JPS6036358B2 - Laser processing equipment - Google Patents

Laser processing equipment

Info

Publication number
JPS6036358B2
JPS6036358B2 JP52105646A JP10564677A JPS6036358B2 JP S6036358 B2 JPS6036358 B2 JP S6036358B2 JP 52105646 A JP52105646 A JP 52105646A JP 10564677 A JP10564677 A JP 10564677A JP S6036358 B2 JPS6036358 B2 JP S6036358B2
Authority
JP
Japan
Prior art keywords
laser
workpiece
laser beam
reflected
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52105646A
Other languages
Japanese (ja)
Other versions
JPS5439285A (en
Inventor
恩 大峰
実 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52105646A priority Critical patent/JPS6036358B2/en
Publication of JPS5439285A publication Critical patent/JPS5439285A/en
Publication of JPS6036358B2 publication Critical patent/JPS6036358B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 この発明はしーザビームを被加工物に照射し、被加工物
を溶接、切断、熱処理等の加工をするレーザ加工装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a laser processing apparatus that irradiates a workpiece with a laser beam to perform processes such as welding, cutting, and heat treatment on the workpiece.

従来知られているレーザ加工装置を第1図に示す。A conventionally known laser processing device is shown in FIG.

図において、1はしーザ発振器、2はしーザ発振器1か
ら放出されたレーザ・ビーム、3は集光器(放物面鏡)
、4は被加工物、5はしーザ・ビームの出力を測定する
パワーメータ、6はパワーメータ5から送られてくるレ
ーザ・パワーの信号をレーザ発振器1にフィードバック
するレーザパワー制御装置である。次に動作について説
明する。
In the figure, 1 is the laser oscillator, 2 is the laser beam emitted from the laser oscillator 1, and 3 is the condenser (parabolic mirror).
, 4 is a workpiece, 5 is a power meter that measures the output of the laser beam, and 6 is a laser power control device that feeds back the laser power signal sent from the power meter 5 to the laser oscillator 1. . Next, the operation will be explained.

先ずレーザ発振器1から放出されるレーザビーム2をそ
の通路に設けたパワーメータ5により遮蔽し、出力を測
定する。レーザパワー制御装置6は上記パワーメータ5
の測定出力に応じレーザ発振器1を制御し所定のレーザ
パワーに調整する。しかる後にビーム通路からパワーメ
ータ5を点線で示されるように外し、レーザビーム2を
集光器3により所定のスポットサイズに集光して、被加
工物4表面に照射する。被加工物4表面で吸収されるエ
ネルギーが熱エネルギーに変換され、被加工物4は溶接
、切断、または熱処理加工される。さらに加工終了後再
びレーザビーム2の通路をパワーメータ5により遮蔽し
てレーザ出力を測定し、加工に使用したレーザ出力を確
認する。しかし被加工物4に実際に吸収されるビームェ
ネルギPaはしーザ発振器1から放出されるビーム出力
Pから集光器3に於て熱ェネルギとして損失する光ェネ
ルギEMと被加工物4の表現で反射される光ェネルギE
Rとを差し引いた残りである。
First, a laser beam 2 emitted from a laser oscillator 1 is shielded by a power meter 5 provided in its path, and the output is measured. The laser power control device 6 is the power meter 5
The laser oscillator 1 is controlled according to the measured output and adjusted to a predetermined laser power. Thereafter, the power meter 5 is removed from the beam path as shown by the dotted line, and the laser beam 2 is focused to a predetermined spot size by the condenser 3 and irradiated onto the surface of the workpiece 4. Energy absorbed by the surface of the workpiece 4 is converted into thermal energy, and the workpiece 4 is welded, cut, or heat-treated. Furthermore, after the processing is completed, the path of the laser beam 2 is again blocked by the power meter 5 and the laser output is measured to confirm the laser output used for processing. However, the beam energy Pa actually absorbed by the workpiece 4 is expressed by the beam output P emitted from the laser oscillator 1, the optical energy EM lost as thermal energy in the condenser 3, and the workpiece 4. reflected light energy E
This is the remainder after subtracting R.

