JPS603545A - Electrolytic cell for measuring polarization curve - Google Patents

Electrolytic cell for measuring polarization curve

Info

Publication number
JPS603545A
JPS603545A JP58111508A JP11150883A JPS603545A JP S603545 A JPS603545 A JP S603545A JP 58111508 A JP58111508 A JP 58111508A JP 11150883 A JP11150883 A JP 11150883A JP S603545 A JPS603545 A JP S603545A
Authority
JP
Japan
Prior art keywords
tube
double
electrolyte
polarization
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58111508A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀明 高橋
Tetsuo Shoji
哲雄 庄子
Kiyoshi Saito
潔 斎藤
Masamitsu Muramatsu
村松 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58111508A priority Critical patent/JPS603545A/en
Publication of JPS603545A publication Critical patent/JPS603545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Abstract

PURPOSE:To measure highly precisely a polarization without any leakage by connecting a vessel for supplying electrolyte to one end part of a double tube, providing a double cylinder to another end part through a connecting valve, pressing an opening part for measurement, and pouring the electrolyte into the double cylinder. CONSTITUTION:A liquid 2 in an electrolytic cell is allowed to flow into the vessel 11 for supplying electrolyte through an inner tube 9b, by closing a connecting valve 19 and driving a pump 13. The liquid 2 is sent to the connecting tube 19 provided at another end part 10b of the double tube 10 from a supplying hole 8a of an outer tube 8, and returns to an electrode vessel 1 through an inner tube 9a. Next, if the measuring opening part 22a of the double cylinder 22 is brought into contact with a material W to be measured through a packing 23 and pressed, the valve 19 is opened by this operation. Thus, the liquid 2 flows down through an outer cylinder 20, then impinges on a surface of the material W and returns. An opening or closing valve 17 is opened, gaseous nitrogen of a deaeration apparatus 16 is bubbled in the liquid 2 for deaeration, driving of the pump 13 is stopped at a time point when the dissolved oxygen concn. of the liquid 2 is lowered to a suitable value, and the polarization is measured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金属材料の分極特性を利用して据付現場で試
験片を切り出すことなく、しかも、非破壊的に分極測定
する分極曲線計測用電解セルに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrolysis method for measuring polarization curves that uses the polarization characteristics of metal materials to measure polarization non-destructively without cutting out test pieces at the installation site. Regarding cells.

〔発明の技術的背景とその間組点〕[Technical background of the invention and its set points]

金属材料の分極特性は、金属材料の組織変化(経年的な
材質変化)を反映することが確認されておシ、この金属
材料の分極特性の測定は、高温で使用される金属材料の
経年的な材質変化を検出する手段とされている。即ち、
例えば、ヌテンレヌ鋼管の鋭敏化と分極特性については
、多くの研究が提案されており、電気化学的再活性化法
(E。
It has been confirmed that the polarization characteristics of metal materials reflect changes in the structure of the metal material (changes in material properties over time). It is used as a means to detect changes in material properties. That is,
For example, many studies have been proposed on the sensitization and polarization properties of Nutenrenu steel pipes, including electrochemical reactivation methods (E.

P、R法)は、広く用いられている。P, R method) is widely used.

一般に、分極測定手段は、試験片を切出し、これを電解
液槽の中で分極側するように彦っでいるけれども、例え
ば、設置されたプラント配管等の場合は、試験片を切り
出さずに現場で非破壊的に測定する必要がある。このよ
うに、据付現場で試駒片を切シ出すこと々〈、非破壊的
に金属材料の組織変化を測定する手段として、第1図に
示される金属材料の分極測定用電解槽、つまり、分析曲
線測定用電解セルが提案されている。
In general, polarization measurement means cut out a test piece and place it in an electrolyte bath on the polarization side. However, for example, in the case of installed plant piping, etc. It is necessary to measure it non-destructively. In this way, test pieces are cut out at the installation site. An electrolytic cell for measuring analytical curves has been proposed.

