactor vessels, guard vessels, and cells of various nuclear reactors, including fast breeder reactors. The present invention relates to a method for monitoring the health of the component while in use by detecting the presence or absence of leakage of marker gas.

従来、原子炉容器およびそれに付属する配管等の健全性
の検査は、テレビカメラ等を用いてそれら炉容器等の溶
接線に対して、しかも炉の運転停止期間中だけ行われて
いる。しかし、このようなテレビカメラによる間接目視
法では、微細な亀裂を常に確実に検知することは困難で
あるし、炉運転中は実施できないし、従って欠陥の発見
に時間がかかるといったような問題があり、勿論欠陥が
生じないよう十分な注意を払って製作され保守されては
いるものの、万一の場合の安全性の面から見て改善の余
地が残されていた。本発明は、このような従来技術の実
情に鑑みなされたものであって、その目的は、炉容器の
溶接部だけでなく、炉容器へ接続されている配管を含め
た炉容器全面およびガードベツセル全面の健全性を炉の
運転中においても常時監視することができ、それによっ
て原子炉の安全性を更に一段と高めうるような方法を提
供することにある。
Conventionally, the integrity of the reactor vessel and its attached piping has been inspected using a television camera or the like on the weld lines of the reactor vessel, etc., and only during the period when the reactor is out of operation. However, with this indirect visual inspection method using a television camera, it is difficult to always reliably detect minute cracks, and it cannot be carried out while the furnace is operating, so there are problems in that it takes time to discover defects. Although they were manufactured and maintained with great care to prevent defects, there was still room for improvement in terms of safety in the event of an emergency. The present invention has been made in view of the actual state of the prior art, and its purpose is to cover not only the welded parts of the furnace vessel but also the entire surface of the furnace vessel including the piping connected to the furnace vessel and the guard vessel. An object of the present invention is to provide a method that can constantly monitor the overall health of the reactor even during operation, thereby further increasing the safety of the reactor.

かかる目的を達成するため、本発明によれば、原子炉容
器とそれを函綾するガードベッセルとの間の空間を密閉
構造とし、この密閉空間内に標識ガスを加圧封入し、該
標識ガスの密閉空間からの漏洩の有無を常時監視するよ
う構成されている。従って、万一、原子炉容器、ガード
ベツセル、あるいは一次冷却材配管等に亀裂が生じた場
合、その亀裂からの標識ガスの漏洩を検出することによ
って、異常事態の発生を迅速に検知することができるの
である。以下、図面に基づき本発明について詳述する。
In order to achieve such an object, according to the present invention, the space between the reactor vessel and the guard vessel enclosing the reactor vessel is made into a sealed structure, a marker gas is pressurized and sealed in this sealed space, and the marker gas is sealed. The system is configured to constantly monitor whether there is any leakage from the sealed space. Therefore, in the unlikely event that a crack occurs in the reactor vessel, guard vessel, or primary coolant pipe, it is possible to quickly detect the occurrence of an abnormal situation by detecting the leakage of marker gas from the crack. It can be done. Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の一実施列を示すもので、炉心1を収容
している炉容器2と、それを函続しているガードベッセ
ル3との間を、溶接部4にて接合することによって閉じ
た空間とし、その密閉空間5内に標識ガスを加圧状態と
なるように封入し、また、その密閉空間5の圧力を測定
する圧力計6、炉容器2の上部カバーガス空間7及びガ
ードベッセル外側のガ領域にて前記標識ガスの有無を検
知しうる標識ガスの検出機構8,9を設けた装置構成か
ら探られている。ガードベッセル3は、原子炉冷却材の
入口配管部10及び出口配管部11の近傍も覆うが、そ
れらの延長部に例えばべロー(図示するを省略)等を設
けて閉じた空間とする。このように、炉容器とガードベ
ツセルとの間の空間を密閉構造とするには、両者間を熔
接接合すればよいのであるが、より信頼性の高い密閉空
間を形成するには、本発明者が先に提案した「原子炉」
の発明(特願昭56−7336号)の技術を利用するこ
とができる。
FIG. 1 shows one embodiment of the present invention, in which a reactor vessel 2 housing a reactor core 1 and a guard vessel 3 enclosing the reactor vessel 2 are joined at a welding portion 4. The sealed space 5 is made into a closed space, and a marker gas is sealed in the sealed space 5 to be in a pressurized state, and a pressure gauge 6 for measuring the pressure in the sealed space 5, an upper cover gas space 7 of the furnace vessel 2, and A device configuration is being explored that includes marker gas detection mechanisms 8 and 9 that can detect the presence or absence of the marker gas in the gas area outside the guard vessel. The guard vessel 3 also covers the vicinity of the inlet piping section 10 and the outlet piping section 11 of the reactor coolant, but their extensions are provided with, for example, bellows (not shown) to form a closed space. In this way, in order to create a sealed structure in the space between the furnace vessel and the guard vessel, it is sufficient to weld them together, but in order to form a more reliable sealed space, the present inventor "Nuclear reactor" first proposed by
(Japanese Patent Application No. 56-7336) can be utilized.