即ち被加工物に実際に吸収されるビームェネルギPa=
P−(EM十ER)となり、特に銅やアルミニウムのよ
うな反射率の大きな金属の加工では、ERが大きくなり
PaはPの10%以下となっている。またマグネシウム
などの蒸発しやすい金属の加工では、加工時間が長くな
るに従い集光器3の表面に不純物が蒸着して反射率が低
下し、その結果EMが大となる。しかるに従来の装置で
はしーザ発振器1から放出されるレーザ出力Pのみを測
定し、Pに一般的な物質の反射率刀をかけた、りPを被
加工物の吸収ェネルギとしていた。しかしりは実際にレ
ーザビームを照射している被加工物4表面の反射率と充
分に対応せず、その結果被加工物4の表面状態が不均一
で反射率が変化する場合や、被加工物4の形状により反
射率が大きく変化する場合には、加工作業中に被加工物
4の変化に体応してレーザ発振器1のビーム出力を制御
できず、加工成品の不均質、欠陥などを生ずる原因とな
っていた。特に鉄鋼の表面熱処理などの表面を溶融させ
ない加工や、金属簿板の切断加工では避けられない問題
となっている。また第2図に示されるように被加工物に
レーザビームを照射後被加工物4を断熱材で形成された
容器7中の純水8の中に入れ、鷹梓機1川こより純水8
の温度分布を均一にし、しかる後純水8の温度上昇を温
度計9により測定し、この測定値から被加工物4が吸収
したレーザ出力を算出するという方法もあるが、この方
法は被加工物4にし−ザビームを照射中に測定すること
ができず、またレーザ照射時間が長くなると、吸収エネ
ルギーは大部分放熱されてしまうので被加工物4が実際
に吸収したレーザェネルギーを測定することができない
等問題があった。
That is, the beam energy actually absorbed by the workpiece Pa=
P-(EM+ER), and especially when processing metals with high reflectance such as copper and aluminum, ER becomes large and Pa is 10% or less of P. Furthermore, when processing a metal that evaporates easily, such as magnesium, as the processing time becomes longer, impurities are deposited on the surface of the condenser 3 and the reflectance decreases, resulting in an increase in EM. However, in the conventional apparatus, only the laser output P emitted from the laser oscillator 1 is measured, and P is multiplied by the reflectance of a general material, and P is taken as the absorbed energy of the workpiece. However, the reflectance does not correspond sufficiently with the reflectance of the surface of the workpiece 4 that is actually irradiated with the laser beam, and as a result, the surface condition of the workpiece 4 may be uneven and the reflectance may change, or the If the reflectance changes greatly depending on the shape of the object 4, the beam output of the laser oscillator 1 cannot be controlled in response to changes in the object 4 during processing, which may cause non-uniformity or defects in the processed product. It was the cause of this. In particular, this problem is unavoidable in processes that do not melt the surface, such as surface heat treatment of steel, and in cutting metal plates. Further, as shown in FIG. 2, after irradiating the workpiece with a laser beam, the workpiece 4 is placed in pure water 8 in a container 7 made of a heat insulating material.
There is also a method of making the temperature distribution of the pure water 8 uniform, then measuring the temperature rise of the pure water 8 with a thermometer 9, and calculating the laser output absorbed by the workpiece 4 from this measurement value. Object 4 - It is not possible to measure the laser energy actually absorbed by the workpiece 4 because it is not possible to measure it while the laser beam is irradiating it, and if the laser irradiation time becomes long, most of the absorbed energy is dissipated. There were some problems, such as not being able to do it.