即ち、第1図において、電解液注入口a、を備えた外i
aには、絞り開口部すが形成されており、この絞り開口
部すには螺旋状を々す対極(電極)Cが挿着されている
。父、この対極Cの一端部は上記外筒a内を引き通され
、リード線d、を介して記録計e、を有するポテンショ
スタットeに接続されており、上記絞シ開ロ部すの先端
部にはバッキングfが被測定物(金属材料)Wに水密を
保って押圧し得るようにして設けられている。さらに、
上記対極Cの面上に位置する上記外1.の上部a、には
ルギン管gで電極りを収納した照合電極1が気密を保っ
て垂設されており、この照合電極1の一端部は、リード
’fffJ (l tを介して、上記ポテンショスタッ
トθに接続されている。さらに又、このポテンショスタ
ットθにはリード線d3が上記被測定物Wに接続されて
おシ、上記外fla内には、測定時、電解溶液kが上記
電解液注入口a1から注入されて満されている。従って
、上述した分極曲線測定用電解セルは、分極測定時、予
め、外筒aの絞り開口部すをバッキングfi介して被測
定物Wに密着するように尚接し、次に、電解液に全電解
液注入口a、から外筒a内に注入し、しかる後、上記対
極C及び照合電極1に通電することにより、上記ポテン
ショスタットeが照合電極1の基準電位に基づき、上記
対極Cと被測定物Wとの電位差による分極特性を測定し
て、これを記録計θ、に記録するようになっている。
That is, in FIG.
A is formed with a diaphragm opening, and a spiral counter electrode (electrode) C is inserted into this diaphragm opening. One end of this counter electrode C is passed through the outer cylinder a and connected to a potentiostat e having a recorder e via a lead wire d, and the end of the counter electrode C is connected to the potentiostat e having a recorder e. A backing f is provided on the part so as to be able to press against the object to be measured (metallic material) W while keeping it watertight. moreover,
The above-mentioned outside 1. located on the surface of the counter electrode C. A reference electrode 1 containing an electrode in a Luggin tube g is vertically installed in the upper part a of the reference electrode 1 in an airtight manner. Furthermore, a lead wire d3 is connected to the potentiostat θ to the object to be measured W, and the electrolytic solution k is injected into the external fla during measurement. It is injected and filled from the injection port a1.Therefore, during polarization measurement, the electrolytic cell for polarization curve measurement described above is brought into close contact with the object W to be measured via the backing fi through the aperture opening of the outer cylinder a. Then, all the electrolyte is injected into the outer cylinder a from the electrolyte inlet a, and then the counter electrode C and the reference electrode 1 are energized, so that the potentiostat e is connected to the reference electrode. The polarization characteristic due to the potential difference between the counter electrode C and the object to be measured W is measured based on the reference potential of No. 1, and this is recorded on a recorder θ.

しかしながら、上述した分極曲線測定用電解セルは、据
付現場に携行して、被測定物の限られた狭い領域を測定
する関係上、携帯に便利にするために、装置全体を小形
軽量化されているから、これに伴って、電解溶液にの量
が非常に少くなるばかシでなく、分極特性の測定中に、
被測定物Wからの電解溶液kにイオンが溶出するため、
外筒a3の電解溶液にの容量が少ないときに、溶出イオ
ンの影響によって、上記電解溶液の組成が変化し、(8
) 分極特性に影響を及ばずことが予測される。
However, since the above-mentioned electrolytic cell for polarization curve measurement is carried to the installation site and measures a limited and narrow area of the object to be measured, the entire device has to be made smaller and lighter in order to make it more convenient to carry. Because of this, the amount in the electrolyte solution is not too small, but during the measurement of polarization characteristics,
Because ions are eluted into the electrolytic solution k from the object W,
When the capacity of the electrolytic solution in the outer cylinder a3 is small, the composition of the electrolytic solution changes due to the influence of eluted ions, and (8
) It is predicted that the polarization characteristics will not be affected.