第2図は、そのような技術を利用した他の実施例を示し
ている。
FIG. 2 shows another embodiment utilizing such technology.

炉容器2とガードベッセル3との間の空間5と、ガード
ベッセル外部の空間とがマノメータ構造体15を介して
蓮通し、該マノメータ構造体15内に液体を満たすこと
によって前記空間5を密封でき、しかも加圧状態を保つ
ことができるようになっており、その密閉空間には標識
ガスが封入されている。圧力計として前記マノメータ構
造体15の一部に液封材料のレベル計16が設けられて
いる。それ以外の構成は、第1図のものとほぼ同様だか
ら、同一符号を付すにとどめ、それらについての記載は
省略する。原子炉容器2あるいはそれに接続されている
一次冷却系配管部に亀裂などの損傷が発生したとすると
、封入されている標識ガスはその損傷部位から原子炉容
器2内に進入し、炉容器上部のカバーガス空間7や一次
冷却系機器内のカバーガス空間(図示せず)に漏洩して
くるので、例えばカバーガス空間7中に設けた標識ガス
の検出機構8によって直ちに検知され、炉容器2の損傷
を早期に検知できる。
The space 5 between the furnace vessel 2 and the guard vessel 3 and the space outside the guard vessel pass through each other through the manometer structure 15, and the space 5 can be sealed by filling the manometer structure 15 with liquid. Moreover, it is possible to maintain a pressurized state, and the sealed space is filled with a marker gas. A level gauge 16 made of liquid sealing material is provided as a pressure gauge in a part of the manometer structure 15. Since the other configurations are almost the same as those in FIG. 1, the same reference numerals are given, and the description thereof will be omitted. If damage such as a crack occurs in the reactor vessel 2 or the primary cooling system piping connected to it, the sealed marker gas will enter the reactor vessel 2 from the damaged area and enter the reactor vessel 2 at the top of the reactor vessel. Since it leaks into the cover gas space 7 and the cover gas space (not shown) in the primary cooling system equipment, it is immediately detected by, for example, a marker gas detection mechanism 8 installed in the cover gas space 7, and the gas leaks into the reactor vessel 2. Damage can be detected early.