この発明は上記のような従来の装置の欠点を除去するた
めになされたもので、レーザビームの通路中に透過量が
既知であるビームスプリッタを設置し、このビームスプ
リッタの偏向面から反射されるレーザビームのェネルギ
を測定するカロリーメータを設けると共にレーザビーム
が集光器により熱として奪われる量を測定するカロリー
メータおよび被加工物の表面から反射されるレーザビ−
ムを全て吸収する反射ビーム吸収装置を配設し、これら
、ビームスプリッタ、カロリーメータ、反射ビーム吸収
装置により、加工中に被加工物に吸収される真のレーザ
ビームパワ−を検出し、これらの検出値によりレーザパ
ワ−を所定値に制御することによって、表面状態が不均
一な被加工物をも不均質、欠陥を生ずることなく加工で
きるレーザ加工装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional device as described above. A beam splitter with a known amount of transmission is installed in the path of the laser beam, and the beam is reflected from the deflection surface of the beam splitter. A calorimeter is provided to measure the energy of the laser beam, and the calorimeter measures the amount of heat taken away by the laser beam by the condenser, and the laser beam reflected from the surface of the workpiece.
A reflected beam absorption device that absorbs all of the laser beam is installed, and these devices, including a beam splitter, calorimeter, and reflected beam absorption device, detect the true laser beam power absorbed by the workpiece during processing. By controlling the laser power to a predetermined value based on the detected value, a laser processing apparatus is provided which can process a workpiece having an uneven surface condition without producing unevenness or defects.

以下第3図に示すこの発明の一実施例について説明する
An embodiment of the present invention shown in FIG. 3 will be described below.

図において、第1図と同一符号は同一または相当部分を
示し、7はしーザビームの分割化(反射率:透過率)が
既知であるビームスプリツタ、8はビームスプリッタ7
の偏向面より反射されるレーザビームを吸収するコーン
形カロリーメータであり、コーン9の内面には酸化物な
どの吸収体を塗布し、コーン9の外側には水冷管10を
取付け、コーン9及び水冷管1川ま断熱物質11で覆わ
れている。また水冷管10の入口と出口には、銅一コン
スタンタンなどの熱電体12を設値し、さらに熱電体1
2は差動増幅器13aに接続され、入口の水温と出口の
水温との温度差からコーン形カロリーメータ8が吸収し
たレーザビーム量を測定し、測定されたレーザビーム量
は信号PMとして差敷増幅器13aからしーザパワー制
御装置6へ伝送される。14は被加工物4の表面から反
射されるレーザビームを吸収する反射ビーム吸収装置で
あり、内面には酸化膜やリン酸塩などの吸収体を塗布し
、その外側には水冷管10を備えさらに全体は断熱物質
11で覆われて外部の温度変化による影響を少なくして
いる。
In the figure, the same reference numerals as in FIG. 1 indicate the same or equivalent parts, 7 is a beam splitter whose division (reflectance: transmittance) of the laser beam is known, and 8 is a beam splitter 7.
This is a cone-shaped calorimeter that absorbs the laser beam reflected from the deflection surface of the cone 9. The inner surface of the cone 9 is coated with an absorber such as oxide, and the outer surface of the cone 9 is equipped with a water-cooled tube 10. The water cooling pipe 1 is covered with a heat insulating material 11. In addition, a thermoelectric body 12 such as copper-constantan is set at the inlet and outlet of the water cooling pipe 10, and a thermoelectric body 12 is set at the inlet and outlet of the water cooling pipe 10.
2 is connected to a differential amplifier 13a, which measures the amount of laser beam absorbed by the cone calorimeter 8 from the temperature difference between the water temperature at the inlet and the water temperature at the outlet, and the measured laser beam amount is sent to the differential amplifier as a signal PM. 13a to the Caesar power control device 6. 14 is a reflected beam absorber that absorbs the laser beam reflected from the surface of the workpiece 4, the inner surface of which is coated with an absorber such as an oxide film or phosphate, and the outer surface of which is provided with a water-cooled tube 10. Furthermore, the entire structure is covered with a heat insulating material 11 to reduce the influence of external temperature changes.