次に、上記外筒aを被測定物Wに装着する場合、据付現
場では、測定箇所が奥1った場所や絞り開口部すと被測
定物Wの接触状態を十分に目視できなA場合もあり、こ
のような場合、上記バッキングfと被測定物Wとの間に
微小な間隙が生じていても、これを確認できないので、
電解溶液kが上記間隙から漏洩し、この漏洩した電解溶
液には被測定物Wのまわりを腐蝕するかそれもある。さ
らに又、上記外筒aは、上部の電解液注入口a、から電
解溶液kf:注入する構造にかっているため、外筒aを
上、下、逆向きにして倒立して使用する場合、被測定物
Wと電解溶液にとの間に気泡が入り込み、充分な接触が
得らnず、実際上、上向きによる分極測定は困難になる
Next, when attaching the outer tube a to the object W to be measured, in case A that the contact state of the object W to be measured cannot be sufficiently seen at the installation site due to the location where the measurement point is located at the back or the aperture opening. In such a case, even if there is a minute gap between the backing f and the object to be measured W, this cannot be confirmed.
The electrolytic solution K leaks from the gap, and this leaked electrolytic solution may corrode the area around the object W to be measured. Furthermore, since the outer cylinder a has a structure in which the electrolyte solution kf is injected from the upper electrolyte injection port a, when the outer cylinder a is used upside down with the upper, lower, or reverse direction, Air bubbles enter between the object W to be measured and the electrolytic solution, making it impossible to obtain sufficient contact, making it difficult to actually measure polarization in an upward direction.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した事情に鑑みてなされたものであって
、据付現場にかける被測定物の上、下、左右いずれの状
態にも設置できるようにして、電解液を漏洩しないよう
にし、しかも、高精度の分(4) 極測定全施し得るようにしたことを目的とする分極曲線
計測用電解セルを提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and can be installed on the top, bottom, right or left side of the object to be measured at the installation site, and prevents electrolyte from leaking. (4) To provide an electrolytic cell for measuring polarization curves that is capable of performing all polarization measurements with high accuracy.

〔発明の概要〕[Summary of the invention]

本発明は、対極及び照合電極を内蔵した電極槽に外管を
有する二重管の各内管を連結し、上記二重管の一端部に
電解液供給槽を接続し、上記二重管の他端部に連結弁を
介して二重筒体を付設し、この型部の一端部に被測定物
の測定開口部を形成し、この測定開口部を押圧すること
により上記連結弁を開弁じて電解液を上記二重筒体内に
注入し得るように構成したものである。
The present invention connects each inner tube of a double tube having an outer tube to an electrode bath containing a counter electrode and a reference electrode, and connects an electrolyte supply tank to one end of the double tube. A double cylindrical body is attached to the other end via a connecting valve, a measuring opening for the object to be measured is formed at one end of this mold part, and the connecting valve is opened by pressing this measuring opening. The structure is such that an electrolytic solution can be injected into the double cylinder body.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例について説明する。 Hereinafter, the present invention will be described with reference to an illustrated embodiment.

第2図において、符号1は、電解液2を容量る密閉され
た電極槽であって、この電極槽1には上記電解液2の電
位を検出する対極8及び基準電位を保持する照合電極4
が垂設されており、この対極8及び照合電極4は各リー
ド線5a、5bを介して記録計6aを備えたポテンショ
スタット6に接続されている。又、上記電極槽1には溶
存酸素メータ7が電解液2中に含まれる溶存酸素量を測
定し得るようにして立設されている。
In FIG. 2, reference numeral 1 denotes a sealed electrode tank that holds an electrolytic solution 2, and this electrode tank 1 includes a counter electrode 8 that detects the potential of the electrolytic solution 2, and a reference electrode 4 that holds a reference potential.
is vertically arranged, and the counter electrode 8 and reference electrode 4 are connected to a potentiostat 6 equipped with a recorder 6a via respective lead wires 5a and 5b. Further, a dissolved oxygen meter 7 is installed upright in the electrode tank 1 so as to be able to measure the amount of dissolved oxygen contained in the electrolytic solution 2.

一方、上記電極槽1には、外v8と内管9a。On the other hand, the electrode tank 1 has an outer tube 8 and an inner tube 9a.

9bとで構成される二重管10の内管9a、9bが連結
されており、この二重管10の一端部10 a ij:
 密閉さnた電解液供給槽l】に接続されている。又、
この電解液供給槽11内の内管9bの一端部9b。
The inner tubes 9a and 9b of a double tube 10 configured with 9b are connected, and one end portion 10 a ij of this double tube 10
It is connected to a sealed electrolyte supply tank. or,
One end 9b of the inner tube 9b in the electrolyte supply tank 11.