また、ガードベッセル3に損傷が発生した場合、標識ガ
スは外側空間に漏洩してくるので、標識ガスの検出機構
9によって同様に検知できる。標識ガスの漏洩の有無の
検出を最も簡便に行なうには、密閉空間5に、例えば約
1.5〜約3気圧(絶対圧)の範囲内で一定圧になるよ
うに標識ガスを封入しておき、第1図の実施例の場合、
その圧力変化をガードベッセル3に取付けた圧力計6を
用いて測定するようにすればよい。また、第2図に示す
ような実施例の場合には、マノメータ構造体15を利用
して、その液位変化をレベル計16で測定することによ
って圧力の変化を監視することができる。圧力変化測定
の際には、標識ガスの温度変化による体積変化を補償す
る必要がある。これら圧力計6またはしベル計16によ
る圧力測定と標識ガスの検出機構8,9の測定結果によ
って炉容器やガードベッセル等に損傷がないかどうか常
時正確に判断することができる。また、上記のことから
明らかなように、圧力計6またはしベル計16と標識ガ
ス検出機構8,9は、少なくともどちらか一方あればよ
いのであるが、むろん並設することもできる。本発明方
法において、原子炉容器2とガードベッセル3との間に
形成された密閉空間5に圧入する標識ガスとしては、ヘ
リウムガスやその他の希ガス、またはそれらの混合ガス
のような不活性ガスが好ましい。
Further, if damage occurs to the guard vessel 3, the marker gas leaks into the outer space, and therefore can be similarly detected by the marker gas detection mechanism 9. In order to most easily detect the presence or absence of a leak of the marker gas, the marker gas is sealed in the sealed space 5 to a constant pressure within the range of, for example, about 1.5 to about 3 atm (absolute pressure). In the case of the embodiment shown in FIG.
The pressure change may be measured using a pressure gauge 6 attached to the guard vessel 3. Further, in the case of the embodiment shown in FIG. 2, changes in pressure can be monitored by using a manometer structure 15 and measuring changes in the liquid level with a level meter 16. When measuring pressure changes, it is necessary to compensate for volume changes due to temperature changes in the marker gas. Based on the pressure measurement by the pressure gauge 6 or the bell gauge 16 and the measurement results of the marker gas detection mechanisms 8 and 9, it is possible to accurately judge at all times whether there is any damage to the reactor vessel, guard vessel, etc. Further, as is clear from the above, at least one of the pressure gauge 6 or the pressure gauge 16 and the marker gas detection mechanisms 8, 9 may be provided, but they may of course be arranged side by side. In the method of the present invention, the indicator gas to be pressurized into the closed space 5 formed between the reactor vessel 2 and the guard vessel 3 is an inert gas such as helium gas, other rare gases, or a mixture thereof. is preferred.

また、本発明において使用する標識ガスの検出機構8,
9は、標識ガスの存在、不存在を識別できる機構であれ
ばどのようなものでも適用できるが、通常はガスサンプ
リング装置およびそれと蓬携させたマススベクトルメー
タが好ましい。
Furthermore, the detection mechanism 8 for the marker gas used in the present invention,
9 can be applied to any mechanism that can identify the presence or absence of a marker gas, but usually a gas sampling device and a mass vector meter connected thereto are preferred.

なおその場合、標識ガスはマススベクトルメー外こよっ
て鋭敏に感知されうるものが含まれていることが好まし
い。例えば希ガスの特定の安定同位体を添加したもの、
あるいは特定の比率で混合したものを添加したガスを用
いれば標識ガスの漏洩の有無を迅速かつ確実に監視でき
る。希ガスの安定同位体としては、例えばネオン20、
ネオン21、ネオン22があるがこれらに限定されるも
のではない。本発明は、原子炉容器にガードベッセルを
併設する型式の原子炉であればどのような形式のもので
も適用可能である。
In this case, it is preferable that the marker gas contains one that can be more sensitively sensed than the mass vector. For example, those added with specific stable isotopes of rare gases,
Alternatively, if a gas mixed at a specific ratio is used, the presence or absence of leakage of the marker gas can be quickly and reliably monitored. Examples of stable isotopes of rare gases include neon 20,
There are neon 21 and neon 22, but it is not limited to these. The present invention is applicable to any type of nuclear reactor that has a guard vessel attached to the reactor vessel.

なお、以上とは逆に、ガードベツセルと炉容器との密閉
空間をガードベッセル外に対して負圧にし、密閉空間内
にガス検出機構を設けることにより、外部空間よりこの
密閉空間内への漏洩を検出する方法でガードベツセルの
亀裂を検出することも可能である。
Contrary to the above, by creating a negative pressure in the sealed space between the guard vessel and the furnace vessel with respect to the outside of the guard vessel and installing a gas detection mechanism in the sealed space, leakage from the outside space into this sealed space can be prevented. It is also possible to detect cracks in the guard cell by the method of detecting.