また水袷管10の入口と出口には熱電体12を設置し、
さらに熱電体12は差動増幅器13bに接続され、入口
の水温と出口の水温との温度差から反射ビーム吸収装置
14が吸収したレーザビーム量を測定し、測定値は信号
LRとして差動増幅器13bからしーザ〃パワー制御装
置6へ伝送される。15は集光器3に当接して設けられ
たカロリーメータであり、集光器3により熱損失するレ
ーザビーム量を集光器3に当援する水冷管10の入口と
出口に設置した熱電体12により測定し、測定値は差動
増幅器13cにより信号LMとしてレーザパワー制御装
置6へ伝送される。
In addition, a thermoelectric body 12 is installed at the inlet and outlet of the water pipe 10,
Further, the thermoelectric body 12 is connected to a differential amplifier 13b, which measures the amount of laser beam absorbed by the reflected beam absorber 14 from the temperature difference between the water temperature at the inlet and the water temperature at the outlet, and the measured value is sent as a signal LR to the differential amplifier 13b. It is then transmitted to the Caesar power control device 6. 15 is a calorimeter provided in contact with the condenser 3, and thermoelectric bodies are installed at the inlet and outlet of the water-cooled tube 10 to transfer the amount of laser beam that is thermally lost by the condenser 3 to the condenser 3. 12, and the measured value is transmitted to the laser power control device 6 as a signal LM by the differential amplifier 13c.

レーザパワー制御装置6は、それぞれの差動増幅器13
から伝送される信号PM,LR,LMを受けて、それら
の信号をレーザ発振器1にフィードバックして所定の出
力を設定する。このような機構において、レーザ発振器
1から放出されるレーザビーム2は分割比(反射率:透
過率)が既知(透過率f%)であるビームスプリッタ7
を通過する。
The laser power control device 6 includes each differential amplifier 13
It receives signals PM, LR, and LM transmitted from the laser oscillator 1, and feeds these signals back to the laser oscillator 1 to set a predetermined output. In such a mechanism, a laser beam 2 emitted from a laser oscillator 1 is passed through a beam splitter 7 whose splitting ratio (reflectance:transmittance) is known (transmittance f%).
pass through.

一方、ビームスプリッタ7の偏向面より反射したレーザ
ビーム2は、コーン形カロリーメータ8によりその反射
ビーム量が検出され、検出量は信号PMとして差動増幅
器13aからしーザパワー制御装置6に伝送される。ビ
ームスプリッタ7を通過したレーザビームは集光器3に
より所定のスポットサイズに集東される。ここで集光器
3において熱として損失したレーザビーム量は集光器3
において熱として損失したレーザビーム量は集光器3に
接触するカロリーメータ15により検出され、検出量は
信号LMとして差動増幅器13cよりレーザパワー制御
装置6に伝送される。さらに、集光器3により集東され
たレーザビームは反射ビーム吸収装置14の一部に設け
られた穴、若しくはスリットを通って反射ビーム吸収装
置14内の被加工物4に照射される。被加工物4の表面
から反射されたレーザピームは反射ビーム吸収装置14
内面の吸収体により熱に変換される。従って反射ビーム
量は熱量として測定され、差動増幅器13bより信号L
Rとしてレーザパワー制御装置6に伝送される。以上の
装置により、被加工物4が吸収する真のし−ザパワ−P
aは、Pa=(−ごア)−LM−LRI−打mとなり、
PMはコーン形カロリーメータ8により測定され、ビー
ムスプリッタ7の透過率fは既知であり、LMはカロリ
ーメータ10により、そしてLRは反射ビーム吸収装置
により測定され、レーザパワー制御装置6に伝送されて
いるので、被加工物4が吸収する真のレーザパワーPa
を測定することができる。
On the other hand, the amount of the reflected beam of the laser beam 2 reflected from the deflection surface of the beam splitter 7 is detected by a cone-shaped calorimeter 8, and the detected amount is transmitted as a signal PM from the differential amplifier 13a to the laser power controller 6. . The laser beam that has passed through the beam splitter 7 is focused by the condenser 3 into a predetermined spot size. Here, the amount of laser beam lost as heat in the condenser 3 is
The amount of laser beam lost as heat is detected by the calorimeter 15 in contact with the condenser 3, and the detected amount is transmitted to the laser power control device 6 from the differential amplifier 13c as a signal LM. Furthermore, the laser beam focused by the condenser 3 passes through a hole or slit provided in a part of the reflected beam absorber 14 and is irradiated onto the workpiece 4 inside the reflected beam absorber 14 . The laser beam reflected from the surface of the workpiece 4 is transmitted to the reflected beam absorber 14.
It is converted into heat by the inner absorber. Therefore, the amount of reflected beam is measured as the amount of heat, and the signal L is output from the differential amplifier 13b.
It is transmitted as R to the laser power control device 6. With the above device, the true power P absorbed by the workpiece 4 is
a becomes Pa=(-goa)-LM-LRI-stroke m,
PM is measured by a cone calorimeter 8, the transmittance f of the beam splitter 7 is known, LM is measured by the calorimeter 10, and LR is measured by a reflected beam absorber and transmitted to the laser power controller 6. Therefore, the true laser power Pa absorbed by the workpiece 4
can be measured.