にはモータ12を備えたポンプ13が設けられており、
このポンプ13は上記内管9b内の1F4i解液2を吸
込むこ七によって、上記電解液供給槽11に還流した電
解液2を二重管】0による外管8の供給口8aへ送水す
るようになっている。さらに又、上記外管8の中程には
、例えば、電磁弁のような開閉弁14が設けられており
、上記内管9bの管路上には、例えば、電磁弁による開
閉弁15が付設されている。
is provided with a pump 13 equipped with a motor 12,
This pump 13 sucks in the 1F4i solution 2 in the inner tube 9b, and sends the electrolyte 2 that has returned to the electrolyte supply tank 11 to the supply port 8a of the outer tube 8 through the double tube. It has become. Furthermore, an on-off valve 14 such as a solenoid valve is provided in the middle of the outer pipe 8, and an on-off valve 15 such as a solenoid valve is provided on the pipe path of the inner pipe 9b. ing.

又一方、上記電解液供給槽11の近傍には、電解液に窒
素ガスを供給して溶存酸素の量を制御する脱気装瞠16
が開閉弁17を有する連通管18全通して連結されてい
る。
On the other hand, in the vicinity of the electrolyte supply tank 11, there is a degassing device 16 for supplying nitrogen gas to the electrolyte to control the amount of dissolved oxygen.
are connected to each other through a communication pipe 18 having an on-off valve 17.

他方、上記二重管10の他端部iobには閉弁習性の連
結弁19が付設されており、この連結弁19には、外筒
20と内筒21とで構成される二重筒体22が垂設され
ている。又、この二重円筒22の一端部にはOリング2
3全備えたが11定開口部22aが被測定物Wに水密に
接触し得るようにして形成されており、特に、このl+
+定開口開口部22a上記被測定物Wに接触した後、押
圧することにより、上記二重筒体22の基部に設けられ
た上記連結弁19ヲ開弁じて電解液2を外筒20から内
管21の下部開口部21aへ注入するようになって力る
。なお、上記被測定物Wには前記ポテンショスタット6
に接続したリード線列が付設されている。
On the other hand, a connecting valve 19 with a closing habit is attached to the other end iob of the double pipe 10, and this connecting valve 19 has a double cylinder body composed of an outer cylinder 20 and an inner cylinder 21. 22 is installed vertically. Also, an O-ring 2 is attached to one end of this double cylinder 22.
The opening 22a is formed so that it can come into watertight contact with the object W to be measured.
+ Constant aperture opening 22a is pressed after coming into contact with the object W to be measured, thereby opening the connecting valve 19 provided at the base of the double cylinder body 22 and allowing the electrolyte 2 to enter from the outer cylinder 20. The liquid is applied so as to be injected into the lower opening 21a of the tube 21. Note that the object to be measured W is equipped with the potentiostat 6.
A series of lead wires connected to the

以下、本発明の作用につめて説明する。Hereinafter, the effects of the present invention will be explained in detail.

先づ、上記二重筒体22の測定開口部22aを被測定物
Wに当接する前に、予め、上記各開閉弁14及び15ヲ
開弁し、モータ12に通電してポンブエ3を駆@1・1
合・上6連結”°1自巳0習性K 1よって閉弁さrて
いる。しかして、上記ポンプ13が駆動することにより
、電極槽1の電解液2は、内管9bを通って上記電解液
供給槽11に流入する。
First, before bringing the measurement opening 22a of the double cylinder body 22 into contact with the object to be measured W, the on-off valves 14 and 15 are opened in advance, and the motor 12 is energized to drive the pump 3. 1・1
Therefore, the valve is closed. By driving the pump 13, the electrolyte 2 in the electrode tank 1 passes through the inner pipe 9b and flows into the above-mentioned It flows into the electrolyte supply tank 11.

すると、この電解液供給槽11内の電解液2は外管8の
供給口8aから圧送されて上記二重管10の他端部to
bに設けられた連結管19へ送らnlこの連結管19に
接続された内管9aを通って上記電極槽1へ還流するよ
うになっている。従って、第3図に示されるように、二
重管10の電解液2は、二重筒体22内に流入しなAか
ら、電解液2I′i、上記測定開口部22aから流出す
るおそれはない。
Then, the electrolyte 2 in the electrolyte supply tank 11 is fed under pressure from the supply port 8a of the outer tube 8 to the other end of the double tube 10.
The liquid is sent to a connecting pipe 19 provided at nl, and is returned to the electrode tank 1 through an inner pipe 9a connected to this connecting pipe 19. Therefore, as shown in FIG. 3, the electrolytic solution 2 in the double tube 10 does not flow into the double cylinder body 22, and there is no possibility that the electrolytic solution 2I'i will flow out from the measurement opening 22a. do not have.