以上の説明から明らかなように、本発明方法によれば標
識ガスの漏洩の有無を原子炉の運転中であっても常時監
視することができ、万一の事故の場合も極めて早期に異
常を発見できるので万全の対応策をとることが可能とな
り、原子炉の安全性を更に一段と高めることができるも
のである。
As is clear from the above explanation, according to the method of the present invention, the presence or absence of leakage of marker gas can be constantly monitored even during operation of the nuclear reactor, and in the event of an accident, abnormalities can be detected at an extremely early stage. Since it can be detected, it is possible to take thorough countermeasures, and the safety of nuclear reactors can be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図は他の
実施例の説明図である。 1....・・炉D、2…・・・炉容器、3・・・・・
・ガードベッセル、5…・・・密閉空間、6・・・・・
・圧力計、8,9・・・・・・標識ガスの検出機構、1
5・・・・・・マノメータ構造体、16……レベル計。 第1図第2図
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram of another embodiment. 1. .. .. .. ...Furnace D, 2...Furnace vessel, 3...
・Guard vessel, 5... Closed space, 6...
・Pressure gauge, 8, 9... Marker gas detection mechanism, 1
5... Manometer structure, 16... Level meter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 原子炉容器とそれを囲繞するガードベツセルとの間
の空間を密閉構造とし、この密閉空間に標識ガスを加圧
状態になるように封入し、該標識ガスの密閉空間からの
漏洩の有無を常時監視するようにした原子炉容器または
ガードベツセルの健全性の常時監視方法。 2 密閉空間の圧力の変化を検出することにより標識ガ
スの漏洩の有無を監視する特許請求の範囲第1項記載の
方法。 3 原子炉容器又は一次冷却系機器内の上部カバーガス
空間内に設けた標識ガスの検出機構を用いて標識ガスの
炉内への漏洩の有無を監視する特許請求の範囲第1項ま
たは第2項記載の方法。 4 ガードベツセル外の空間に設けた標識ガスの検出機
構を用いて標識ガスのガードベツセルからの漏洩の有無
を監視する特許請求の範囲第1項、第2項、または第3
項記載の方法。 5 密閉空間内に加圧封入された標識ガスの圧力が約1
.5〜3気圧(絶対圧)である特許請求の範囲第1項、
第2項、第3項、または第4項記載の方法。 6 標識ガスがヘリウムガスである特許請求の範囲第1
項、第2項、第3項、第4項、または第5項記載の方法
。 7 標識ガスが希ガスの安定同位体を添加したガスであ
る特許請求の範囲第1項、第2項、第3項、第4項、第
5項、または第6項記載の方法。 8 ガスサンプリング装置と連携させたマススペクトル
メータを標識ガスの検出機構として用いる特許請求の範
囲第3項、第4項、第5項、第6項、または第7項記載
の方法。 9 原子炉が高速増殖炉である特許請求の範囲第1項、
第2項、第3項、第4項、第5項、第6項、第7項、ま
たは第8項記載の方法。
[Scope of Claims] 1. The space between the reactor vessel and the guard vessel surrounding it is made into a sealed structure, and a marking gas is sealed in this sealed space to be in a pressurized state, and the sealed space for the marking gas is sealed. A method for constantly monitoring the health of a reactor vessel or a guard vessel, which constantly monitors the presence or absence of leakage from the reactor vessel. 2. The method according to claim 1, which monitors whether or not a marker gas leaks by detecting a change in pressure in a closed space. 3 Claims 1 or 2 which monitor whether or not a marker gas has leaked into the reactor using a marker gas detection mechanism provided in the upper cover gas space in the reactor vessel or primary cooling system equipment. The method described in section. 4 Claims 1, 2, or 3 which monitor whether or not a marker gas leaks from the guard vessel using a marker gas detection mechanism provided in a space outside the guard vessel.
The method described in section. 5 The pressure of the marker gas sealed in the sealed space is approximately 1
.. Claim 1, which is 5 to 3 atmospheres (absolute pressure);
The method according to paragraph 2, paragraph 3, or paragraph 4. 6 Claim 1 in which the marker gas is helium gas
The method according to paragraph 2, paragraph 3, paragraph 4, or paragraph 5. 7. The method according to claim 1, 2, 3, 4, 5, or 6, wherein the marker gas is a gas to which a stable isotope of a rare gas is added. 8. The method according to claim 3, 4, 5, 6, or 7, wherein a mass spectrometer linked to a gas sampling device is used as a detection mechanism for the marker gas. 9 Claim 1, in which the nuclear reactor is a fast breeder reactor,
The method according to paragraph 2, paragraph 3, paragraph 4, paragraph 5, paragraph 6, paragraph 7, or paragraph 8.
JP56037627A 1981-01-21 1981-03-16 How to constantly monitor the health of the reactor vessel Expired JPS603635B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56037627A JPS603635B2 (en) 1981-03-16 1981-03-16 How to constantly monitor the health of the reactor vessel
US06/333,185 US4495137A (en) 1981-01-21 1981-12-21 Nuclear reactor
DE19823201812 DE3201812A1 (en) 1981-01-21 1982-01-21 "NUCLEAR NUCLEAR REACTOR"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56037627A JPS603635B2 (en) 1981-03-16 1981-03-16 How to constantly monitor the health of the reactor vessel