またレーザパワー制御装置6ではそれらの信号PM,
LM, LRから被加工物4が実際に吸収するレーザパ
ワーPaを所定の値に設定するようにレーザ発信器1を
制御して出力P=(半戸)を調整する。なお、上記実施
例ではビームスプIJッタからの反射ビーム量を測定す
る装置、及び被加工物から反射されるレーザビーム量を
測定する装置、及び集光器において損失するレーザビー
ム量を測定する装置で、吸収レーザヱネルギーの検出素
子として流水を用い、この温度上昇を熱電対により測定
したが吸収レーザェネルギの検出素子として金属線、サ
ーミスター、サーモパィルなどの熱起電力を利用した温
度検出器を利用してもよい。
In addition, the laser power control device 6 uses these signals PM,
The laser transmitter 1 is controlled so that the laser power Pa actually absorbed by the workpiece 4 from LM and LR is set to a predetermined value, and the output P=(half) is adjusted. In the above embodiment, a device for measuring the amount of reflected beam from the beam splitter, a device for measuring the amount of laser beam reflected from the workpiece, and a device for measuring the amount of laser beam lost in the condenser are used. In this method, running water was used as a detection element for absorbed laser energy, and the temperature rise was measured with a thermocouple.However, as a detection element for absorbed laser energy, a temperature detector using thermoelectromotive force such as a metal wire, thermistor, or thermopile was used. You may.

以上のようにこの発明はしーザビームが既知であるビー
ムスプリッタの偏向面から反射されるレーザビームのパ
ワーを測定すると共に集光器によるレーザビームの熱損
失量および被加工物の表面から反射されるレーザビーム
量をそれぞれ測定し、これら測定値に応じレーザ発振器
のレーザパワーを制御しているので、被加工物の表面状
態が如何様であっても被加工物が実際に吸収するレーザ
パワーは常に所定値に自動的に設定され被加工物は均一
に欠陥なく加工される。
As described above, the present invention measures the power of the laser beam reflected from the deflection surface of a beam splitter whose laser beam is known, and also measures the amount of heat loss of the laser beam by the condenser and the amount of heat reflected from the surface of the workpiece. Since the amount of each laser beam is measured and the laser power of the laser oscillator is controlled according to these measured values, the laser power actually absorbed by the workpiece is always constant, regardless of the surface condition of the workpiece. It is automatically set to a predetermined value and the workpiece is processed uniformly and without defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーザ加工装置を示す構成図、第2図は
被加工物に吸収されるレーザパワーを測定する従来の他
の実施例を示す断面図、第3図はこの発明の一実施例を
示す構成図である。 図において、1はしーザ発振器、2はしーザビ−ム、3
は集光器、6はしーザパワー制御装置、7はビームスプ
リツタ、8はコーン形カロリーメー夕、9はコーン、1
川ま水冷管、11は断熱材、12は熱電体、13は差動
増幅器、14は反射ビーム吸収装置、15はカロリーメ
ータである。 なお図中同一符号は同一または相当部分を示すものとす
る。第3図 第1図 第2図
Fig. 1 is a configuration diagram showing a conventional laser processing device, Fig. 2 is a sectional view showing another conventional embodiment for measuring laser power absorbed by a workpiece, and Fig. 3 is an embodiment of the present invention. It is a block diagram which shows an example. In the figure, 1 is a laser oscillator, 2 is a laser beam, and 3 is a laser oscillator.
is a concentrator, 6 is a laser power controller, 7 is a beam splitter, 8 is a cone-shaped calorimeter, 9 is a cone, 1
11 is a heat insulator, 12 is a thermoelectric body, 13 is a differential amplifier, 14 is a reflected beam absorber, and 15 is a calorimeter. Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 3 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ発振器から放出されらレーザ光を集光器によ
り集束し、被加工物表面に照射し、上記被加工物を加工
するレーザ加工装置において、上記レーザ光の通路に配
設され、上記レーザ光の一部を反射するビームスプリツ
タと、このビームスプリツタで反射されたレーザ光の出
力を測定する第1の測定装置と、上記集光器におけるレ
ーザビームのエネルギー損失を測定する第2の測定装置
と、上記被加工物表面から反射されるレーザビーム量を
測定する第3の測定装置と、上記第1、第2、第3の測
定装置の出力に応じ上記レーザ発振器のレーザ出力を制
御する制御装置を備えていることを特徴とするレーザ加
工装置。
1. In a laser processing device that processes a workpiece by focusing a laser beam emitted from a laser oscillator using a condenser and irradiating it onto the surface of a workpiece, the laser beam is a beam splitter that reflects a portion of the laser beam, a first measurement device that measures the output of the laser beam reflected by the beam splitter, and a second measurement device that measures the energy loss of the laser beam in the condenser. a third measuring device that measures the amount of laser beam reflected from the surface of the workpiece; and controlling the laser output of the laser oscillator according to the outputs of the first, second, and third measuring devices. A laser processing device characterized by comprising a control device.
JP52105646A 1977-09-02 1977-09-02 Laser processing equipment Expired JPS6036358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52105646A JPS6036358B2 (en) 1977-09-02 1977-09-02 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52105646A JPS6036358B2 (en) 1977-09-02 1977-09-02 Laser processing equipment