次に、上記二重筒体22の測定開口部22aをバッキン
グ23ヲ介して、上記被測定物Wに接触して押圧すると
、この動作によって二重筒体22は被測定物Wに対して
固定されると同時に、上記連結弁19は開弁するので、
第4肉に示されるように、外管8内の電解液2は連結弁
19から外筒20ヲ通って流下し、しかる後、上記被測
定物Wの表面に衝合した後、内筒21の下部開口部21
a内に流入し、再び、上記連結弁19を通って内管9a
から上記電極槽1へ還流するようになっている。この場
合、上記電解液2は、被測定物Wに対して充分に接触す
る。
Next, when the measurement opening 22a of the double cylinder 22 is brought into contact with and pressed against the object W through the backing 23, the double cylinder 22 is fixed to the object W by this action. At the same time, the connecting valve 19 opens.
As shown in the fourth figure, the electrolytic solution 2 in the outer tube 8 flows down from the connecting valve 19 through the outer tube 20, and then collides with the surface of the object W to be measured, and then flows into the inner tube 21. lower opening 21 of
a, and passes through the connecting valve 19 again to the inner pipe 9a.
The liquid is then refluxed to the electrode tank 1. In this case, the electrolytic solution 2 sufficiently contacts the object W to be measured.

又一方、第5図に示されるように、バッキング23と被
測定物Wとの間に空隙25が生じても、測定開口部22
aの電解液2は、外筒がわから内筒2】がわへ駁込むよ
うに構成されているので、電解液が外部へ漏洩するおそ
れはない。
On the other hand, as shown in FIG.
Since the electrolytic solution 2 of a is constructed so as to pass through the outer cylinder and into the inner cylinder 2, there is no risk of the electrolytic solution leaking to the outside.

一方、上記開閉弁17全開弁することによシ、上記脱気
装置16の窒素ガスを連通管18を通して適当な量だけ
電解液供給槽11の電解液2中にバブリングさせて脱気
しなから゛電解液の循環を続けると同時に、前記溶存酸
素メータ7によって、溶存酸素量を検出して測定する。
On the other hand, by fully opening the on-off valve 17, an appropriate amount of nitrogen gas from the deaerator 16 is bubbled into the electrolyte 2 in the electrolyte supply tank 11 through the communication pipe 18 for deaeration. ``While the electrolyte continues to circulate, the dissolved oxygen meter 7 detects and measures the amount of dissolved oxygen.

この場合、上記バッキング23と被測定物Wとの間に空
隙25が発生して、この空隙25から空気を吸い込んだ
ときには、上記溶存酸素濃度が顕著に増加するので、被
測定物Wに対する装着不良状態は容易に検知することが
できる。
In this case, a gap 25 is generated between the backing 23 and the object W to be measured, and when air is sucked through the gap 25, the dissolved oxygen concentration increases significantly, resulting in poor attachment to the object W. The condition can be easily detected.

次に、上記電解液2の溶存酸素濃度が適正(1Mまで降
下した時点で、上記開閉弁14. t5kf2−i弁す
ると同時に、上記モータ12の通電を絶ってポンプ13
の駆動を停止する。これによって、前述した具体例と同
じようにして分極測定を行う。
Next, when the dissolved oxygen concentration of the electrolytic solution 2 drops to an appropriate level (1M), the on-off valve 14.t5kf2-i is turned on, the motor 12 is de-energized, and the pump 13
Stops driving. With this, polarization measurement is performed in the same manner as in the specific example described above.

即ち、上記対極3及び照合型1極4に通電することによ
り、上記ポテンショスタツ計6が上記照合電極4の基漁
電位に基づき上記対極8とネル測定物Wとの電位差によ
る分極特性を測定して記録計6aに記録するように力っ
ている。
That is, by energizing the counter electrode 3 and the reference electrode 4, the potentiostat 6 measures the polarization characteristics due to the potential difference between the counter electrode 8 and the object to be measured W based on the base potential of the reference electrode 4. and force it to be recorded on the recorder 6a.

々お、上記電極′JyR1は、充分な容tを持っている
ので、分極測定中のイオン溶出による影響を受けるおそ
れはない。
Furthermore, since the electrode 'JyR1 has a sufficient capacity t, there is no possibility that it will be affected by ion elution during polarization measurement.