Publications (2)

Publication Number Publication Date
JPS57151893A JPS57151893A (en) 1982-09-20
JPS603635B2 true JPS603635B2 (en) 1985-01-29

Family

ID=12502868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56037627A Expired JPS603635B2 (en) 1981-01-21 1981-03-16 How to constantly monitor the health of the reactor vessel

Country Status (1)

Country Link
JP (1) JPS603635B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744271B (en) * 2019-11-01 2020-07-03 五矿二十三冶建设集团第二工程有限公司 Gas pipe network water-seal triangular method assembling construction method

Also Published As

Publication number Publication date
JPS57151893A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US5182076A (en) Method for monitoring the emplacement of a transportable element and the tightness of its joint with a fixed structure, and the use of this method
US6223587B1 (en) Device and method for permanently controlling the tightness of closing lids of containers for radioactive materials
JPH06300849A (en) Method for detecting leakage of radioactive gas of nuclear reactor and radioactivity monitor for nuclear reactor
Chopra et al. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel
US3936348A (en) Method and apparatus for detection of nuclear fuel rod failures
JPH04250398A (en) Monitoring apparatus for gas pressure in cask and using method thereof
US5539789A (en) Method and apparatus for identifying failed nuclear fuel rods during refueling in a reactor core
EP0036332B1 (en) Monitoring system for monitoring the state of nuclear reactor core
US4495137A (en) Nuclear reactor
US5668534A (en) Containment failure detection device and method
JPS603635B2 (en) How to constantly monitor the health of the reactor vessel
JPH0476596B2 (en)
JP2000258595A (en) Monitor for double lid of canister
CN110718310B (en) Replacement method of thermoelectric couple column of reactor core of pressure vessel of nuclear power station
JP2006017609A (en) Element test method of gasket for cask and its device
JP2004184390A (en) Apparatus and method for detecting state of radioactive substance vessel
JPS58150836A (en) Determining method for scale leakage of sodium
JP2004264162A (en) Installation and method for monitoring sealing of radioactive substance storage cask
JP7429493B2 (en) Method and device for detecting loss of sealing of metal cask, and metal cask
KR102209702B1 (en) Leakage detection apparatus for nuclear facilities and connecting pipe assembly including the same
CN207779977U (en) Nuclear power multifunctional gas on-line measurement monitoring device
JPS6228846B2 (en)
Fairtile Reactor coolant leakage detection systems
JPH0212034A (en) Instrument for measuring leakage rate of reactor containing vessel
Krauss et al. Helium mass spectrometer leak testing of dry fuel storage containers