Publications (2)

Publication Number Publication Date
JPS5439285A JPS5439285A (en) 1979-03-26
JPS6036358B2 true JPS6036358B2 (en) 1985-08-20

Family

ID=14413208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52105646A Expired JPS6036358B2 (en) 1977-09-02 1977-09-02 Laser processing equipment

Country Status (1)

Country Link
JP (1) JPS6036358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291037U (en) * 1988-12-29 1990-07-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778845A (en) * 1980-11-05 1982-05-17 Olympus Optical Co Lasre device for endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291037U (en) * 1988-12-29 1990-07-19

Also Published As

Publication number Publication date
JPS5439285A (en) 1979-03-26

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US3796099A (en) Method for measuring the surface temperature of a metal object
JP2006510490A (en) Laser spot welding method and apparatus
GB1599949A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
US3413474A (en) Coating thickness determination by means of measuring black-body radiation resultant from infrared irradiation
Ignatiev et al. Real-time optical pyrometer in laser machining
JP2017122579A (en) Phase transformation acquisition device, phase transformation acquisition method, and manufacturing apparatus
Ducharme et al. A mathematical model of the defocusing of laser light above a workpiece in laser material processing
Volpp Laser beam absorption measurement at molten metal surfaces
JPH05261576A (en) Device and method for heating
EP0562492B1 (en) A laser device, particularly a laser robot, with a focusing head having sensor means for monitoring the quality of a process in an automated production system
JPS6036358B2 (en) Laser processing equipment
Harrington Anomalous surface heating rates
JPS62112322A (en) Laser annealing device
US3501237A (en) Apparatus for and method of determining temperature
EP0619877A1 (en) System for the controlled heating of an object
Baik et al. Process monitoring of laser welding using chromatic filtering of thermal radiation
Garnov et al. Experimental study of temperature dependence of reflectivity and heat capacity of steels and alloys at continuous wave Nd: YAG laser heating
Fung et al. Study of surface temperature on laser cutting and welding power absorption
Gupta et al. Spectroscopic determination of mass ablation rate in laser produced plasmas
JPH0658890A (en) Method and apparatus for evaluating wettability of solder
JPH0561574B2 (en)
JPH0450734A (en) Noncontact heating device for surface of body accompanied by temperature measurement
JPS5952035B2 (en) Laser processing equipment
RU2007697C1 (en) Method and device for proximate measuring of laser mirrors specified life