次に、分極測定後は、上記開閉弁1.4.15’i開弁
すると、同時に、上記ポンプ13を貝ス動し、電解液を
循環させる。
Next, after the polarization measurement, when the on-off valves 1, 4, and 15'i are opened, the pump 13 is simultaneously operated to circulate the electrolyte.

このように、電解液を循環させながら、上記測定開口部
22aを被測定物Wから離間することによシ、上記二重
筒体22内の電解液は、内筒21を通って連結弁19及
び内管9aへ吸引されると共に、上記連結弁19は閉弁
して、第3肉に示される状態に復帰する。
In this manner, by separating the measurement opening 22a from the object to be measured W while circulating the electrolyte, the electrolyte in the double cylinder body 22 passes through the inner cylinder 21 and reaches the connecting valve 19. At the same time, the connecting valve 19 closes and returns to the state shown in the third portion.

々お、上記電解液供給槽11内の電解液は、多量の容量
で貯溜されているので、還流した分極測定時の溶出イオ
ンは、さらに、希釈されるから、電解液を交換すること
なく、直ちに次の分極測定の連続動作をすることができ
る。
Since the electrolytic solution in the electrolytic solution supply tank 11 is stored in a large capacity, the ions eluted during polarization measurement that have refluxed are further diluted, so that the electrolytic solution can be removed without replacing the electrolytic solution. The next continuous operation of polarization measurement can be carried out immediately.

〔発明の実施例〕[Embodiments of the invention]

以上述べたように本発明によれば、対極8及び照合電極
4を内蔵した電極槽1に外管8を有する二重管10の各
内管9a、9bを連結し、この二重管10の一端部10
aを′電解液供給槽11に接続し、上記二重管10の陸
端部tobに連結弁19を介して二重置体22を付設し
、この二N筒体22の一端部に被測定物Wの測定開口部
22aを形成し、この測定開口部22aを押圧すること
によシ、上記連結弁19全開弁して電解液を供給するよ
うに力っているので、据付現場における被測定物Wを非
破壊的に分極測定できるばかpでなく、取扱い操作も簡
単であシ、しかも、電解液の漏洩も力いから、被測定物
Wのまわシを腐蝕するおそれもなくなり、さらに、電解
液を充分に使用するので分極測定の精度を向上 八する
ことができる。
As described above, according to the present invention, the inner tubes 9a and 9b of the double tube 10 having the outer tube 8 are connected to the electrode bath 1 containing the counter electrode 8 and the reference electrode 4. One end 10
A is connected to the electrolyte supply tank 11, a double mounting body 22 is attached to the land end tob of the double pipe 10 via a connecting valve 19, and a measuring object is attached to one end of this 2N cylinder 22. By forming the measurement opening 22a of the object W and pressing the measurement opening 22a, the connection valve 19 is fully opened and the electrolyte is supplied. It is not only possible to measure the polarization of the object W non-destructively, it is easy to handle, and the leakage of the electrolyte is strong, so there is no risk of corroding the cover of the object W, and furthermore, Since sufficient electrolyte is used, the accuracy of polarization measurement can be improved.

(11)(11)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、既に提雰されている分極曲線計測用電解セル
の断面図、第2図は、本発明による分極曲線計測用電解
セルを線図的に示す断面図、第3図乃至第5図は、本発
明の詳細な説明するための各図である。 1・・・電解槽、2・・・電解液、3・・・対極、4・
・・照合゛電極、6・・・ポテンショヌタッF、8−/
AM、9a。 9b・・・内管、IO・・・二重管、14.15・・・
開閉弁、16・・・脱気装置、19・・・連通弁、20
・・・外筒、21・・・内筒、22・・・二重筒体、2
3・・・バッキング。 出願人代理人 猪 股 清 (12)
FIG. 1 is a sectional view of an electrolytic cell for measuring polarization curves that has already been proposed, FIG. 2 is a sectional view diagrammatically showing an electrolytic cell for measuring polarization curves according to the present invention, and FIGS. The figures are diagrams for explaining the present invention in detail. 1... Electrolytic cell, 2... Electrolyte, 3... Counter electrode, 4...
... Verification electrode, 6... Potentiometer F, 8-/
AM, 9a. 9b...Inner pipe, IO...Double pipe, 14.15...
Opening/closing valve, 16... Deaerator, 19... Communication valve, 20
...Outer cylinder, 21...Inner cylinder, 22...Double cylinder body, 2
3...Backing. Applicant's agent Kiyoshi Inomata (12)

Claims (1)

【特許請求の範囲】 1、対極及び照合電極を内蔵した電極槽に外管を有する
二重管の各内管を連結し、上記二重管の一端部を電解液
供給槽に接続し、上記二重管の曲端部に連結弁を介して
二重筒体を付設し、この二重筒体の一端部に被測定物の
測定開口部を形成し、この測定開口部を押圧することに
よシ上記連結弁を開弁するようにしたことを特徴とする
分極曲線計測用電解セル。 λ二重・管の外管に電解液を供給し、内筒に電解液液を
還流するようにしたことを特徴とする特許請求の範囲第
1項記載の分極曲線測定用電解セル
[Claims] 1. Each inner tube of a double tube having an outer tube is connected to an electrode tank containing a counter electrode and a reference electrode, and one end of the double tube is connected to an electrolyte supply tank. A double cylinder is attached to the bent end of the double pipe via a connecting valve, a measurement opening for the object to be measured is formed at one end of the double cylinder, and this measurement opening is pressed. An electrolytic cell for measuring polarization curves, characterized in that the connecting valve is opened. An electrolytic cell for polarization curve measurement according to claim 1, characterized in that an electrolytic solution is supplied to the outer tube of the λ double tube and the electrolytic solution is refluxed to the inner tube.
JP58111508A 1983-06-21 1983-06-21 Electrolytic cell for measuring polarization curve Pending JPS603545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111508A JPS603545A (en) 1983-06-21 1983-06-21 Electrolytic cell for measuring polarization curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111508A JPS603545A (en) 1983-06-21 1983-06-21 Electrolytic cell for measuring polarization curve

Publications (1)

Publication Number Publication Date
JPS603545A true JPS603545A (en) 1985-01-09

Family

ID=14563079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111508A Pending JPS603545A (en) 1983-06-21 1983-06-21 Electrolytic cell for measuring polarization curve

Country Status (1)

Country Link
JP (1) JPS603545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222156A (en) * 1986-03-25 1987-09-30 Toshiba Corp Stirring electrode device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222156A (en) * 1986-03-25 1987-09-30 Toshiba Corp Stirring electrode device

Similar Documents

Publication Publication Date Title
RU2646801C2 (en) Device and method for measuring hydrogen penetration
EP3372998A1 (en) Sensor and method for measuring content of hydrogen in metal melt
CN109374520B (en) Electrochemical test system for atmospheric corrosion of metal under flowing thin liquid film
US4490236A (en) Method and means for electrode calibration
JP2019508668A (en) Integrated system for quantitative real-time monitoring of hydrogen induced cracking in a simulated sour environment.
DK0807246T3 (en) Procedure for assessing closure integrity
US6090268A (en) CO gas sensor and CO gas concentration measuring method
CN102288654B (en) Device and method for research on hydrogen permeation of metal in acidic atmospheric medium
JPS603545A (en) Electrolytic cell for measuring polarization curve
CN113358553A (en) Device and method for submerging submarine pipeline completely and accelerating corrosion and crushing
CN111650093B (en) Metal micro-area hydrogen permeation quantitative detection device under in-situ loading condition
US2960455A (en) Electrolytic cell
JP6396860B2 (en) Sample preparation method
US3223598A (en) Method for determining the adhesion of metal plating
JPH01129156A (en) Electrochemical sensor for hydrogen
US4318301A (en) Apparatus for measuring papillary muscle contractility
JPS59217147A (en) Method and apparatus for inspecting corrosion of steel material in concrete
US3449232A (en) Stress corrosion cell
GB2199951A (en) Testing steel for hydrogen embrittlement
EP0103588A1 (en) Device for determining hydrogen flux
CN110286081B (en) Pure water immersion type immersion corrosion experiment clamp and experiment device
US3350636A (en) Gas diffusion electrodes and ph measurements carried out therewith
JPS63115750U (en)
CN216349356U (en) Leakage test equipment
JPS62124455A (en) Electrolytic cell for measuring polarization curve